1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
// xts.cpp - written and placed in the public domain by Jeffrey Walton
// Aarch32, Aarch64, Altivec and X86_64 include SIMD as part of the
// base architecture. We can use the SIMD code below without an
// architecture option. No runtime tests are required. Unfortunately,
// we can't use it on Altivec because an architecture switch is required.
// The updated XorBuffer gains 0.3 to 1.5 cpb on the architectures for
// 16-byte block sizes.
#include "pch.h"
#include "xts.h"
#include "misc.h"
#include "modes.h"
#include "cpu.h"
#if defined(CRYPTOPP_DEBUG)
# include "aes.h"
# include "threefish.h"
#endif
// 0.3 to 0.4 cpb profit
#if defined(__SSE2__) || defined(_M_X64)
# include <emmintrin.h>
#endif
#if defined(__aarch32__) || defined(__aarch64__) || defined(_M_ARM64)
# if (CRYPTOPP_ARM_NEON_HEADER) || (CRYPTOPP_ARM_ASIMD_AVAILABLE)
# include <arm_neon.h>
# endif
#endif
#if defined(__ALTIVEC__)
# include "ppc_simd.h"
#endif
ANONYMOUS_NAMESPACE_BEGIN
using namespace CryptoPP;
#if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING)
using CryptoPP::AES;
using CryptoPP::XTS_Mode;
using CryptoPP::Threefish512;
void Modes_TestInstantiations()
{
XTS_Mode<AES>::Encryption m0;
XTS_Mode<AES>::Decryption m1;
XTS_Mode<AES>::Encryption m2;
XTS_Mode<AES>::Decryption m3;
#if CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS
XTS_Mode<Threefish512>::Encryption m4;
XTS_Mode<Threefish512>::Decryption m5;
#endif
}
#endif // CRYPTOPP_DEBUG
inline void XorBuffer(byte *output, const byte *input, const byte *mask, size_t count)
{
CRYPTOPP_ASSERT(count >= 16 && (count % 16 == 0));
#if defined(CRYPTOPP_DISABLE_ASM)
xorbuf(output, input, mask, count);
#elif defined(__SSE2__) || defined(_M_X64)
for (size_t i=0; i<count; i+=16)
_mm_storeu_si128(M128_CAST(output+i),
_mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(input+i)),
_mm_loadu_si128(CONST_M128_CAST(mask+i))));
#elif defined(__aarch32__) || defined(__aarch64__) || defined(_M_ARM64)
for (size_t i=0; i<count; i+=16)
vst1q_u8(output+i, veorq_u8(vld1q_u8(input+i), vld1q_u8(mask+i)));
#elif defined(__ALTIVEC__)
for (size_t i=0; i<count; i+=16)
VecStore(VecXor(VecLoad(input+i), VecLoad(mask+i)), output+i);
#else
xorbuf(output, input, mask, count);
#endif
}
inline void XorBuffer(byte *buf, const byte *mask, size_t count)
{
XorBuffer(buf, buf, mask, count);
}
// Borrowed from CMAC, but little-endian representation
inline void GF_Double(byte *out, const byte* in, unsigned int len)
{
#if defined(CRYPTOPP_WORD128_AVAILABLE)
word128 carry = 0, x;
for (size_t i=0, idx=0; i<len/16; ++i, idx+=16)
{
x = GetWord<word128>(false, LITTLE_ENDIAN_ORDER, in+idx);
word128 y = (x >> 127); x = (x << 1) + carry;
PutWord<word128>(false, LITTLE_ENDIAN_ORDER, out+idx, x);
carry = y;
}
#elif defined(_M_X64) || defined(_M_ARM64) || defined(_LP64) || defined(__LP64__)
word64 carry = 0, x;
for (size_t i=0, idx=0; i<len/8; ++i, idx+=8)
{
x = GetWord<word64>(false, LITTLE_ENDIAN_ORDER, in+idx);
word64 y = (x >> 63); x = (x << 1) + carry;
PutWord<word64>(false, LITTLE_ENDIAN_ORDER, out+idx, x);
carry = y;
}
#else
word32 carry = 0, x;
for (size_t i=0, idx=0; i<len/4; ++i, idx+=4)
{
x = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, in+idx);
word32 y = (x >> 31); x = (x << 1) + carry;
PutWord<word32>(false, LITTLE_ENDIAN_ORDER, out+idx, x);
carry = y;
}
#endif
#if CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS
CRYPTOPP_ASSERT(IsPowerOf2(len));
CRYPTOPP_ASSERT(len >= 16);
CRYPTOPP_ASSERT(len <= 128);
byte* k = out;
if (carry)
{
switch (len)
{
case 16:
{
const size_t LEIDX = 16-1;
k[LEIDX-15] ^= 0x87;
break;
}
case 32:
{
// https://crypto.stackexchange.com/q/9815/10496
// Polynomial x^256 + x^10 + x^5 + x^2 + 1
const size_t LEIDX = 32-1;
k[LEIDX-30] ^= 4;
k[LEIDX-31] ^= 0x25;
break;
}
case 64:
{
// https://crypto.stackexchange.com/q/9815/10496
// Polynomial x^512 + x^8 + x^5 + x^2 + 1
const size_t LEIDX = 64-1;
k[LEIDX-62] ^= 1;
k[LEIDX-63] ^= 0x25;
break;
}
case 128:
{
// https://crypto.stackexchange.com/q/9815/10496
// Polynomial x^1024 + x^19 + x^6 + x + 1
const size_t LEIDX = 128-1;
k[LEIDX-125] ^= 8;
k[LEIDX-126] ^= 0x00;
k[LEIDX-127] ^= 0x43;
break;
}
default:
CRYPTOPP_ASSERT(0);
}
}
#else
CRYPTOPP_ASSERT(len == 16);
byte* k = out;
if (carry)
{
k[0] ^= 0x87;
return;
}
#endif // CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS
}
inline void GF_Double(byte *inout, unsigned int len)
{
GF_Double(inout, inout, len);
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
void XTS_ModeBase::ThrowIfInvalidBlockSize(size_t length)
{
#if CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS
CRYPTOPP_ASSERT(length >= 16 && length <= 128 && IsPowerOf2(length));
if (length < 16 || length > 128 || !IsPowerOf2(length))
throw InvalidArgument(AlgorithmName() + ": block size of underlying block cipher is not valid");
#else
CRYPTOPP_ASSERT(length == 16);
if (length != 16)
throw InvalidArgument(AlgorithmName() + ": block size of underlying block cipher is not 16");
#endif
}
void XTS_ModeBase::ThrowIfInvalidKeyLength(size_t length)
{
CRYPTOPP_ASSERT(length % 2 == 0);
if (!GetBlockCipher().IsValidKeyLength((length+1)/2))
throw InvalidKeyLength(AlgorithmName(), length);
}
void XTS_ModeBase::SetKey(const byte *key, size_t length, const NameValuePairs ¶ms)
{
ThrowIfInvalidKeyLength(length);
ThrowIfInvalidBlockSize(BlockSize());
const size_t klen = length/2;
AccessBlockCipher().SetKey(key+0, klen, params);
AccessTweakCipher().SetKey(key+klen, klen, params);
ResizeBuffers();
size_t ivLength;
const byte *iv = GetIVAndThrowIfInvalid(params, ivLength);
Resynchronize(iv, (int)ivLength);
}
void XTS_ModeBase::Resynchronize(const byte *iv, int ivLength)
{
BlockOrientedCipherModeBase::Resynchronize(iv, ivLength);
std::memcpy(m_xregister, m_register, ivLength);
GetTweakCipher().ProcessBlock(m_xregister);
}
void XTS_ModeBase::Resynchronize(word64 sector, ByteOrder order)
{
SecByteBlock iv(GetTweakCipher().BlockSize());
PutWord<word64>(false, order, iv, sector);
std::memset(iv+8, 0x00, iv.size()-8);
BlockOrientedCipherModeBase::Resynchronize(iv, (int)iv.size());
std::memcpy(m_xregister, iv, iv.size());
GetTweakCipher().ProcessBlock(m_xregister);
}
void XTS_ModeBase::ResizeBuffers()
{
BlockOrientedCipherModeBase::ResizeBuffers();
m_xworkspace.New(GetBlockCipher().BlockSize()*ParallelBlocks);
m_xregister.New(GetBlockCipher().BlockSize()*ParallelBlocks);
}
// ProcessData runs either 12-4-1 blocks, 8-2-1 or 4-1 blocks. Which is
// selected depends on ParallelBlocks in the header file. 12-4-1 or 8-2-1
// can be used on Aarch64 and PowerPC. Intel should use 4-1 due to lack
// of registers. The unneeded code paths should be removed by optimizer.
// The extra gyrations save us 1.8 cpb on Aarch64 and 2.1 cpb on PowerPC.
void XTS_ModeBase::ProcessData(byte *outString, const byte *inString, size_t length)
{
// data unit is multiple of 16 bytes
CRYPTOPP_ASSERT(length % BlockSize() == 0);
enum { lastParallelBlock = ParallelBlocks-1 };
const unsigned int blockSize = GetBlockCipher().BlockSize();
const size_t parallelSize = blockSize*ParallelBlocks;
// encrypt the data unit, optimal size at a time
while (length >= parallelSize)
{
// m_xregister[0] always points to the next tweak.
GF_Double(m_xregister+1*blockSize, m_xregister+0*blockSize, blockSize);
GF_Double(m_xregister+2*blockSize, m_xregister+1*blockSize, blockSize);
GF_Double(m_xregister+3*blockSize, m_xregister+2*blockSize, blockSize);
if (ParallelBlocks > 4)
{
GF_Double(m_xregister+4*blockSize, m_xregister+3*blockSize, blockSize);
GF_Double(m_xregister+5*blockSize, m_xregister+4*blockSize, blockSize);
GF_Double(m_xregister+6*blockSize, m_xregister+5*blockSize, blockSize);
GF_Double(m_xregister+7*blockSize, m_xregister+6*blockSize, blockSize);
}
if (ParallelBlocks > 8)
{
GF_Double(m_xregister+8*blockSize, m_xregister+7*blockSize, blockSize);
GF_Double(m_xregister+9*blockSize, m_xregister+8*blockSize, blockSize);
GF_Double(m_xregister+10*blockSize, m_xregister+9*blockSize, blockSize);
GF_Double(m_xregister+11*blockSize, m_xregister+10*blockSize, blockSize);
}
// merge the tweak into the input block
XorBuffer(m_xworkspace, inString, m_xregister, parallelSize);
// encrypt one block, merge the tweak into the output block
GetBlockCipher().AdvancedProcessBlocks(m_xworkspace, m_xregister,
outString, parallelSize, BlockTransformation::BT_AllowParallel);
// m_xregister[0] always points to the next tweak.
GF_Double(m_xregister+0, m_xregister+lastParallelBlock*blockSize, blockSize);
inString += parallelSize;
outString += parallelSize;
length -= parallelSize;
}
// encrypt the data unit, 4 blocks at a time
while (ParallelBlocks == 12 && length >= blockSize*4)
{
// m_xregister[0] always points to the next tweak.
GF_Double(m_xregister+1*blockSize, m_xregister+0*blockSize, blockSize);
GF_Double(m_xregister+2*blockSize, m_xregister+1*blockSize, blockSize);
GF_Double(m_xregister+3*blockSize, m_xregister+2*blockSize, blockSize);
// merge the tweak into the input block
XorBuffer(m_xworkspace, inString, m_xregister, blockSize*4);
// encrypt one block, merge the tweak into the output block
GetBlockCipher().AdvancedProcessBlocks(m_xworkspace, m_xregister,
outString, blockSize*4, BlockTransformation::BT_AllowParallel);
// m_xregister[0] always points to the next tweak.
GF_Double(m_xregister+0, m_xregister+3*blockSize, blockSize);
inString += blockSize*4;
outString += blockSize*4;
length -= blockSize*4;
}
// encrypt the data unit, 2 blocks at a time
while (ParallelBlocks == 8 && length >= blockSize*2)
{
// m_xregister[0] always points to the next tweak.
GF_Double(m_xregister+1*blockSize, m_xregister+0*blockSize, blockSize);
// merge the tweak into the input block
XorBuffer(m_xworkspace, inString, m_xregister, blockSize*2);
// encrypt one block, merge the tweak into the output block
GetBlockCipher().AdvancedProcessBlocks(m_xworkspace, m_xregister,
outString, blockSize*2, BlockTransformation::BT_AllowParallel);
// m_xregister[0] always points to the next tweak.
GF_Double(m_xregister+0, m_xregister+1*blockSize, blockSize);
inString += blockSize*2;
outString += blockSize*2;
length -= blockSize*2;
}
// encrypt the data unit, blocksize at a time
while (length)
{
// merge the tweak into the input block
XorBuffer(m_xworkspace, inString, m_xregister, blockSize);
// encrypt one block
GetBlockCipher().ProcessBlock(m_xworkspace);
// merge the tweak into the output block
XorBuffer(outString, m_xworkspace, m_xregister, blockSize);
// Multiply T by alpha
GF_Double(m_xregister, blockSize);
inString += blockSize;
outString += blockSize;
length -= blockSize;
}
}
size_t XTS_ModeBase::ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength)
{
// need at least a full AES block
CRYPTOPP_ASSERT(inLength >= BlockSize());
if (inLength < BlockSize())
throw InvalidArgument("XTS: message is too short for ciphertext stealing");
if (IsForwardTransformation())
return ProcessLastPlainBlock(outString, outLength, inString, inLength);
else
return ProcessLastCipherBlock(outString, outLength, inString, inLength);
}
size_t XTS_ModeBase::ProcessLastPlainBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength)
{
// ensure output buffer is large enough
CRYPTOPP_ASSERT(outLength >= inLength);
const unsigned int blockSize = GetBlockCipher().BlockSize();
const size_t blocks = inLength / blockSize;
const size_t tail = inLength % blockSize;
outLength = inLength;
if (tail == 0)
{
// Allow ProcessData to handle all the full blocks
ProcessData(outString, inString, inLength);
return inLength;
}
else if (blocks > 1)
{
// Allow ProcessData to handle full blocks except one
const size_t head = (blocks-1)*blockSize;
ProcessData(outString, inString, inLength-head);
outString += head;
inString += head; inLength -= head;
}
///// handle the full block /////
// merge the tweak into the input block
XorBuffer(m_xworkspace, inString, m_xregister, blockSize);
// encrypt one block
GetBlockCipher().ProcessBlock(m_xworkspace);
// merge the tweak into the output block
XorBuffer(outString, m_xworkspace, m_xregister, blockSize);
// Multiply T by alpha
GF_Double(m_xregister, blockSize);
///// handle final partial block /////
inString += blockSize;
outString += blockSize;
const size_t len = inLength-blockSize;
// copy in the final plaintext bytes
std::memcpy(m_xworkspace, inString, len);
// and copy out the final ciphertext bytes
std::memcpy(outString, outString-blockSize, len);
// "steal" ciphertext to complete the block
std::memcpy(m_xworkspace+len, outString-blockSize+len, blockSize-len);
// merge the tweak into the input block
XorBuffer(m_xworkspace, m_xregister, blockSize);
// encrypt one block
GetBlockCipher().ProcessBlock(m_xworkspace);
// merge the tweak into the previous output block
XorBuffer(outString-blockSize, m_xworkspace, m_xregister, blockSize);
return outLength;
}
size_t XTS_ModeBase::ProcessLastCipherBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength)
{
// ensure output buffer is large enough
CRYPTOPP_ASSERT(outLength >= inLength);
const unsigned int blockSize = GetBlockCipher().BlockSize();
const size_t blocks = inLength / blockSize;
const size_t tail = inLength % blockSize;
outLength = inLength;
if (tail == 0)
{
// Allow ProcessData to handle all the full blocks
ProcessData(outString, inString, inLength);
return inLength;
}
else if (blocks > 1)
{
// Allow ProcessData to handle full blocks except one
const size_t head = (blocks-1)*blockSize;
ProcessData(outString, inString, inLength-head);
outString += head;
inString += head; inLength -= head;
}
#define poly1 (m_xregister+0*blockSize)
#define poly2 (m_xregister+1*blockSize)
GF_Double(poly2, poly1, blockSize);
///// handle final partial block /////
inString += blockSize;
outString += blockSize;
const size_t len = inLength-blockSize;
// merge the tweak into the input block
XorBuffer(m_xworkspace, inString-blockSize, poly2, blockSize);
// encrypt one block
GetBlockCipher().ProcessBlock(m_xworkspace);
// merge the tweak into the output block
XorBuffer(m_xworkspace, poly2, blockSize);
// copy in the final plaintext bytes
std::memcpy(outString-blockSize, inString, len);
// and copy out the final ciphertext bytes
std::memcpy(outString, m_xworkspace, len);
// "steal" ciphertext to complete the block
std::memcpy(outString-blockSize+len, m_xworkspace+len, blockSize-len);
///// handle the full previous block /////
inString -= blockSize;
outString -= blockSize;
// merge the tweak into the input block
XorBuffer(m_xworkspace, outString, poly1, blockSize);
// encrypt one block
GetBlockCipher().ProcessBlock(m_xworkspace);
// merge the tweak into the output block
XorBuffer(outString, m_xworkspace, poly1, blockSize);
return outLength;
}
NAMESPACE_END
|