File: misc.h

package info (click to toggle)
libcrypto++ 5.6.4-7
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 11,892 kB
  • ctags: 13,256
  • sloc: cpp: 69,231; sh: 4,117; asm: 4,090; makefile: 363
file content (2389 lines) | stat: -rw-r--r-- 92,304 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389

// misc.h - written and placed in the public domain by Wei Dai

//! \file misc.h
//! \brief Utility functions for the Crypto++ library.

#ifndef CRYPTOPP_MISC_H
#define CRYPTOPP_MISC_H

#include "config.h"

#if !CRYPTOPP_DOXYGEN_PROCESSING

#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4146 4514)
# if (CRYPTOPP_MSC_VERSION >= 1400)
#  pragma warning(disable: 6326)
# endif
#endif

#include "cryptlib.h"
#include "stdcpp.h"
#include "smartptr.h"

#ifdef _MSC_VER
	#if _MSC_VER >= 1400
		// VC2005 workaround: disable declarations that conflict with winnt.h
		#define _interlockedbittestandset CRYPTOPP_DISABLED_INTRINSIC_1
		#define _interlockedbittestandreset CRYPTOPP_DISABLED_INTRINSIC_2
		#define _interlockedbittestandset64 CRYPTOPP_DISABLED_INTRINSIC_3
		#define _interlockedbittestandreset64 CRYPTOPP_DISABLED_INTRINSIC_4
		#include <intrin.h>
		#undef _interlockedbittestandset
		#undef _interlockedbittestandreset
		#undef _interlockedbittestandset64
		#undef _interlockedbittestandreset64
		#define CRYPTOPP_FAST_ROTATE(x) 1
	#elif _MSC_VER >= 1300
		#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32 | (x) == 64)
	#else
		#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32)
	#endif
#elif (defined(__MWERKS__) && TARGET_CPU_PPC) || \
	(defined(__GNUC__) && (defined(_ARCH_PWR2) || defined(_ARCH_PWR) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || defined(_ARCH_COM)))
	#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32)
#elif defined(__GNUC__) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X86)	// depend on GCC's peephole optimization to generate rotate instructions
	#define CRYPTOPP_FAST_ROTATE(x) 1
#else
	#define CRYPTOPP_FAST_ROTATE(x) 0
#endif

#ifdef __BORLANDC__
#include <mem.h>
#include <stdlib.h>
#endif

#if defined(__GNUC__) && defined(__linux__)
#define CRYPTOPP_BYTESWAP_AVAILABLE
#include <byteswap.h>
#endif

#if defined(__GNUC__) && defined(__BMI__)
# include <immintrin.h>
# if defined(__clang__)
#  ifndef _tzcnt_u32
#   define _tzcnt_u32(x) __tzcnt_u32(x)
#  endif
#  ifndef _blsr_u32
#    define  _blsr_u32(x)  __blsr_u32(x)
#  endif
#  ifdef __x86_64__
#   ifndef _tzcnt_u64
#    define _tzcnt_u64(x) __tzcnt_u64(x)
#   endif
#   ifndef _blsr_u64
#     define  _blsr_u64(x)  __blsr_u64(x)
#   endif
#  endif  // x86_64
# endif  // Clang
#endif  // GNUC and BMI

#endif // CRYPTOPP_DOXYGEN_PROCESSING

#if CRYPTOPP_DOXYGEN_PROCESSING
//! \brief The maximum value of a machine word
//! \details SIZE_MAX provides the maximum value of a machine word. The value is
//!   \p 0xffffffff on 32-bit machines, and \p 0xffffffffffffffff on 64-bit machines.
//! Internally, SIZE_MAX is defined as __SIZE_MAX__ if __SIZE_MAX__ is defined. If not
//!   defined, then SIZE_T_MAX is tried. If neither __SIZE_MAX__ nor SIZE_T_MAX is
//!   is defined, the library uses std::numeric_limits<size_t>::max(). The library
//!   prefers __SIZE_MAX__ because its a constexpr that is optimized well
//!   by all compilers. std::numeric_limits<size_t>::max() is \a not a constexpr,
//!   and it is \a not always optimized well.
#  define SIZE_MAX ...
#else
// Its amazing portability problems still plague this simple concept in 2015.
//   http://stackoverflow.com/questions/30472731/which-c-standard-header-defines-size-max
// Avoid NOMINMAX macro on Windows. http://support.microsoft.com/en-us/kb/143208
#ifndef SIZE_MAX
# if defined(__SIZE_MAX__) && (__SIZE_MAX__ > 0)
#  define SIZE_MAX __SIZE_MAX__
# elif defined(SIZE_T_MAX) && (SIZE_T_MAX > 0)
#  define SIZE_MAX SIZE_T_MAX
# else
#  define SIZE_MAX ((std::numeric_limits<size_t>::max)())
# endif
#endif

#endif // CRYPTOPP_DOXYGEN_PROCESSING

NAMESPACE_BEGIN(CryptoPP)

// Forward declaration for IntToString specialization
class Integer;

// ************** compile-time assertion ***************

#if CRYPTOPP_DOXYGEN_PROCESSING
//! \brief Compile time assertion
//! \param expr the expression to evaluate
//! \details Asserts the expression expr though a dummy struct.
#define CRYPTOPP_COMPILE_ASSERT(expr) ...
#else // CRYPTOPP_DOXYGEN_PROCESSING
template <bool b>
struct CompileAssert
{
	static char dummy[2*b-1];
};
//! \endif

#define CRYPTOPP_COMPILE_ASSERT(assertion) CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, __LINE__)
#if defined(CRYPTOPP_EXPORTS) || defined(CRYPTOPP_IMPORTS)
#define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance)
#else
# if defined(__GNUC__)
#  define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \
		static CompileAssert<(assertion)> \
		CRYPTOPP_ASSERT_JOIN(cryptopp_assert_, instance) __attribute__ ((unused))
# else
#  define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \
		static CompileAssert<(assertion)> \
		CRYPTOPP_ASSERT_JOIN(cryptopp_assert_, instance)
# endif // __GNUC__
#endif
#define CRYPTOPP_ASSERT_JOIN(X, Y) CRYPTOPP_DO_ASSERT_JOIN(X, Y)
#define CRYPTOPP_DO_ASSERT_JOIN(X, Y) X##Y

#endif // CRYPTOPP_DOXYGEN_PROCESSING

// ************** count elements in an array ***************

#if CRYPTOPP_DOXYGEN_PROCESSING
//! \brief Counts elements in an array
//! \param arr an array of elements
//! \details COUNTOF counts elements in an array. On Windows COUNTOF(x) is defined
//!   to <tt>_countof(x)</tt> to ensure correct results for pointers.
//! \note COUNTOF does not produce correct results with pointers, and an array must be used.
//!   <tt>sizeof(x)/sizeof(x[0])</tt> suffers the same problem. The risk is eliminated by using
//!   <tt>_countof(x)</tt> on Windows. Windows will provide the immunity for other platforms.
# define COUNTOF(arr)
#else
// VS2005 added _countof
#ifndef COUNTOF
# if defined(_MSC_VER) && (_MSC_VER >= 1400)
#  define COUNTOF(x) _countof(x)
# else
#  define COUNTOF(x) (sizeof(x)/sizeof(x[0]))
# endif
#endif // COUNTOF
#endif // CRYPTOPP_DOXYGEN_PROCESSING

// ************** misc classes ***************

//! \brief An Empty class
//! \details The Empty class can be used as a template parameter <tt>BASE</tt> when no base class exists.
class CRYPTOPP_DLL Empty
{
};

#if !CRYPTOPP_DOXYGEN_PROCESSING
template <class BASE1, class BASE2>
class CRYPTOPP_NO_VTABLE TwoBases : public BASE1, public BASE2
{
};

template <class BASE1, class BASE2, class BASE3>
class CRYPTOPP_NO_VTABLE ThreeBases : public BASE1, public BASE2, public BASE3
{
};
#endif // CRYPTOPP_DOXYGEN_PROCESSING

//! \class ObjectHolder
//! \tparam the class or type
//! \brief Uses encapsulation to hide an object in derived classes
//! \details The object T is declared as protected.
template <class T>
class ObjectHolder
{
protected:
	T m_object;
};

//! \class NotCopyable
//! \brief Ensures an object is not copyable
//! \details NotCopyable ensures an object is not copyable by making the
//!   copy constructor and assignment operator private. Deleters are not
//!   used under C++11.
//! \sa Clonable class
class NotCopyable
{
public:
	NotCopyable() {}
private:
    NotCopyable(const NotCopyable &);
    void operator=(const NotCopyable &);
};

//! \class NewObject
//! \brief An object factory function
//! \details NewObject overloads operator()().
template <class T>
struct NewObject
{
	T* operator()() const {return new T;}
};

#if CRYPTOPP_DOXYGEN_PROCESSING
//! \brief A memory barrier
//! \details MEMORY_BARRIER attempts to ensure reads and writes are completed
//!   in the absence of a language synchronization point. It is used by the
//!   Singleton class if the compiler supports it. The barrier is provided at the
//!   customary places in a double-checked initialization.
//! \details Internally, MEMORY_BARRIER uses <tt>std::atomic_thread_fence</tt> if
//!   C++11 atomics are available. Otherwise, <tt>intrinsic(_ReadWriteBarrier)</tt>,
//!   <tt>_ReadWriteBarrier()</tt> or <tt>__asm__("" ::: "memory")</tt> is used.
#define MEMORY_BARRIER ...
#else
#if defined(CRYPTOPP_CXX11_ATOMICS)
# define MEMORY_BARRIER() std::atomic_thread_fence(std::memory_order_acq_rel)
#elif (_MSC_VER >= 1400)
# pragma intrinsic(_ReadWriteBarrier)
# define MEMORY_BARRIER() _ReadWriteBarrier()
#elif defined(__INTEL_COMPILER)
# define MEMORY_BARRIER() __memory_barrier()
#elif defined(__GNUC__) || defined(__clang__)
# define MEMORY_BARRIER() __asm__ __volatile__ ("" ::: "memory")
#else
# define MEMORY_BARRIER()
#endif
#endif // CRYPTOPP_DOXYGEN_PROCESSING

//! \brief Restricts the instantiation of a class to one static object without locks
//! \tparam T the class or type
//! \tparam F the object factory for T
//! \tparam instance the initiali instance count
//! \details This class safely initializes a static object in a multithreaded environment. For C++03
//!   and below it will do so without using locks for portability. If two threads call Ref() at the same
//!   time, they may get back different references, and one object may end up being memory leaked. This
//!   is by design. For C++11 and above, a standard double-checked locking pattern with thread fences
//!   are used. The locks and fences are standard and do not hinder portability.
//! \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked Locking is Fixed In C++11</A>
template <class T, class F = NewObject<T>, int instance=0>
class Singleton
{
public:
	Singleton(F objectFactory = F()) : m_objectFactory(objectFactory) {}

	// prevent this function from being inlined
	CRYPTOPP_NOINLINE const T & Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const;

private:
	F m_objectFactory;
};

//! \brief Return a reference to the inner Singleton object
//! \details Ref() is used to create the object using the object factory. The
//!   object is only created once with the limitations discussed in the class documentation.
//! \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked Locking is Fixed In C++11</A>
#if defined(CRYPTOPP_CXX11_ATOMICS) && defined(CRYPTOPP_CXX11_SYNCHRONIZATION)
template <class T, class F, int instance>
  const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const
{
	static std::mutex s_mutex;
	static std::atomic<T*> s_pObject;

	T *p = s_pObject.load(std::memory_order_relaxed);
	std::atomic_thread_fence(std::memory_order_acquire);

	if (p)
		return *p;

	std::lock_guard<std::mutex> lock(s_mutex);
	p = s_pObject.load(std::memory_order_relaxed);
	std::atomic_thread_fence(std::memory_order_acquire);

	if (p)
		return *p;

	T *newObject = m_objectFactory();
	s_pObject.store(newObject, std::memory_order_relaxed);
	std::atomic_thread_fence(std::memory_order_release);

	return *newObject;
}
#else
template <class T, class F, int instance>
const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const
{
	static volatile simple_ptr<T> s_pObject;
	T *p = s_pObject.m_p;
	MEMORY_BARRIER();

	if (p)
		return *p;

	T *newObject = m_objectFactory();
	p = s_pObject.m_p;
	MEMORY_BARRIER();

	if (p)
	{
		delete newObject;
		return *p;
	}

	s_pObject.m_p = newObject;
	MEMORY_BARRIER();

	return *newObject;
}
#endif

// ************** misc functions ***************

#if (!__STDC_WANT_SECURE_LIB__ && !defined(_MEMORY_S_DEFINED)) || defined(CRYPTOPP_WANT_SECURE_LIB)

//! \brief Bounds checking replacement for memcpy()
//! \param dest pointer to the desination memory block
//! \param sizeInBytes the size of the desination memory block, in bytes
//! \param src pointer to the source memory block
//! \param count the size of the source memory block, in bytes
//! \throws InvalidArgument
//! \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially
//!   unsafe functions like memcpy(), strcpy() and memmove(). However,
//!   not all standard libraries provides them, like Glibc. The library's
//!   memcpy_s() is a near-drop in replacement. Its only a near-replacement
//!   because the library's version throws an InvalidArgument on a bounds violation.
//! \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__.
//!   If __STDC_WANT_SECURE_LIB__ is \a not defined or defined to 0, then the library
//!   makes memcpy_s() and memmove_s() available. The library will also optionally
//!   make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined.
//!   <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default.
//! \details memcpy_s() will assert the pointers src and dest are not NULL
//!   in debug builds. Passing NULL for either pointer is undefined behavior.
inline void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
{
	// Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55

	// Pointers must be valid; otherwise undefined behavior
	assert(dest != NULL); assert(src != NULL);
	// Destination buffer must be large enough to satsify request
	assert(sizeInBytes >= count);
	if (count > sizeInBytes)
		throw InvalidArgument("memcpy_s: buffer overflow");

#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4996)
# if (CRYPTOPP_MSC_VERSION >= 1400)
#  pragma warning(disable: 6386)
# endif
#endif
	memcpy(dest, src, count);
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
}

//! \brief Bounds checking replacement for memmove()
//! \param dest pointer to the desination memory block
//! \param sizeInBytes the size of the desination memory block, in bytes
//! \param src pointer to the source memory block
//! \param count the size of the source memory block, in bytes
//! \throws InvalidArgument
//! \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially
//!   unsafe functions like memcpy(), strcpy() and memmove(). However,
//!   not all standard libraries provides them, like Glibc. The library's
//!   memmove_s() is a near-drop in replacement. Its only a near-replacement
//!   because the library's version throws an InvalidArgument on a bounds violation.
//! \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__.
//!   If __STDC_WANT_SECURE_LIB__ is \a not defined or defined to 0, then the library
//!   makes memcpy_s() and memmove_s() available. The library will also optionally
//!   make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined.
//!   <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default.
//! \details memmove_s() will assert the pointers src and dest are not NULL
//!   in debug builds. Passing NULL for either pointer is undefined behavior.
inline void memmove_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
{
	// Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55

	// Pointers must be valid; otherwise undefined behavior
	assert(dest != NULL); assert(src != NULL);
	// Destination buffer must be large enough to satsify request
	assert(sizeInBytes >= count);
	if (count > sizeInBytes)
		throw InvalidArgument("memmove_s: buffer overflow");

#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4996)
# if (CRYPTOPP_MSC_VERSION >= 1400)
#  pragma warning(disable: 6386)
# endif
#endif
	memmove(dest, src, count);
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
}

#if __BORLANDC__ >= 0x620
// C++Builder 2010 workaround: can't use std::memcpy_s because it doesn't allow 0 lengths
# define memcpy_s CryptoPP::memcpy_s
# define memmove_s CryptoPP::memmove_s
#endif

#endif // __STDC_WANT_SECURE_LIB__

//! \brief Swaps two variables which are arrays
//! \param a the first value
//! \param b the second value
//! \details C++03 does not provide support for <tt>std::swap(__m128i a, __m128i b)</tt>
//!   because <tt>__m128i</tt> is an <tt>unsigned long long[2]</tt>. Most compilers
//!   support it out of the box, but Sun Studio C++ compilers 12.2 and 12.3 do not.
//! \sa <A HREF="http://stackoverflow.com/q/38417413">How to swap two __m128i variables
//!   in C++03 given its an opaque type and an array?</A> on Stack Overflow.
template <class T>
inline void vec_swap(T& a, T& b)
{
	T t;
	t=a, a=b, b=t;
}

//! \brief Memory block initializer and eraser that attempts to survive optimizations
//! \param ptr pointer to the memory block being written
//! \param value the integer value to write for each byte
//! \param num the size of the source memory block, in bytes
//! \details Internally the function calls memset with the value value, and receives the
//!   return value from memset as a <tt>volatile</tt> pointer.
inline void * memset_z(void *ptr, int value, size_t num)
{
// avoid extranous warning on GCC 4.3.2 Ubuntu 8.10
#if CRYPTOPP_GCC_VERSION >= 30001
	if (__builtin_constant_p(num) && num==0)
		return ptr;
#endif
	volatile void* x = memset(ptr, value, num);
	return const_cast<void*>(x);
}

//! \brief Replacement function for std::min
//! \param a the first value
//! \param b the second value
//! \returns the minimum value based on a comparison of <tt>b \< a</tt> using <tt>operator\<</tt>
//! \details STDMIN was provided because the library could not use std::min or std::max in MSVC60 or Cygwin 1.1.0
template <class T> inline const T& STDMIN(const T& a, const T& b)
{
	return b < a ? b : a;
}

//! \brief Replacement function for std::max
//! \param a the first value
//! \param b the second value
//! \returns the minimum value based on a comparison of <tt>a \< b</tt> using <tt>operator\<</tt>
//! \details STDMAX was provided because the library could not use std::min or std::max in MSVC60 or Cygwin 1.1.0
template <class T> inline const T& STDMAX(const T& a, const T& b)
{
	// can't use std::min or std::max in MSVC60 or Cygwin 1.1.0
	return a < b ? b : a;
}

#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4389)
#endif

#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wsign-compare"
# if (CRYPTOPP_LLVM_CLANG_VERSION >= 20800) || (CRYPTOPP_APPLE_CLANG_VERSION >= 30000)
#  pragma GCC diagnostic ignored "-Wtautological-compare"
# elif (CRYPTOPP_GCC_VERSION >= 40300)
#  pragma GCC diagnostic ignored "-Wtype-limits"
# endif
#endif

//! \brief Safe comparison of values that could be neagtive and incorrectly promoted
//! \param a the first value
//! \param b the second value
//! \returns the minimum value based on a comparison a and b using <tt>operator&lt;</tt>.
//! \details The comparison <tt>b \< a</tt> is performed and the value returned is a's type T1.
template <class T1, class T2> inline const T1 UnsignedMin(const T1& a, const T2& b)
{
	CRYPTOPP_COMPILE_ASSERT((sizeof(T1)<=sizeof(T2) && T2(-1)>0) || (sizeof(T1)>sizeof(T2) && T1(-1)>0));
	if (sizeof(T1)<=sizeof(T2))
		return b < (T2)a ? (T1)b : a;
	else
		return (T1)b < a ? (T1)b : a;
}

//! \brief Tests whether a conversion from -> to is safe to perform
//! \param from the first value
//! \param to the second value
//! \returns true if its safe to convert from into to, false otherwise.
template <class T1, class T2>
inline bool SafeConvert(T1 from, T2 &to)
{
	to = (T2)from;
	if (from != to || (from > 0) != (to > 0))
		return false;
	return true;
}

//! \brief Converts a value to a string
//! \param value the value to convert
//! \param base the base to use during the conversion
//! \returns the string representation of value in base.
template <class T>
std::string IntToString(T value, unsigned int base = 10)
{
	// Hack... set the high bit for uppercase.
	static const unsigned int HIGH_BIT = (1U << 31);
	const char CH = !!(base & HIGH_BIT) ? 'A' : 'a';
	base &= ~HIGH_BIT;

	assert(base >= 2);
	if (value == 0)
		return "0";

	bool negate = false;
	if (value < 0)
	{
		negate = true;
		value = 0-value;	// VC .NET does not like -a
	}
	std::string result;
	while (value > 0)
	{
		T digit = value % base;
		result = char((digit < 10 ? '0' : (CH - 10)) + digit) + result;
		value /= base;
	}
	if (negate)
		result = "-" + result;
	return result;
}

//! \brief Converts an unsigned value to a string
//! \param value the value to convert
//! \param base the base to use during the conversion
//! \returns the string representation of value in base.
//! \details this template function specialization was added to suppress
//!    Coverity findings on IntToString() with unsigned types.
template <> CRYPTOPP_DLL
std::string IntToString<word64>(word64 value, unsigned int base);

//! \brief Converts an Integer to a string
//! \param value the Integer to convert
//! \param base the base to use during the conversion
//! \returns the string representation of value in base.
//! \details This is a template specialization of IntToString(). Use it
//!   like IntToString():
//! <pre>
//!   // Print integer in base 10
//!   Integer n...
//!   std::string s = IntToString(n, 10);
//! </pre>
//! \details The string is presented with lowercase letters by default. A
//!   hack is available to switch to uppercase letters without modifying
//!   the function signature.
//! <pre>
//!   // Print integer in base 16, uppercase letters
//!   Integer n...
//!   const unsigned int UPPER = (1 << 31);
//!   std::string s = IntToString(n, (UPPER | 16));</pre>
template <> CRYPTOPP_DLL
std::string IntToString<Integer>(Integer value, unsigned int base);

#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif

#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic pop
#endif

#define RETURN_IF_NONZERO(x) size_t returnedValue = x; if (returnedValue) return returnedValue

// this version of the macro is fastest on Pentium 3 and Pentium 4 with MSVC 6 SP5 w/ Processor Pack
#define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y)))
// these may be faster on other CPUs/compilers
// #define GETBYTE(x, y) (unsigned int)(((x)>>(8*(y)))&255)
// #define GETBYTE(x, y) (((byte *)&(x))[y])

#define CRYPTOPP_GET_BYTE_AS_BYTE(x, y) byte((x)>>(8*(y)))

//! \brief Returns the parity of a value
//! \param value the value to provide the parity
//! \returns 1 if the number 1-bits in the value is odd, 0 otherwise
template <class T>
unsigned int Parity(T value)
{
	for (unsigned int i=8*sizeof(value)/2; i>0; i/=2)
		value ^= value >> i;
	return (unsigned int)value&1;
}

//! \brief Returns the number of 8-bit bytes or octets required for a value
//! \param value the value to test
//! \returns the minimum number of 8-bit bytes or octets required to represent a value
template <class T>
unsigned int BytePrecision(const T &value)
{
	if (!value)
		return 0;

	unsigned int l=0, h=8*sizeof(value);
	while (h-l > 8)
	{
		unsigned int t = (l+h)/2;
		if (value >> t)
			l = t;
		else
			h = t;
	}

	return h/8;
}

//! \brief Returns the number of bits required for a value
//! \param value the value to test
//! \returns the maximum number of bits required to represent a value.
template <class T>
unsigned int BitPrecision(const T &value)
{
	if (!value)
		return 0;

	unsigned int l=0, h=8*sizeof(value);

	while (h-l > 1)
	{
		unsigned int t = (l+h)/2;
		if (value >> t)
			l = t;
		else
			h = t;
	}

	return h;
}

//! Determines the number of trailing 0-bits in a value
//! \param v the 32-bit value to test
//! \returns the number of trailing 0-bits in v, starting at the least significant bit position
//! \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least
//!   significant bit position. The return value is undefined if there are no 1-bits set in the value v.
//! \note The function does \a not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position.
inline unsigned int TrailingZeros(word32 v)
{
	// GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors
	// We don't enable for Microsoft because it requires a runtime check.
	// http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx
	assert(v != 0);
#if defined(__GNUC__) && defined(__BMI__)
	return (unsigned int)_tzcnt_u32(v);
#elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400)
	return (unsigned int)__builtin_ctz(v);
#elif defined(_MSC_VER) && (_MSC_VER >= 1400)
	unsigned long result;
	_BitScanForward(&result, v);
	return (unsigned int)result;
#else
	// from http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup
	static const int MultiplyDeBruijnBitPosition[32] =
	{
	  0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
	  31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
	};
	return MultiplyDeBruijnBitPosition[((word32)((v & -v) * 0x077CB531U)) >> 27];
#endif
}

//! Determines the number of trailing 0-bits in a value
//! \param v the 64-bit value to test
//! \returns the number of trailing 0-bits in v, starting at the least significant bit position
//! \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least
//!   significant bit position. The return value is undefined if there are no 1-bits set in the value v.
//! \note The function does \a not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position.
inline unsigned int TrailingZeros(word64 v)
{
	// GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors
	// We don't enable for Microsoft because it requires a runtime check.
	// http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx
	assert(v != 0);
#if defined(__GNUC__) && defined(__BMI__) && defined(__x86_64__)
	return (unsigned int)_tzcnt_u64(v);
#elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400)
	return (unsigned int)__builtin_ctzll(v);
#elif defined(_MSC_VER) && (_MSC_VER >= 1400) && (defined(_M_X64) || defined(_M_IA64))
	unsigned long result;
	_BitScanForward64(&result, v);
	return (unsigned int)result;
#else
	return word32(v) ? TrailingZeros(word32(v)) : 32 + TrailingZeros(word32(v>>32));
#endif
}

//! \brief Truncates the value to the specified number of bits.
//! \param value the value to truncate or mask
//! \param bits the number of bits to truncate or mask
//! \returns the value truncated to the specified number of bits, starting at the least
//!   significant bit position
//! \details This function masks the low-order bits of value and returns the result. The
//!   mask is created with <tt>(1 << bits) - 1</tt>.
template <class T>
inline T Crop(T value, size_t bits)
{
	if (bits < 8*sizeof(value))
    	return T(value & ((T(1) << bits) - 1));
	else
		return value;
}

//! \brief Returns the number of 8-bit bytes or octets required for the specified number of bits
//! \param bitCount the number of bits
//! \returns the minimum number of 8-bit bytes or octets required by bitCount
//! \details BitsToBytes is effectively a ceiling function based on 8-bit bytes.
inline size_t BitsToBytes(size_t bitCount)
{
	return ((bitCount+7)/(8));
}

//! \brief Returns the number of words required for the specified number of bytes
//! \param byteCount the number of bytes
//! \returns the minimum number of words required by byteCount
//! \details BytesToWords is effectively a ceiling function based on <tt>WORD_SIZE</tt>.
//!   <tt>WORD_SIZE</tt> is defined in config.h
inline size_t BytesToWords(size_t byteCount)
{
	return ((byteCount+WORD_SIZE-1)/WORD_SIZE);
}

//! \brief Returns the number of words required for the specified number of bits
//! \param bitCount the number of bits
//! \returns the minimum number of words required by bitCount
//! \details BitsToWords is effectively a ceiling function based on <tt>WORD_BITS</tt>.
//!   <tt>WORD_BITS</tt> is defined in config.h
inline size_t BitsToWords(size_t bitCount)
{
	return ((bitCount+WORD_BITS-1)/(WORD_BITS));
}

//! \brief Returns the number of double words required for the specified number of bits
//! \param bitCount the number of bits
//! \returns the minimum number of double words required by bitCount
//! \details BitsToDwords is effectively a ceiling function based on <tt>2*WORD_BITS</tt>.
//!   <tt>WORD_BITS</tt> is defined in config.h
inline size_t BitsToDwords(size_t bitCount)
{
	return ((bitCount+2*WORD_BITS-1)/(2*WORD_BITS));
}

//! Performs an XOR of a buffer with a mask
//! \param buf the buffer to XOR with the mask
//! \param mask the mask to XOR with the buffer
//! \param count the size of the buffers, in bytes
//! \details The function effectively visits each element in the buffers and performs
//!   <tt>buf[i] ^= mask[i]</tt>. buf and mask must be of equal size.
CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *buf, const byte *mask, size_t count);

//! Performs an XOR of an input buffer with a mask and stores the result in an output buffer
//! \param output the destination buffer
//! \param input the source buffer to XOR with the mask
//! \param mask the mask buffer to XOR with the input buffer
//! \param count the size of the buffers, in bytes
//! \details The function effectively visits each element in the buffers and performs
//!   <tt>output[i] = input[i] ^ mask[i]</tt>. output, input and mask must be of equal size.
CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *output, const byte *input, const byte *mask, size_t count);

//! \brief Performs a near constant-time comparison of two equally sized buffers
//! \param buf1 the first buffer
//! \param buf2 the second buffer
//! \param count the size of the buffers, in bytes
//! \details The function effectively performs an XOR of the elements in two equally sized buffers
//!   and retruns a result based on the XOR operation. The function is near constant-time because
//!   CPU micro-code timings could affect the "constant-ness". Calling code is responsible for
//!   mitigating timing attacks if the buffers are \a not equally sized.
CRYPTOPP_DLL bool CRYPTOPP_API VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count);

//! \brief Tests whether a value is a power of 2
//! \param value the value to test
//! \returns true if value is a power of 2, false otherwise
//! \details The function creates a mask of <tt>value - 1</tt> and returns the result of
//!   an AND operation compared to 0. If value is 0 or less than 0, then the function returns false.
template <class T>
inline bool IsPowerOf2(const T &value)
{
	return value > 0 && (value & (value-1)) == 0;
}

#if defined(__GNUC__) && defined(__BMI__)
template <>
inline bool IsPowerOf2<word32>(const word32 &value)
{
	return value > 0 && _blsr_u32(value) == 0;
}

# if defined(__x86_64__)
template <>
inline bool IsPowerOf2<word64>(const word64 &value)
{
	return value > 0 && _blsr_u64(value) == 0;
}
# endif
#endif

//! \brief Tests whether the residue of a value is a power of 2
//! \param a the value to test
//! \param b the value to use to reduce \a to its residue
//! \returns true if <tt>a\%b</tt> is a power of 2, false otherwise
//! \details The function effectively creates a mask of <tt>b - 1</tt> and returns the result of an
//!   AND operation compared to 0. b must be a power of 2 or the result is undefined.
template <class T1, class T2>
inline T2 ModPowerOf2(const T1 &a, const T2 &b)
{
	assert(IsPowerOf2(b));
	return T2(a) & (b-1);
}

//! \brief Rounds a value down to a multiple of a second value
//! \param n the value to reduce
//! \param m the value to reduce \n to to a multiple
//! \returns the possibly unmodified value \n
//! \details RoundDownToMultipleOf is effectively a floor function based on m. The function returns
//!   the value <tt>n - n\%m</tt>. If n is a multiple of m, then the original value is returned.
template <class T1, class T2>
inline T1 RoundDownToMultipleOf(const T1 &n, const T2 &m)
{
	if (IsPowerOf2(m))
		return n - ModPowerOf2(n, m);
	else
		return n - n%m;
}

//! \brief Rounds a value up to a multiple of a second value
//! \param n the value to reduce
//! \param m the value to reduce \n to to a multiple
//! \returns the possibly unmodified value \n
//! \details RoundUpToMultipleOf is effectively a ceiling function based on m. The function
//!   returns the value <tt>n + n\%m</tt>. If n is a multiple of m, then the original value is
//!   returned. If the value n would overflow, then an InvalidArgument exception is thrown.
template <class T1, class T2>
inline T1 RoundUpToMultipleOf(const T1 &n, const T2 &m)
{
	if (n > (SIZE_MAX/sizeof(T1))-m-1)
		throw InvalidArgument("RoundUpToMultipleOf: integer overflow");
	return RoundDownToMultipleOf(T1(n+m-1), m);
}

//! \brief Returns the minimum alignment requirements of a type
//! \param dummy an unused Visual C++ 6.0 workaround
//! \returns the minimum alignment requirements of a type, in bytes
//! \details Internally the function calls C++11's alignof if available. If not available, the
//!   function uses compiler specific extensions such as __alignof and _alignof_. sizeof(T)
//!   is used if the others are not available. In all cases, if CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
//!   is defined, then the function returns 1.
template <class T>
inline unsigned int GetAlignmentOf(T *dummy=NULL)	// VC60 workaround
{
// GCC 4.6 (circa 2008) and above aggressively uses vectorization.
#if defined(CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS)
	if (sizeof(T) < 16)
		return 1;
#endif
	CRYPTOPP_UNUSED(dummy);
#if defined(CRYPTOPP_CXX11_ALIGNOF)
	return alignof(T);
#elif (_MSC_VER >= 1300)
	return __alignof(T);
#elif defined(__GNUC__)
	return __alignof__(T);
#elif CRYPTOPP_BOOL_SLOW_WORD64
	return UnsignedMin(4U, sizeof(T));
#else
	return sizeof(T);
#endif
}

//! \brief Determines whether ptr is aligned to a minimum value
//! \param ptr the pointer being checked for alignment
//! \param alignment the alignment value to test the pointer against
//! \returns true if ptr is aligned on at least align boundary
//! \details Internally the function tests whether alignment is 1. If so, the function returns true.
//!   If not, then the function effectively performs a modular reduction and returns true if the residue is 0
inline bool IsAlignedOn(const void *ptr, unsigned int alignment)
{
	return alignment==1 || (IsPowerOf2(alignment) ? ModPowerOf2((size_t)ptr, alignment) == 0 : (size_t)ptr % alignment == 0);
}

//! \brief Determines whether ptr is minimally aligned
//! \param ptr the pointer to check for alignment
//! \param dummy an unused Visual C++ 6.0 workaround
//! \returns true if ptr follows native byte ordering, false otherwise
//! \details Internally the function calls IsAlignedOn with a second parameter of GetAlignmentOf<T>
template <class T>
inline bool IsAligned(const void *ptr, T *dummy=NULL)	// VC60 workaround
{
	CRYPTOPP_UNUSED(dummy);
	return IsAlignedOn(ptr, GetAlignmentOf<T>());
}

#if defined(IS_LITTLE_ENDIAN)
	typedef LittleEndian NativeByteOrder;
#elif defined(IS_BIG_ENDIAN)
	typedef BigEndian NativeByteOrder;
#else
# error "Unable to determine endian-ness"
#endif

//! \brief Returns NativeByteOrder as an enumerated ByteOrder value
//! \returns LittleEndian if the native byte order is little-endian, and BigEndian if the
	//!   native byte order is big-endian
//! \details NativeByteOrder is a typedef depending on the platform. If IS_LITTLE_ENDIAN is
	//!   set in config.h, then GetNativeByteOrder returns LittleEndian. If
	//!   IS_BIG_ENDIAN is set, then GetNativeByteOrder returns BigEndian.
//! \note There are other byte orders besides little- and big-endian, and they include bi-endian
	//!   and PDP-endian. If a system is neither little-endian nor big-endian, then a compile time error occurs.
inline ByteOrder GetNativeByteOrder()
{
	return NativeByteOrder::ToEnum();
}

//! \brief Determines whether order follows native byte ordering
//! \param order the ordering being tested against native byte ordering
//! \returns true if order follows native byte ordering, false otherwise
inline bool NativeByteOrderIs(ByteOrder order)
{
	return order == GetNativeByteOrder();
}

//! \brief Performs a saturating subtract clamped at 0
//! \param a the minuend
//! \param b the subtrahend
//! \returns the difference produced by the saturating subtract
//! \details Saturating arithmetic restricts results to a fixed range. Results that are less than 0 are clamped at 0.
//! \details Use of saturating arithmetic in places can be advantageous because it can
//!   avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>).
template <class T1, class T2>
inline T1 SaturatingSubtract(const T1 &a, const T2 &b)
{
	// Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html
	return T1((a > b) ? (a - b) : 0);
}

//! \brief Performs a saturating subtract clamped at 1
//! \param a the minuend
//! \param b the subtrahend
//! \returns the difference produced by the saturating subtract
//! \details Saturating arithmetic restricts results to a fixed range. Results that are less than
//!   1 are clamped at 1.
//! \details Use of saturating arithmetic in places can be advantageous because it can
//!   avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>).
template <class T1, class T2>
inline T1 SaturatingSubtract1(const T1 &a, const T2 &b)
{
	// Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html
	return T1((a > b) ? (a - b) : 1);
}

//! \brief Returns the direction the cipher is being operated
//! \param obj the cipher object being queried
//! \returns \p ENCRYPTION if the cipher obj is being operated in its forward direction,
//!   \p DECRYPTION otherwise
//! \details A cipher can be operated in a "forward" direction (encryption) or a "reverse"
//!   direction (decryption). The operations do not have to be symmetric, meaning a second
//!   application of the transformation does not necessariy return the original message.
//!   That is, <tt>E(D(m))</tt> may not equal <tt>E(E(m))</tt>; and <tt>D(E(m))</tt> may not
//!   equal <tt>D(D(m))</tt>.
template <class T>
inline CipherDir GetCipherDir(const T &obj)
{
	return obj.IsForwardTransformation() ? ENCRYPTION : DECRYPTION;
}

//! \brief Attempts to reclaim unused memory
//! \throws bad_alloc
//! \details In the normal course of running a program, a request for memory normally succeeds. If a
//!   call to AlignedAllocate or UnalignedAllocate fails, then CallNewHandler is called in
//!   an effort to recover. Internally, CallNewHandler calls set_new_handler(NULL) in an effort
//!   to free memory. There is no guarantee CallNewHandler will be able to procure more memory so
//!   an allocation succeeds. If the call to set_new_handler fails, then CallNewHandler throws
//!   a bad_alloc exception.
CRYPTOPP_DLL void CRYPTOPP_API CallNewHandler();

//! \brief Performs an addition with carry on a block of bytes
//! \param inout the byte block
//! \param size the size of the block, in bytes
//! \details Performs an addition with carry by adding 1 on a block of bytes starting at the least
//!   significant byte. Once carry is 0, the function terminates and returns to the caller.
//! \note The function is not constant time because it stops processing when the carry is 0.
inline void IncrementCounterByOne(byte *inout, unsigned int size)
{
	assert(inout != NULL); assert(size < INT_MAX);
	for (int i=int(size-1), carry=1; i>=0 && carry; i--)
		carry = !++inout[i];
}

//! \brief Performs an addition with carry on a block of bytes
//! \param output the destination block of bytes
//! \param input the source block of bytes
//! \param size the size of the block
//! \details Performs an addition with carry on a block of bytes starting at the least significant
//!   byte. Once carry is 0, the remaining bytes from input are copied to output using memcpy.
//! \details The function is \a close to near-constant time because it operates on all the bytes in the blocks.
inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int size)
{
	assert(output != NULL); assert(input != NULL); assert(size < INT_MAX);

	int i, carry;
	for (i=int(size-1), carry=1; i>=0 && carry; i--)
		carry = ((output[i] = input[i]+1) == 0);
	memcpy_s(output, size, input, size_t(i)+1);
}

//! \brief Performs a branchless swap of values a and b if condition c is true
//! \param c the condition to perform the swap
//! \param a the first value
//! \param b the second value
template <class T>
inline void ConditionalSwap(bool c, T &a, T &b)
{
	T t = c * (a ^ b);
	a ^= t;
	b ^= t;
}

//! \brief Performs a branchless swap of pointers a and b if condition c is true
//! \param c the condition to perform the swap
//! \param a the first pointer
//! \param b the second pointer
template <class T>
inline void ConditionalSwapPointers(bool c, T &a, T &b)
{
	ptrdiff_t t = size_t(c) * (a - b);
	a -= t;
	b += t;
}

// see http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html
// and https://www.securecoding.cert.org/confluence/display/cplusplus/MSC06-CPP.+Be+aware+of+compiler+optimization+when+dealing+with+sensitive+data

//! \brief Sets each element of an array to 0
//! \param buf an array of elements
//! \param n the number of elements in the array
//! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal
template <class T>
void SecureWipeBuffer(T *buf, size_t n)
{
	// GCC 4.3.2 on Cygwin optimizes away the first store if this loop is done in the forward direction
	volatile T *p = buf+n;
	while (n--)
		*((volatile T*)(--p)) = 0;
}

#if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86)

//! \brief Sets each byte of an array to 0
//! \param buf an array of bytes
//! \param n the number of elements in the array
//! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal.
template<> inline void SecureWipeBuffer(byte *buf, size_t n)
{
	volatile byte *p = buf;
#ifdef __GNUC__
	asm volatile("rep stosb" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
	__stosb((byte *)(size_t)p, 0, n);
#endif
}

//! \brief Sets each 16-bit element of an array to 0
//! \param buf an array of 16-bit words
//! \param n the number of elements in the array
//! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal.
template<> inline void SecureWipeBuffer(word16 *buf, size_t n)
{
	volatile word16 *p = buf;
#ifdef __GNUC__
	asm volatile("rep stosw" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
	__stosw((word16 *)(size_t)p, 0, n);
#endif
}

//! \brief Sets each 32-bit element of an array to 0
//! \param buf an array of 32-bit words
//! \param n the number of elements in the array
//! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal.
template<> inline void SecureWipeBuffer(word32 *buf, size_t n)
{
	volatile word32 *p = buf;
#ifdef __GNUC__
	asm volatile("rep stosl" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
	__stosd((unsigned long *)(size_t)p, 0, n);
#endif
}

//! \brief Sets each 64-bit element of an array to 0
//! \param buf an array of 64-bit words
//! \param n the number of elements in the array
//! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal.
template<> inline void SecureWipeBuffer(word64 *buf, size_t n)
{
#if CRYPTOPP_BOOL_X64
	volatile word64 *p = buf;
#ifdef __GNUC__
	asm volatile("rep stosq" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
	__stosq((word64 *)(size_t)p, 0, n);
#endif
#else
	SecureWipeBuffer((word32 *)buf, 2*n);
#endif
}

#endif	// #if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86)

#if (_MSC_VER >= 1700) && defined(_M_ARM)
template<> inline void SecureWipeBuffer(byte *buf, size_t n)
{
	char *p = reinterpret_cast<char*>(buf+n);
	while (n--)
		__iso_volatile_store8(--p, 0);
}

template<> inline void SecureWipeBuffer(word16 *buf, size_t n)
{
	short *p = reinterpret_cast<short*>(buf+n);
	while (n--)
		__iso_volatile_store16(--p, 0);
}

template<> inline void SecureWipeBuffer(word32 *buf, size_t n)
{
	int *p = reinterpret_cast<int*>(buf+n);
	while (n--)
		__iso_volatile_store32(--p, 0);
}

template<> inline void SecureWipeBuffer(word64 *buf, size_t n)
{
	__int64 *p = reinterpret_cast<__int64*>(buf+n);
	while (n--)
		__iso_volatile_store64(--p, 0);
}
#endif

//! \brief Sets each element of an array to 0
//! \param buf an array of elements
//! \param n the number of elements in the array
//! \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal.
template <class T>
inline void SecureWipeArray(T *buf, size_t n)
{
	if (sizeof(T) % 8 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word64>() == 0)
		SecureWipeBuffer((word64 *)(void *)buf, n * (sizeof(T)/8));
	else if (sizeof(T) % 4 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word32>() == 0)
		SecureWipeBuffer((word32 *)(void *)buf, n * (sizeof(T)/4));
	else if (sizeof(T) % 2 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word16>() == 0)
		SecureWipeBuffer((word16 *)(void *)buf, n * (sizeof(T)/2));
	else
		SecureWipeBuffer((byte *)(void *)buf, n * sizeof(T));
}

//! \brief Converts a wide character C-string to a multibyte string
//! \param str C-string consiting of wide characters
//! \param throwOnError specifies the function should throw an InvalidArgument exception on error
//! \returns str converted to a multibyte string or an empty string.
//! \details StringNarrow converts a wide string to a narrow string using C++ std::wcstombs under the executing
//!   thread's locale. A locale must be set before using this function, and it can be set with std::setlocale.
//!   Upon success, the converted string is returned.
//! \details Upon failure with throwOnError as false, the function returns an empty string. Upon failure with
//!   throwOnError as true, the function throws InvalidArgument exception.
//! \note If you try to convert, say, the Chinese character for "bone" from UTF-16 (0x9AA8) to UTF-8
//!   (0xE9 0xAA 0xA8), then you must ensure the locale is available. If the locale is not available,
//!   then a 0x21 error is returned on Windows which eventually results in an InvalidArgument exception.
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
std::string StringNarrow(const wchar_t *str, bool throwOnError = true);
#else
static std::string StringNarrow(const wchar_t *str, bool throwOnError = true)
{
	assert(str);
	std::string result;

	// Safer functions on Windows for C&A, https://github.com/weidai11/cryptopp/issues/55
#if (CRYPTOPP_MSC_VERSION >= 1400)
	size_t len=0, size=0;
	errno_t err = 0;

	//const wchar_t* ptr = str;
	//while (*ptr++) len++;
	len = wcslen(str)+1;

	err = wcstombs_s(&size, NULL, 0, str, len*sizeof(wchar_t));
	assert(err == 0);
	if (err != 0) {goto CONVERSION_ERROR;}

	result.resize(size);
	err = wcstombs_s(&size, &result[0], size, str, len*sizeof(wchar_t));
	assert(err == 0);

	if (err != 0)
	{
CONVERSION_ERROR:
		if (throwOnError)
			throw InvalidArgument("StringNarrow: wcstombs_s() call failed with error " + IntToString(err));
		else
			return std::string();
	}

	// The safe routine's size includes the NULL.
	if (!result.empty() && result[size - 1] == '\0')
		result.erase(size - 1);
#else
	size_t size = wcstombs(NULL, str, 0);
	assert(size != (size_t)-1);
	if (size == (size_t)-1) {goto CONVERSION_ERROR;}

	result.resize(size);
	size = wcstombs(&result[0], str, size);
	assert(size != (size_t)-1);

	if (size == (size_t)-1)
	{
CONVERSION_ERROR:
		if (throwOnError)
			throw InvalidArgument("StringNarrow: wcstombs() call failed");
		else
			return std::string();
	}
#endif

	return result;
}
#endif // StringNarrow and CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562

#ifdef CRYPTOPP_DOXYGEN_PROCESSING

//! \brief Allocates a buffer on 16-byte boundary
//! \param size the size of the buffer
//! \details AlignedAllocate is primarily used when the data will be proccessed by MMX and SSE2
//!   instructions. The assembly language routines rely on the alignment. If the alignment is not
//!   respected, then a SIGBUS is generated under Unix and an EXCEPTION_DATATYPE_MISALIGNMENT
//!   is generated under Windows.
//! \note AlignedAllocate and AlignedDeallocate are available when CRYPTOPP_BOOL_ALIGN16 is
//!   defined. CRYPTOPP_BOOL_ALIGN16 is defined in config.h
CRYPTOPP_DLL void* CRYPTOPP_API AlignedAllocate(size_t size);

//! \brief Frees a buffer allocated with AlignedAllocate
//! \param ptr the buffer to free
//! \note AlignedAllocate and AlignedDeallocate are available when CRYPTOPP_BOOL_ALIGN16 is
//!   defined. CRYPTOPP_BOOL_ALIGN16 is defined in config.h
CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *ptr);

#endif // CRYPTOPP_DOXYGEN_PROCESSING

#if CRYPTOPP_BOOL_ALIGN16
CRYPTOPP_DLL void* CRYPTOPP_API AlignedAllocate(size_t size);
CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *ptr);
#endif // CRYPTOPP_BOOL_ALIGN16

//! \brief Allocates a buffer
//! \param size the size of the buffer
CRYPTOPP_DLL void * CRYPTOPP_API UnalignedAllocate(size_t size);

//! \brief Frees a buffer allocated with UnalignedAllocate
//! \param ptr the buffer to free
CRYPTOPP_DLL void CRYPTOPP_API UnalignedDeallocate(void *ptr);

// ************** rotate functions ***************

//! \brief Performs a left rotate
//! \tparam T the word type
//! \param x the value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits.
//! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//!   Use rotlMod if the rotate amount y is outside the range.
//! \note rotlFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
//!   than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
//!   counterparts.
template <class T> inline T rotlFixed(T x, unsigned int y)
{
	// Portable rotate that reduces to single instruction...
	// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
	// https://software.intel.com/en-us/forums/topic/580884
	// and https://llvm.org/bugs/show_bug.cgi?id=24226
	static const unsigned int THIS_SIZE = sizeof(T)*8;
	static const unsigned int MASK = THIS_SIZE-1;
	assert(y < THIS_SIZE);
	return T((x<<y)|(x>>(-y&MASK)));
}

//! \brief Performs a right rotate
//! \tparam T the word type
//! \param x the value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits.
//! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//!   Use rotrMod if the rotate amount y is outside the range.
//! \note rotrFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
//!   than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
//!   counterparts.
template <class T> inline T rotrFixed(T x, unsigned int y)
{
	// Portable rotate that reduces to single instruction...
	// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
	// https://software.intel.com/en-us/forums/topic/580884
	// and https://llvm.org/bugs/show_bug.cgi?id=24226
	static const unsigned int THIS_SIZE = sizeof(T)*8;
	static const unsigned int MASK = THIS_SIZE-1;
	assert(y < THIS_SIZE);
	return T((x >> y)|(x<<(-y&MASK)));
}

//! \brief Performs a left rotate
//! \tparam T the word type
//! \param x the value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits.
//! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//!   Use rotlMod if the rotate amount y is outside the range.
//! \note rotlVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
//!   than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
//!   counterparts.
template <class T> inline T rotlVariable(T x, unsigned int y)
{
	static const unsigned int THIS_SIZE = sizeof(T)*8;
	static const unsigned int MASK = THIS_SIZE-1;
	assert(y < THIS_SIZE);
	return T((x<<y)|(x>>(-y&MASK)));
}

//! \brief Performs a right rotate
//! \tparam T the word type
//! \param x the value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits.
//! \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//!   Use rotrMod if the rotate amount y is outside the range.
//! \note rotrVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
//!   than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
//!   counterparts.
template <class T> inline T rotrVariable(T x, unsigned int y)
{
	static const unsigned int THIS_SIZE = sizeof(T)*8;
	static const unsigned int MASK = THIS_SIZE-1;
	assert(y < THIS_SIZE);
	return T((x>>y)|(x<<(-y&MASK)));
}

//! \brief Performs a left rotate
//! \tparam T the word type
//! \param x the value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits.
//! \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//! \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>.
template <class T> inline T rotlMod(T x, unsigned int y)
{
	static const unsigned int THIS_SIZE = sizeof(T)*8;
	static const unsigned int MASK = THIS_SIZE-1;
	return T((x<<(y&MASK))|(x>>(-y&MASK)));
}

//! \brief Performs a right rotate
//! \tparam T the word type
//! \param x the value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits.
//! \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//! \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>.
template <class T> inline T rotrMod(T x, unsigned int y)
{
	static const unsigned int THIS_SIZE = sizeof(T)*8;
	static const unsigned int MASK = THIS_SIZE-1;
	return T((x>>(y&MASK))|(x<<(-y&MASK)));
}

#ifdef _MSC_VER

//! \brief Performs a left rotate
//! \tparam T the word type
//! \param x the 32-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//! \note rotlFixed will assert in Debug builds if is outside the allowed range.
template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
{
	// Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
	assert(y < 8*sizeof(x));
	return y ? _lrotl(x, static_cast<byte>(y)) : x;
}

//! \brief Performs a right rotate
//! \tparam T the word type
//! \param x the 32-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//! \note rotrFixed will assert in Debug builds if is outside the allowed range.
template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
{
	// Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
	assert(y < 8*sizeof(x));
	return y ? _lrotr(x, static_cast<byte>(y)) : x;
}

//! \brief Performs a left rotate
//! \tparam T the word type
//! \param x the 32-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//! \note rotlVariable will assert in Debug builds if is outside the allowed range.
template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _lrotl(x, static_cast<byte>(y));
}

//! \brief Performs a right rotate
//! \tparam T the word type
//! \param x the 32-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//! \note rotrVariable will assert in Debug builds if is outside the allowed range.
template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _lrotr(x, static_cast<byte>(y));
}

//! \brief Performs a left rotate
//! \tparam T the word type
//! \param x the 32-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
{
	y %= 8*sizeof(x);
	return _lrotl(x, static_cast<byte>(y));
}

//! \brief Performs a right rotate
//! \tparam T the word type
//! \param x the 32-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
{
	y %= 8*sizeof(x);
	return _lrotr(x, static_cast<byte>(y));
}

#endif // #ifdef _MSC_VER

#if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
// Intel C++ Compiler 10.0 calls a function instead of using the rotate instruction when using these instructions

//! \brief Performs a left rotate
//! \tparam T the word type
//! \param x the 64-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//! \note rotrFixed will assert in Debug builds if is outside the allowed range.
template<> inline word64 rotlFixed<word64>(word64 x, unsigned int y)
{
	// Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
	assert(y < 8*sizeof(x));
	return y ? _rotl64(x, static_cast<byte>(y)) : x;
}

//! \brief Performs a right rotate
//! \tparam T the word type
//! \param x the 64-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//! \note rotrFixed will assert in Debug builds if is outside the allowed range.
template<> inline word64 rotrFixed<word64>(word64 x, unsigned int y)
{
	// Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
	assert(y < 8*sizeof(x));
	return y ? _rotr64(x, static_cast<byte>(y)) : x;
}

//! \brief Performs a left rotate
//! \tparam T the word type
//! \param x the 64-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//! \note rotlVariable will assert in Debug builds if is outside the allowed range.
template<> inline word64 rotlVariable<word64>(word64 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return _rotl64(x, static_cast<byte>(y));
}

//! \brief Performs a right rotate
//! \tparam T the word type
//! \param x the 64-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
//! \note rotrVariable will assert in Debug builds if is outside the allowed range.
template<> inline word64 rotrVariable<word64>(word64 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotr64(x, static_cast<byte>(y)) : x;
}

//! \brief Performs a left rotate
//! \tparam T the word type
//! \param x the 64-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
template<> inline word64 rotlMod<word64>(word64 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotl64(x, static_cast<byte>(y)) : x;
}

//! \brief Performs a right rotate
//! \tparam T the word type
//! \param x the 64-bit value to rotate
//! \param y the number of bit positions to rotate the value
//! \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
//!   <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
//!   <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
template<> inline word64 rotrMod<word64>(word64 x, unsigned int y)
{
	assert(y < 8*sizeof(x));
	return y ? _rotr64(x, static_cast<byte>(y)) : x;
}

#endif // #if _MSC_VER >= 1310

#if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER)
// Intel C++ Compiler 10.0 gives undefined externals with these

template<> inline word16 rotlFixed<word16>(word16 x, unsigned int y)
{
	// Intrinsic, not bound to C/C++ language rules.
	return _rotl16(x, static_cast<byte>(y));
}

template<> inline word16 rotrFixed<word16>(word16 x, unsigned int y)
{
	// Intrinsic, not bound to C/C++ language rules.
	return _rotr16(x, static_cast<byte>(y));
}

template<> inline word16 rotlVariable<word16>(word16 x, unsigned int y)
{
	return _rotl16(x, static_cast<byte>(y));
}

template<> inline word16 rotrVariable<word16>(word16 x, unsigned int y)
{
	return _rotr16(x, static_cast<byte>(y));
}

template<> inline word16 rotlMod<word16>(word16 x, unsigned int y)
{
	return _rotl16(x, static_cast<byte>(y));
}

template<> inline word16 rotrMod<word16>(word16 x, unsigned int y)
{
	return _rotr16(x, static_cast<byte>(y));
}

template<> inline byte rotlFixed<byte>(byte x, unsigned int y)
{
	// Intrinsic, not bound to C/C++ language rules.
	return _rotl8(x, static_cast<byte>(y));
}

template<> inline byte rotrFixed<byte>(byte x, unsigned int y)
{
	// Intrinsic, not bound to C/C++ language rules.
	return _rotr8(x, static_cast<byte>(y));
}

template<> inline byte rotlVariable<byte>(byte x, unsigned int y)
{
	return _rotl8(x, static_cast<byte>(y));
}

template<> inline byte rotrVariable<byte>(byte x, unsigned int y)
{
	return _rotr8(x, static_cast<byte>(y));
}

template<> inline byte rotlMod<byte>(byte x, unsigned int y)
{
	return _rotl8(x, static_cast<byte>(y));
}

template<> inline byte rotrMod<byte>(byte x, unsigned int y)
{
	return _rotr8(x, static_cast<byte>(y));
}

#endif // #if _MSC_VER >= 1400

#if (defined(__MWERKS__) && TARGET_CPU_PPC)

template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return y ? __rlwinm(x,y,0,31) : x;
}

template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return y ? __rlwinm(x,32-y,0,31) : x;
}

template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return (__rlwnm(x,y,0,31));
}

template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
{
	assert(y < 32);
	return (__rlwnm(x,32-y,0,31));
}

template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
{
	return (__rlwnm(x,y,0,31));
}

template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
{
	return (__rlwnm(x,32-y,0,31));
}

#endif // #if (defined(__MWERKS__) && TARGET_CPU_PPC)

// ************** endian reversal ***************

//! \brief Gets a byte from a value
//! \param order the ByteOrder of the value
//! \param value the value to retrieve the byte
//! \param index the location of the byte to retrieve
template <class T>
inline unsigned int GetByte(ByteOrder order, T value, unsigned int index)
{
	if (order == LITTLE_ENDIAN_ORDER)
		return GETBYTE(value, index);
	else
		return GETBYTE(value, sizeof(T)-index-1);
}

//! \brief Reverses bytes in a 8-bit value
//! \param value the 8-bit value to reverse
//! \note ByteReverse returns the value passed to it since there is nothing to reverse
inline byte ByteReverse(byte value)
{
	return value;
}

//! \brief Reverses bytes in a 16-bit value
//! \brief Performs an endian reversal
//! \param value the 16-bit value to reverse
//! \details ByteReverse calls bswap if available. Otherwise the function performs a 8-bit rotate on the word16
inline word16 ByteReverse(word16 value)
{
#ifdef CRYPTOPP_BYTESWAP_AVAILABLE
	return bswap_16(value);
#elif defined(_MSC_VER) && _MSC_VER >= 1300
	return _byteswap_ushort(value);
#else
	return rotlFixed(value, 8U);
#endif
}

//! \brief Reverses bytes in a 32-bit value
//! \brief Performs an endian reversal
//! \param value the 32-bit value to reverse
//! \details ByteReverse calls bswap if available. Otherwise the function uses a combination of rotates on the word32
inline word32 ByteReverse(word32 value)
{
#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE)
	__asm__ ("bswap %0" : "=r" (value) : "0" (value));
	return value;
#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE)
	return bswap_32(value);
#elif defined(__MWERKS__) && TARGET_CPU_PPC
	return (word32)__lwbrx(&value,0);
#elif _MSC_VER >= 1400 || (_MSC_VER >= 1300 && !defined(_DLL))
	return _byteswap_ulong(value);
#elif CRYPTOPP_FAST_ROTATE(32)
	// 5 instructions with rotate instruction, 9 without
	return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff);
#else
	// 6 instructions with rotate instruction, 8 without
	value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
	return rotlFixed(value, 16U);
#endif
}

//! \brief Reverses bytes in a 64-bit value
//! \brief Performs an endian reversal
//! \param value the 64-bit value to reverse
//! \details ByteReverse calls bswap if available. Otherwise the function uses a combination of rotates on the word64
inline word64 ByteReverse(word64 value)
{
#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__)
	__asm__ ("bswap %0" : "=r" (value) : "0" (value));
	return value;
#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE)
	return bswap_64(value);
#elif defined(_MSC_VER) && _MSC_VER >= 1300
	return _byteswap_uint64(value);
#elif CRYPTOPP_BOOL_SLOW_WORD64
	return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32));
#else
	value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8);
	value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16);
	return rotlFixed(value, 32U);
#endif
}

//! \brief Reverses bits in a 8-bit value
//! \param value the 8-bit value to reverse
//! \details BitReverse performs a combination of shifts on the byte
inline byte BitReverse(byte value)
{
	value = byte((value & 0xAA) >> 1) | byte((value & 0x55) << 1);
	value = byte((value & 0xCC) >> 2) | byte((value & 0x33) << 2);
	return rotlFixed(value, 4U);
}

//! \brief Reverses bits in a 16-bit value
//! \param value the 16-bit value to reverse
//! \details BitReverse performs a combination of shifts on the word16
inline word16 BitReverse(word16 value)
{
	value = word16((value & 0xAAAA) >> 1) | word16((value & 0x5555) << 1);
	value = word16((value & 0xCCCC) >> 2) | word16((value & 0x3333) << 2);
	value = word16((value & 0xF0F0) >> 4) | word16((value & 0x0F0F) << 4);
	return ByteReverse(value);
}

//! \brief Reverses bits in a 32-bit value
//! \param value the 32-bit value to reverse
//! \details BitReverse performs a combination of shifts on the word32
inline word32 BitReverse(word32 value)
{
	value = word32((value & 0xAAAAAAAA) >> 1) | word32((value & 0x55555555) << 1);
	value = word32((value & 0xCCCCCCCC) >> 2) | word32((value & 0x33333333) << 2);
	value = word32((value & 0xF0F0F0F0) >> 4) | word32((value & 0x0F0F0F0F) << 4);
	return ByteReverse(value);
}

//! \brief Reverses bits in a 64-bit value
//! \param value the 64-bit value to reverse
//! \details BitReverse performs a combination of shifts on the word64
inline word64 BitReverse(word64 value)
{
#if CRYPTOPP_BOOL_SLOW_WORD64
	return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32));
#else
	value = word64((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | word64((value & W64LIT(0x5555555555555555)) << 1);
	value = word64((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | word64((value & W64LIT(0x3333333333333333)) << 2);
	value = word64((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | word64((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4);
	return ByteReverse(value);
#endif
}

//! \brief Reverses bits in a value
//! \param value the value to reverse
//! \details The template overload of BitReverse operates on signed and unsigned values.
//!   Internally the size of T is checked, and then value is cast to a byte,
//!   word16, word32 or word64. After the cast, the appropriate BitReverse
//!   overload is called.
template <class T>
inline T BitReverse(T value)
{
	if (sizeof(T) == 1)
		return (T)BitReverse((byte)value);
	else if (sizeof(T) == 2)
		return (T)BitReverse((word16)value);
	else if (sizeof(T) == 4)
		return (T)BitReverse((word32)value);
	else
	{
		assert(sizeof(T) == 8);
		return (T)BitReverse((word64)value);
	}
}

//! \brief Reverses bytes in a value depending upon endianess
//! \tparam T the class or type
//! \param order the ByteOrder the data is represented
//! \param value the value to conditionally reverse
//! \details Internally, the ConditionalByteReverse calls NativeByteOrderIs.
//!   If order matches native byte order, then the original value is returned.
//!   If not, then ByteReverse is called on the value before returning to the caller.
template <class T>
inline T ConditionalByteReverse(ByteOrder order, T value)
{
	return NativeByteOrderIs(order) ? value : ByteReverse(value);
}

//! \brief Reverses bytes in an element from an array of elements
//! \tparam T the class or type
//! \param out the output array of elements
//! \param in the input array of elements
//! \param byteCount the total number of bytes in the array
//! \details Internally, ByteReverse visits each element in the in array
//!   calls ByteReverse on it, and writes the result to out.
//! \details ByteReverse does not process tail byes, or bytes that are
//!   \a not part of a full element. If T is int (and int is 4 bytes), then
//!   <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are
//!   reversed.
//! \details The follwoing program should help illustrate the behavior.
//! <pre>vector<word32> v1, v2;
//!
//! v1.push_back(1);
//! v1.push_back(2);
//! v1.push_back(3);
//! v1.push_back(4);
//!
//! v2.resize(v1.size());
//! ByteReverse<word32>(&v2[0], &v1[0], 16);
//!
//! cout << "V1: ";
//! for(unsigned int i = 0; i < v1.size(); i++)
//!   cout << std::hex << v1[i] << " ";
//! cout << endl;
//!
//! cout << "V2: ";
//! for(unsigned int i = 0; i < v2.size(); i++)
//!   cout << std::hex << v2[i] << " ";
//! cout << endl;</pre>
//! The program above results in the follwoing output.
//! <pre>V1: 00000001 00000002 00000003 00000004
//! V2: 01000000 02000000 03000000 04000000</pre>
//! \sa ConditionalByteReverse
template <class T>
void ByteReverse(T *out, const T *in, size_t byteCount)
{
	assert(byteCount % sizeof(T) == 0);
	size_t count = byteCount/sizeof(T);
	for (size_t i=0; i<count; i++)
		out[i] = ByteReverse(in[i]);
}

//! \brief Conditionally reverses bytes in an element from an array of elements
//! \tparam T the class or type
//! \param order the ByteOrder the data is represented
//! \param out the output array of elements
//! \param in the input array of elements
//! \param byteCount the byte count of the arrays
//! \details Internally, ByteReverse visits each element in the in array
//!   calls ByteReverse on it depending on the desired endianess, and writes the result to out.
//! \details ByteReverse does not process tail byes, or bytes that are
//!   \a not part of a full element. If T is int (and int is 4 bytes), then
//!   <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are
//!   reversed.
//! \sa ByteReverse
template <class T>
inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount)
{
	if (!NativeByteOrderIs(order))
		ByteReverse(out, in, byteCount);
	else if (in != out)
		memcpy_s(out, byteCount, in, byteCount);
}

template <class T>
inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen)
{
	const size_t U = sizeof(T);
	assert(inlen <= outlen*U);
	memcpy_s(out, outlen*U, in, inlen);
	memset_z((byte *)out+inlen, 0, outlen*U-inlen);
	ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U));
}

#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *)
{
	CRYPTOPP_UNUSED(order);
	return block[0];
}

inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *)
{
	return (order == BIG_ENDIAN_ORDER)
		? block[1] | (block[0] << 8)
		: block[0] | (block[1] << 8);
}

inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *)
{
	return (order == BIG_ENDIAN_ORDER)
		? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24)
		: word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24);
}

inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *)
{
	return (order == BIG_ENDIAN_ORDER)
		?
		(word64(block[7]) |
		(word64(block[6]) <<  8) |
		(word64(block[5]) << 16) |
		(word64(block[4]) << 24) |
		(word64(block[3]) << 32) |
		(word64(block[2]) << 40) |
		(word64(block[1]) << 48) |
		(word64(block[0]) << 56))
		:
		(word64(block[0]) |
		(word64(block[1]) <<  8) |
		(word64(block[2]) << 16) |
		(word64(block[3]) << 24) |
		(word64(block[4]) << 32) |
		(word64(block[5]) << 40) |
		(word64(block[6]) << 48) |
		(word64(block[7]) << 56));
}

inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock)
{
	CRYPTOPP_UNUSED(order);
	block[0] = (byte)(xorBlock ? (value ^ xorBlock[0]) : value);
}

inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock)
{
	if (order == BIG_ENDIAN_ORDER)
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
	}
	else
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
		}
	}
}

inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock)
{
	if (order == BIG_ENDIAN_ORDER)
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
	}
	else
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
		}
	}
}

inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock)
{
	if (order == BIG_ENDIAN_ORDER)
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
		}
	}
	else
	{
		if (xorBlock)
		{
			block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
		}
		else
		{
			block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
			block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
			block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
			block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
			block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
			block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
			block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
			block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
		}
	}
}
#endif	// #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS

template <class T>
inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block)
{
//#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
//	if (!assumeAligned)
//		return UnalignedGetWordNonTemplate(order, block, (T*)NULL);
//	assert(IsAligned<T>(block));
//#endif
//	return ConditionalByteReverse(order, *reinterpret_cast<const T *>(block));
	CRYPTOPP_UNUSED(assumeAligned);
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
	return ConditionalByteReverse(order, *reinterpret_cast<const T *>((const void *)block));
#else
	T temp;
	memcpy(&temp, block, sizeof(T));
	return ConditionalByteReverse(order, temp);
#endif
}

template <class T>
inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block)
{
	result = GetWord<T>(assumeAligned, order, block);
}

template <class T>
inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULL)
{
//#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
//	if (!assumeAligned)
//		return UnalignedbyteNonTemplate(order, block, value, xorBlock);
//	assert(IsAligned<T>(block));
//	assert(IsAligned<T>(xorBlock));
//#endif
//	*reinterpret_cast<T *>(block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>(xorBlock) : 0);
	CRYPTOPP_UNUSED(assumeAligned);
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
	*reinterpret_cast<T *>((void *)block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>((const void *)xorBlock) : 0);
#else
	T t1, t2 = 0;
	t1 = ConditionalByteReverse(order, value);
	if (xorBlock) memcpy(&t2, xorBlock, sizeof(T));
	memmove(block, &(t1 ^= t2), sizeof(T));
#endif
}

//! \class GetBlock
//! \brief Access a block of memory
//! \tparam T class or type
//! \tparam B enumeration indicating endianess
//! \tparam A flag indicating alignment
//! \details GetBlock() provides alternate read access to a block of memory. The enumeration B is
//!   BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
//!   Repeatedly applying operator() results in advancing in the block of memory.
//! \details An example of reading two word32 values from a block of memory is shown below. <tt>w1</tt>
//!   will be <tt>0x03020100</tt> and <tt>w1</tt> will be <tt>0x07060504</tt>.
//! <pre>
//!    word32 w1, w2;
//!    byte buffer[8] = {0,1,2,3,4,5,6,7};
//!    GetBlock<word32, LittleEndian> block(buffer);
//!    block(w1)(w2);
//! </pre>
template <class T, class B, bool A=false>
class GetBlock
{
public:
	//! \brief Construct a GetBlock
	//! \param block the memory block
	GetBlock(const void *block)
		: m_block((const byte *)block) {}

	//! \brief Access a block of memory
	//! \tparam U class or type
	//! \param x the value to read
	//! \returns pointer to the remainder of the block after reading x
	template <class U>
	inline GetBlock<T, B, A> & operator()(U &x)
	{
		CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T));
		x = GetWord<T>(A, B::ToEnum(), m_block);
		m_block += sizeof(T);
		return *this;
	}

private:
	const byte *m_block;
};

//! \class PutBlock
//! \brief Access a block of memory
//! \tparam T class or type
//! \tparam B enumeration indicating endianess
//! \tparam A flag indicating alignment
//! \details PutBlock() provides alternate write access to a block of memory. The enumeration B is
//!   BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
//!   Repeatedly applying operator() results in advancing in the block of memory.
//! \details An example of writing two word32 values from a block of memory is shown below. After the code
//!   executes, the byte buffer will be <tt>{0,1,2,3,4,5,6,7}</tt>.
//! <pre>
//!    word32 w1=0x03020100, w2=0x07060504;
//!    byte buffer[8];
//!    PutBlock<word32, LittleEndian> block(NULL, buffer);
//!    block(w1)(w2);
//! </pre>
template <class T, class B, bool A=false>
class PutBlock
{
public:
	//! \brief Construct a PutBlock
	//! \param block the memory block
	//! \param xorBlock optional mask
	PutBlock(const void *xorBlock, void *block)
		: m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {}

	//! \brief Access a block of memory
	//! \tparam U class or type
	//! \param x the value to write
	//! \returns pointer to the remainder of the block after writing x
	template <class U>
	inline PutBlock<T, B, A> & operator()(U x)
	{
		PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock);
		m_block += sizeof(T);
		if (m_xorBlock)
			m_xorBlock += sizeof(T);
		return *this;
	}

private:
	const byte *m_xorBlock;
	byte *m_block;
};

//! \class BlockGetAndPut
//! \brief Access a block of memory
//! \tparam T class or type
//! \tparam B enumeration indicating endianess
//! \tparam GA flag indicating alignment for the Get operation
//! \tparam PA flag indicating alignment for the Put operation
//! \details GetBlock() provides alternate write access to a block of memory. The enumeration B is
//!   BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
//! \sa GetBlock() and PutBlock().
template <class T, class B, bool GA=false, bool PA=false>
struct BlockGetAndPut
{
	// function needed because of C++ grammatical ambiguity between expression-statements and declarations
	static inline GetBlock<T, B, GA> Get(const void *block) {return GetBlock<T, B, GA>(block);}
	typedef PutBlock<T, B, PA> Put;
};

template <class T>
std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER)
{
	if (!NativeByteOrderIs(order))
		value = ByteReverse(value);

	return std::string((char *)&value, sizeof(value));
}

template <class T>
T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER)
{
	T value = 0;
	memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value)));
	return NativeByteOrderIs(order) ? value : ByteReverse(value);
}

// ************** help remove warning on g++ ***************

//! \class SafeShifter
//! \brief Safely shift values when undefined behavior could occur
//! \tparam overflow boolean flag indicating if overflow is present
//! \details SafeShifter safely shifts values when undefined behavior could occur under C/C++ rules.
//!   The class behaves much like a saturating arithmetic class, clamping values rather than allowing
//!   the compiler to remove undefined behavior.
//! \sa SafeShifter<true>, SafeShifter<false>
template <bool overflow> struct SafeShifter;

//! \class SafeShifter<true>
//! \brief Shifts a value in the presence of overflow
//! \details the \p true template parameter indicates overflow would occur.
//!   In this case, SafeShifter clamps the value and returns 0.
template<> struct SafeShifter<true>
{
	//! \brief Right shifts a value that overflows
	//! \tparam T class or type
	//! \return 0
	//! \details Since <tt>overflow == true</tt>, the value 0 is always returned.
	//! \sa SafeLeftShift
	template <class T>
	static inline T RightShift(T value, unsigned int bits)
	{
		CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits);
		return 0;
	}

	//! \brief Left shifts a value that overflows
	//! \tparam T class or type
	//! \return 0
	//! \details Since <tt>overflow == true</tt>, the value 0 is always returned.
	//! \sa SafeRightShift
	template <class T>
	static inline T LeftShift(T value, unsigned int bits)
	{
		CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits);
		return 0;
	}
};

//! \class SafeShifter<false>
//! \brief Shifts a value in the absence of overflow
//! \details the \p false template parameter indicates overflow would \a not occur.
//!   In this case, SafeShifter returns the shfted value.
template<> struct SafeShifter<false>
{
	//! \brief Right shifts a value that does not overflow
	//! \tparam T class or type
	//! \return the shifted value
	//! \details Since <tt>overflow == false</tt>, the shifted value is returned.
	//! \sa SafeLeftShift
	template <class T>
	static inline T RightShift(T value, unsigned int bits)
	{
		return value >> bits;
	}

	//! \brief Left shifts a value that does not overflow
	//! \tparam T class or type
	//! \return the shifted value
	//! \details Since <tt>overflow == false</tt>, the shifted value is returned.
	//! \sa SafeRightShift
	template <class T>
	static inline T LeftShift(T value, unsigned int bits)
	{
		return value << bits;
	}
};

//! \class SafeRightShift
//! \brief Safely right shift values when undefined behavior could occur
//! \tparam bits the number of bit positions to shift the value
//! \tparam T class or type
//! \param value the value to right shift
//! \result the shifted value or 0
//! \details SafeRightShift safely shifts the value to the right when undefined behavior
//!   could occur under C/C++ rules. SafeRightShift will return the shifted value or 0
//!   if undefined behavior would occur.
template <unsigned int bits, class T>
inline T SafeRightShift(T value)
{
	return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits);
}

//! \class SafeLeftShift
//! \brief Safely left shift values when undefined behavior could occur
//! \tparam bits the number of bit positions to shift the value
//! \tparam T class or type
//! \param value the value to left shift
//! \result the shifted value or 0
//! \details SafeLeftShift safely shifts the value to the left when undefined behavior
//!   could occur under C/C++ rules. SafeLeftShift will return the shifted value or 0
//!   if undefined behavior would occur.
template <unsigned int bits, class T>
inline T SafeLeftShift(T value)
{
	return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits);
}

// ************** use one buffer for multiple data members ***************

#define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+0);}     size_t SS1() {return       sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate;

NAMESPACE_END

#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif

#endif