File: algebra.cpp

package info (click to toggle)
libcrypto++ 5.6.4-8
  • links: PTS
  • area: main
  • in suites: buster, sid
  • size: 11,896 kB
  • ctags: 13,256
  • sloc: cpp: 69,231; sh: 4,117; asm: 4,090; makefile: 373
file content (341 lines) | stat: -rw-r--r-- 9,577 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// algebra.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"

#ifndef CRYPTOPP_ALGEBRA_CPP	// SunCC workaround: compiler could cause this file to be included twice
#define CRYPTOPP_ALGEBRA_CPP

#include "algebra.h"
#include "integer.h"

#include <vector>

NAMESPACE_BEGIN(CryptoPP)

template <class T> const T& AbstractGroup<T>::Double(const Element &a) const
{
	return this->Add(a, a);
}

template <class T> const T& AbstractGroup<T>::Subtract(const Element &a, const Element &b) const
{
	// make copy of a in case Inverse() overwrites it
	Element a1(a);
	return this->Add(a1, Inverse(b));
}

template <class T> T& AbstractGroup<T>::Accumulate(Element &a, const Element &b) const
{
	return a = this->Add(a, b);
}

template <class T> T& AbstractGroup<T>::Reduce(Element &a, const Element &b) const
{
	return a = this->Subtract(a, b);
}

template <class T> const T& AbstractRing<T>::Square(const Element &a) const
{
	return this->Multiply(a, a);
}

template <class T> const T& AbstractRing<T>::Divide(const Element &a, const Element &b) const
{
	// make copy of a in case MultiplicativeInverse() overwrites it
	Element a1(a);
	return this->Multiply(a1, this->MultiplicativeInverse(b));
}

template <class T> const T& AbstractEuclideanDomain<T>::Mod(const Element &a, const Element &b) const
{
	Element q;
	this->DivisionAlgorithm(result, q, a, b);
	return result;
}

template <class T> const T& AbstractEuclideanDomain<T>::Gcd(const Element &a, const Element &b) const
{
	Element g[3]={b, a};
	unsigned int i0=0, i1=1, i2=2;

	while (!this->Equal(g[i1], this->Identity()))
	{
		g[i2] = this->Mod(g[i0], g[i1]);
		unsigned int t = i0; i0 = i1; i1 = i2; i2 = t;
	}

	return result = g[i0];
}

template <class T> const typename QuotientRing<T>::Element& QuotientRing<T>::MultiplicativeInverse(const Element &a) const
{
	Element g[3]={m_modulus, a};
	Element v[3]={m_domain.Identity(), m_domain.MultiplicativeIdentity()};
	Element y;
	unsigned int i0=0, i1=1, i2=2;

	while (!this->Equal(g[i1], this->Identity()))
	{
		// y = g[i0] / g[i1];
		// g[i2] = g[i0] % g[i1];
		m_domain.DivisionAlgorithm(g[i2], y, g[i0], g[i1]);
		// v[i2] = v[i0] - (v[i1] * y);
		v[i2] = m_domain.Subtract(v[i0], m_domain.Multiply(v[i1], y));
		unsigned int t = i0; i0 = i1; i1 = i2; i2 = t;
	}

	return m_domain.IsUnit(g[i0]) ? m_domain.Divide(v[i0], g[i0]) : m_domain.Identity();
}

template <class T> T AbstractGroup<T>::ScalarMultiply(const Element &base, const Integer &exponent) const
{
	Element result;
	this->SimultaneousMultiply(&result, base, &exponent, 1);
	return result;
}

template <class T> T AbstractGroup<T>::CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
{
	const unsigned expLen = STDMAX(e1.BitCount(), e2.BitCount());
	if (expLen==0)
		return this->Identity();

	const unsigned w = (expLen <= 46 ? 1 : (expLen <= 260 ? 2 : 3));
	const unsigned tableSize = 1<<w;
	std::vector<Element> powerTable(tableSize << w);

	powerTable[1] = x;
	powerTable[tableSize] = y;
	if (w==1)
		powerTable[3] = this->Add(x,y);
	else
	{
		powerTable[2] = this->Double(x);
		powerTable[2*tableSize] = this->Double(y);

		unsigned i, j;

		for (i=3; i<tableSize; i+=2)
			powerTable[i] = Add(powerTable[i-2], powerTable[2]);
		for (i=1; i<tableSize; i+=2)
			for (j=i+tableSize; j<(tableSize<<w); j+=tableSize)
				powerTable[j] = Add(powerTable[j-tableSize], y);

		for (i=3*tableSize; i<(tableSize<<w); i+=2*tableSize)
			powerTable[i] = Add(powerTable[i-2*tableSize], powerTable[2*tableSize]);
		for (i=tableSize; i<(tableSize<<w); i+=2*tableSize)
			for (j=i+2; j<i+tableSize; j+=2)
				powerTable[j] = Add(powerTable[j-1], x);
	}

	Element result;
	unsigned power1 = 0, power2 = 0, prevPosition = expLen-1;
	bool firstTime = true;

	for (int i = expLen-1; i>=0; i--)
	{
		power1 = 2*power1 + e1.GetBit(i);
		power2 = 2*power2 + e2.GetBit(i);

		if (i==0 || 2*power1 >= tableSize || 2*power2 >= tableSize)
		{
			unsigned squaresBefore = prevPosition-i;
			unsigned squaresAfter = 0;
			prevPosition = i;
			while ((power1 || power2) && power1%2 == 0 && power2%2==0)
			{
				power1 /= 2;
				power2 /= 2;
				squaresBefore--;
				squaresAfter++;
			}
			if (firstTime)
			{
				result = powerTable[(power2<<w) + power1];
				firstTime = false;
			}
			else
			{
				while (squaresBefore--)
					result = this->Double(result);
				if (power1 || power2)
					Accumulate(result, powerTable[(power2<<w) + power1]);
			}
			while (squaresAfter--)
				result = this->Double(result);
			power1 = power2 = 0;
		}
	}
	return result;
}

template <class Element, class Iterator> Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end)
{
	if (end-begin == 1)
		return group.ScalarMultiply(begin->base, begin->exponent);
	else if (end-begin == 2)
		return group.CascadeScalarMultiply(begin->base, begin->exponent, (begin+1)->base, (begin+1)->exponent);
	else
	{
		Integer q, t;
		Iterator last = end;
		--last;

		std::make_heap(begin, end);
		std::pop_heap(begin, end);

		while (!!begin->exponent)
		{
			// last->exponent is largest exponent, begin->exponent is next largest
			t = last->exponent;
			Integer::Divide(last->exponent, q, t, begin->exponent);

			if (q == Integer::One())
				group.Accumulate(begin->base, last->base);	// avoid overhead of ScalarMultiply()
			else
				group.Accumulate(begin->base, group.ScalarMultiply(last->base, q));

			std::push_heap(begin, end);
			std::pop_heap(begin, end);
		}

		return group.ScalarMultiply(last->base, last->exponent);
	}
}

struct WindowSlider
{
	WindowSlider(const Integer &expIn, bool fastNegate, unsigned int windowSizeIn=0)
		: exp(expIn), windowModulus(Integer::One()), windowSize(windowSizeIn), windowBegin(0), expWindow(0)
		, fastNegate(fastNegate), negateNext(false), firstTime(true), finished(false)
	{
		if (windowSize == 0)
		{
			unsigned int expLen = exp.BitCount();
			windowSize = expLen <= 17 ? 1 : (expLen <= 24 ? 2 : (expLen <= 70 ? 3 : (expLen <= 197 ? 4 : (expLen <= 539 ? 5 : (expLen <= 1434 ? 6 : 7)))));
		}
		windowModulus <<= windowSize;
	}

	void FindNextWindow()
	{
		unsigned int expLen = exp.WordCount() * WORD_BITS;
		unsigned int skipCount = firstTime ? 0 : windowSize;
		firstTime = false;
		while (!exp.GetBit(skipCount))
		{
			if (skipCount >= expLen)
			{
				finished = true;
				return;
			}
			skipCount++;
		}

		exp >>= skipCount;
		windowBegin += skipCount;
		expWindow = word32(exp % (word(1) << windowSize));

		if (fastNegate && exp.GetBit(windowSize))
		{
			negateNext = true;
			expWindow = (word32(1) << windowSize) - expWindow;
			exp += windowModulus;
		}
		else
			negateNext = false;
	}

	Integer exp, windowModulus;
	unsigned int windowSize, windowBegin;
	word32 expWindow;
	bool fastNegate, negateNext, firstTime, finished;
};

template <class T>
void AbstractGroup<T>::SimultaneousMultiply(T *results, const T &base, const Integer *expBegin, unsigned int expCount) const
{
	std::vector<std::vector<Element> > buckets(expCount);
	std::vector<WindowSlider> exponents;
	exponents.reserve(expCount);
	unsigned int i;

	for (i=0; i<expCount; i++)
	{
		assert(expBegin->NotNegative());
		exponents.push_back(WindowSlider(*expBegin++, InversionIsFast(), 0));
		exponents[i].FindNextWindow();
		buckets[i].resize(((size_t) 1) << (exponents[i].windowSize-1), Identity());
	}

	unsigned int expBitPosition = 0;
	Element g = base;
	bool notDone = true;

	while (notDone)
	{
		notDone = false;
		for (i=0; i<expCount; i++)
		{
			if (!exponents[i].finished && expBitPosition == exponents[i].windowBegin)
			{
				Element &bucket = buckets[i][exponents[i].expWindow/2];
				if (exponents[i].negateNext)
					Accumulate(bucket, Inverse(g));
				else
					Accumulate(bucket, g);
				exponents[i].FindNextWindow();
			}
			notDone = notDone || !exponents[i].finished;
		}

		if (notDone)
		{
			g = Double(g);
			expBitPosition++;
		}
	}

	for (i=0; i<expCount; i++)
	{
		Element &r = *results++;
		r = buckets[i][buckets[i].size()-1];
		if (buckets[i].size() > 1)
		{
			for (int j = (int)buckets[i].size()-2; j >= 1; j--)
			{
				Accumulate(buckets[i][j], buckets[i][j+1]);
				Accumulate(r, buckets[i][j]);
			}
			Accumulate(buckets[i][0], buckets[i][1]);
			r = Add(Double(r), buckets[i][0]);
		}
	}
}

template <class T> T AbstractRing<T>::Exponentiate(const Element &base, const Integer &exponent) const
{
	Element result;
	SimultaneousExponentiate(&result, base, &exponent, 1);
	return result;
}

template <class T> T AbstractRing<T>::CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
{
	return MultiplicativeGroup().AbstractGroup<T>::CascadeScalarMultiply(x, e1, y, e2);
}

template <class Element, class Iterator> Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end)
{
	return GeneralCascadeMultiplication<Element>(ring.MultiplicativeGroup(), begin, end);
}

template <class T>
void AbstractRing<T>::SimultaneousExponentiate(T *results, const T &base, const Integer *exponents, unsigned int expCount) const
{
	MultiplicativeGroup().AbstractGroup<T>::SimultaneousMultiply(results, base, exponents, expCount);
}

NAMESPACE_END

#endif