File: rsa.cpp

package info (click to toggle)
libcrypto++ 5.6.4-8
  • links: PTS
  • area: main
  • in suites: buster, sid
  • size: 11,896 kB
  • ctags: 13,256
  • sloc: cpp: 69,231; sh: 4,117; asm: 4,090; makefile: 373
file content (308 lines) | stat: -rw-r--r-- 9,319 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// rsa.cpp - written and placed in the public domain by Wei Dai

#include "pch.h"
#include "rsa.h"
#include "asn.h"
#include "sha.h"
#include "oids.h"
#include "modarith.h"
#include "nbtheory.h"
#include "algparam.h"
#include "fips140.h"

#if !defined(NDEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING) && !defined(CRYPTOPP_IS_DLL)
#include "pssr.h"
NAMESPACE_BEGIN(CryptoPP)
void RSA_TestInstantiations()
{
	RSASS<PKCS1v15, SHA>::Verifier x1(1, 1);
	RSASS<PKCS1v15, SHA>::Signer x2(NullRNG(), 1);
	RSASS<PKCS1v15, SHA>::Verifier x3(x2);
	RSASS<PKCS1v15, SHA>::Verifier x4(x2.GetKey());
	RSASS<PSS, SHA>::Verifier x5(x3);
#ifndef __MWERKS__
	RSASS<PSSR, SHA>::Signer x6 = x2;
	x3 = x2;
	x6 = x2;
#endif
	RSAES<PKCS1v15>::Encryptor x7(x2);
#ifndef __GNUC__
	RSAES<PKCS1v15>::Encryptor x8(x3);
#endif
	RSAES<OAEP<SHA> >::Encryptor x9(x2);

	x4 = x2.GetKey();
}
NAMESPACE_END
#endif

#ifndef CRYPTOPP_IMPORTS

NAMESPACE_BEGIN(CryptoPP)

OID RSAFunction::GetAlgorithmID() const
{
	return ASN1::rsaEncryption();
}

void RSAFunction::BERDecodePublicKey(BufferedTransformation &bt, bool, size_t)
{
	BERSequenceDecoder seq(bt);
		m_n.BERDecode(seq);
		m_e.BERDecode(seq);
	seq.MessageEnd();
}

void RSAFunction::DEREncodePublicKey(BufferedTransformation &bt) const
{
	DERSequenceEncoder seq(bt);
		m_n.DEREncode(seq);
		m_e.DEREncode(seq);
	seq.MessageEnd();
}

Integer RSAFunction::ApplyFunction(const Integer &x) const
{
	DoQuickSanityCheck();
	return a_exp_b_mod_c(x, m_e, m_n);
}

bool RSAFunction::Validate(RandomNumberGenerator& rng, unsigned int level) const
{
	CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(level);

	bool pass = true;
	pass = pass && m_n > Integer::One() && m_n.IsOdd();
	pass = pass && m_e > Integer::One() && m_e.IsOdd() && m_e < m_n;
	return pass;
}

bool RSAFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
	return GetValueHelper(this, name, valueType, pValue).Assignable()
		CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
		CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent)
		;
}

void RSAFunction::AssignFrom(const NameValuePairs &source)
{
	AssignFromHelper(this, source)
		CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
		CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent)
		;
}

// *****************************************************************************

class RSAPrimeSelector : public PrimeSelector
{
public:
	RSAPrimeSelector(const Integer &e) : m_e(e) {}
	bool IsAcceptable(const Integer &candidate) const {return RelativelyPrime(m_e, candidate-Integer::One());}
	Integer m_e;
};

void InvertibleRSAFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
	int modulusSize = 2048;
	alg.GetIntValue(Name::ModulusSize(), modulusSize) || alg.GetIntValue(Name::KeySize(), modulusSize);

	assert(modulusSize >= 16);
	if (modulusSize < 16)
		throw InvalidArgument("InvertibleRSAFunction: specified modulus size is too small");

	m_e = alg.GetValueWithDefault(Name::PublicExponent(), Integer(17));

	assert(m_e >= 3); assert(!m_e.IsEven());
	if (m_e < 3 || m_e.IsEven())
		throw InvalidArgument("InvertibleRSAFunction: invalid public exponent");

	RSAPrimeSelector selector(m_e);
	AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize)
		(Name::PointerToPrimeSelector(), selector.GetSelectorPointer());
	m_p.GenerateRandom(rng, primeParam);
	m_q.GenerateRandom(rng, primeParam);

	m_d = m_e.InverseMod(LCM(m_p-1, m_q-1));
	assert(m_d.IsPositive());

	m_dp = m_d % (m_p-1);
	m_dq = m_d % (m_q-1);
	m_n = m_p * m_q;
	m_u = m_q.InverseMod(m_p);

	if (FIPS_140_2_ComplianceEnabled())
	{
		RSASS<PKCS1v15, SHA>::Signer signer(*this);
		RSASS<PKCS1v15, SHA>::Verifier verifier(signer);
		SignaturePairwiseConsistencyTest_FIPS_140_Only(signer, verifier);

		RSAES<OAEP<SHA> >::Decryptor decryptor(*this);
		RSAES<OAEP<SHA> >::Encryptor encryptor(decryptor);
		EncryptionPairwiseConsistencyTest_FIPS_140_Only(encryptor, decryptor);
	}
}

void InvertibleRSAFunction::Initialize(RandomNumberGenerator &rng, unsigned int keybits, const Integer &e)
{
	GenerateRandom(rng, MakeParameters(Name::ModulusSize(), (int)keybits)(Name::PublicExponent(), e+e.IsEven()));
}

void InvertibleRSAFunction::Initialize(const Integer &n, const Integer &e, const Integer &d)
{
	if (n.IsEven() || e.IsEven() | d.IsEven())
		throw InvalidArgument("InvertibleRSAFunction: input is not a valid RSA private key");

	m_n = n;
	m_e = e;
	m_d = d;

	Integer r = --(d*e);
	unsigned int s = 0;
	while (r.IsEven())
	{
		r >>= 1;
		s++;
	}

	ModularArithmetic modn(n);
	for (Integer i = 2; ; ++i)
	{
		Integer a = modn.Exponentiate(i, r);
		if (a == 1)
			continue;
		Integer b;
		unsigned int j = 0;
		while (a != n-1)
		{
			b = modn.Square(a);
			if (b == 1)
			{
				m_p = GCD(a-1, n);
				m_q = n/m_p;
				m_dp = m_d % (m_p-1);
				m_dq = m_d % (m_q-1);
				m_u = m_q.InverseMod(m_p);
				return;
			}
			if (++j == s)
				throw InvalidArgument("InvertibleRSAFunction: input is not a valid RSA private key");
			a = b;
		}
	}
}

void InvertibleRSAFunction::BERDecodePrivateKey(BufferedTransformation &bt, bool, size_t)
{
	BERSequenceDecoder privateKey(bt);
		word32 version;
		BERDecodeUnsigned<word32>(privateKey, version, INTEGER, 0, 0);	// check version
		m_n.BERDecode(privateKey);
		m_e.BERDecode(privateKey);
		m_d.BERDecode(privateKey);
		m_p.BERDecode(privateKey);
		m_q.BERDecode(privateKey);
		m_dp.BERDecode(privateKey);
		m_dq.BERDecode(privateKey);
		m_u.BERDecode(privateKey);
	privateKey.MessageEnd();
}

void InvertibleRSAFunction::DEREncodePrivateKey(BufferedTransformation &bt) const
{
	DERSequenceEncoder privateKey(bt);
		DEREncodeUnsigned<word32>(privateKey, 0);	// version
		m_n.DEREncode(privateKey);
		m_e.DEREncode(privateKey);
		m_d.DEREncode(privateKey);
		m_p.DEREncode(privateKey);
		m_q.DEREncode(privateKey);
		m_dp.DEREncode(privateKey);
		m_dq.DEREncode(privateKey);
		m_u.DEREncode(privateKey);
	privateKey.MessageEnd();
}

Integer InvertibleRSAFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
{
	DoQuickSanityCheck();
	ModularArithmetic modn(m_n);
	Integer r, rInv;
	do {	// do this in a loop for people using small numbers for testing
		r.Randomize(rng, Integer::One(), m_n - Integer::One());
		rInv = modn.MultiplicativeInverse(r);
	} while (rInv.IsZero());
	Integer re = modn.Exponentiate(r, m_e);
	re = modn.Multiply(re, x);			// blind
	// here we follow the notation of PKCS #1 and let u=q inverse mod p
	// but in ModRoot, u=p inverse mod q, so we reverse the order of p and q
	Integer y = ModularRoot(re, m_dq, m_dp, m_q, m_p, m_u);
	y = modn.Multiply(y, rInv);				// unblind
	if (modn.Exponentiate(y, m_e) != x)		// check
		throw Exception(Exception::OTHER_ERROR, "InvertibleRSAFunction: computational error during private key operation");
	return y;
}

bool InvertibleRSAFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
	bool pass = RSAFunction::Validate(rng, level);
	pass = pass && m_p > Integer::One() && m_p.IsOdd() && m_p < m_n;
	pass = pass && m_q > Integer::One() && m_q.IsOdd() && m_q < m_n;
	pass = pass && m_d > Integer::One() && m_d.IsOdd() && m_d < m_n;
	pass = pass && m_dp > Integer::One() && m_dp.IsOdd() && m_dp < m_p;
	pass = pass && m_dq > Integer::One() && m_dq.IsOdd() && m_dq < m_q;
	pass = pass && m_u.IsPositive() && m_u < m_p;
	if (level >= 1)
	{
		pass = pass && m_p * m_q == m_n;
		pass = pass && m_e*m_d % LCM(m_p-1, m_q-1) == 1;
		pass = pass && m_dp == m_d%(m_p-1) && m_dq == m_d%(m_q-1);
		pass = pass && m_u * m_q % m_p == 1;
	}
	if (level >= 2)
		pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
	return pass;
}

bool InvertibleRSAFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
	return GetValueHelper<RSAFunction>(this, name, valueType, pValue).Assignable()
		CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
		CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
		CRYPTOPP_GET_FUNCTION_ENTRY(PrivateExponent)
		CRYPTOPP_GET_FUNCTION_ENTRY(ModPrime1PrivateExponent)
		CRYPTOPP_GET_FUNCTION_ENTRY(ModPrime2PrivateExponent)
		CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
		;
}

void InvertibleRSAFunction::AssignFrom(const NameValuePairs &source)
{
	AssignFromHelper<RSAFunction>(this, source)
		CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
		CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
		CRYPTOPP_SET_FUNCTION_ENTRY(PrivateExponent)
		CRYPTOPP_SET_FUNCTION_ENTRY(ModPrime1PrivateExponent)
		CRYPTOPP_SET_FUNCTION_ENTRY(ModPrime2PrivateExponent)
		CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
		;
}

// *****************************************************************************

Integer RSAFunction_ISO::ApplyFunction(const Integer &x) const
{
	Integer t = RSAFunction::ApplyFunction(x);
	return t % 16 == 12 ? t : m_n - t;
}

Integer InvertibleRSAFunction_ISO::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
{
	Integer t = InvertibleRSAFunction::CalculateInverse(rng, x);
	return STDMIN(t, m_n-t);
}

NAMESPACE_END

#endif