## File: shacal2.cpp

package info (click to toggle)
libcrypto++ 5.6.4-8
 `123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140` ``````// shacal2.cpp - by Kevin Springle, 2003 // // Portions of this code were derived from // Wei Dai's implementation of SHA-2 // // The original code and all modifications are in the public domain. #include "pch.h" #include "shacal2.h" #include "misc.h" NAMESPACE_BEGIN(CryptoPP) // SHACAL-2 function and round definitions #define S0(x) (rotrFixed(x,2)^rotrFixed(x,13)^rotrFixed(x,22)) #define S1(x) (rotrFixed(x,6)^rotrFixed(x,11)^rotrFixed(x,25)) #define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3)) #define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10)) #define Ch(x,y,z) (z^(x&(y^z))) #define Maj(x,y,z) ((x&y)|(z&(x|y))) /* R is the SHA-256 round function. */ /* This macro increments the k argument as a side effect. */ #define R(a,b,c,d,e,f,g,h,k) \ h+=S1(e)+Ch(e,f,g)+*k++;d+=h;h+=S0(a)+Maj(a,b,c); /* P is the inverse of the SHA-256 round function. */ /* This macro decrements the k argument as a side effect. */ #define P(a,b,c,d,e,f,g,h,k) \ h-=S0(a)+Maj(a,b,c);d-=h;h-=S1(e)+Ch(e,f,g)+*--k; void SHACAL2::Base::UncheckedSetKey(const byte *userKey, unsigned int keylen, const NameValuePairs &) { AssertValidKeyLength(keylen); word32 *rk = m_key; unsigned int i; GetUserKey(BIG_ENDIAN_ORDER, rk, m_key.size(), userKey, keylen); for (i = 0; i < 48; i++, rk++) { rk[16] = rk[0] + s0(rk[1]) + rk[9] + s1(rk[14]); rk[0] += K[i]; } for (i = 48; i < 64; i++, rk++) { rk[0] += K[i]; } } typedef BlockGetAndPut Block; void SHACAL2::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const { word32 a, b, c, d, e, f, g, h; const word32 *rk = m_key; /* * map byte array block to cipher state: */ Block::Get(inBlock)(a)(b)(c)(d)(e)(f)(g)(h); // Perform SHA-256 transformation. /* 64 operations, partially loop unrolled */ for (unsigned int j=0; j<64; j+=8) { R(a,b,c,d,e,f,g,h,rk); R(h,a,b,c,d,e,f,g,rk); R(g,h,a,b,c,d,e,f,rk); R(f,g,h,a,b,c,d,e,rk); R(e,f,g,h,a,b,c,d,rk); R(d,e,f,g,h,a,b,c,rk); R(c,d,e,f,g,h,a,b,rk); R(b,c,d,e,f,g,h,a,rk); } /* * map cipher state to byte array block: */ Block::Put(xorBlock, outBlock)(a)(b)(c)(d)(e)(f)(g)(h); } void SHACAL2::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const { word32 a, b, c, d, e, f, g, h; const word32 *rk = m_key + 64; /* * map byte array block to cipher state: */ Block::Get(inBlock)(a)(b)(c)(d)(e)(f)(g)(h); // Perform inverse SHA-256 transformation. /* 64 operations, partially loop unrolled */ for (unsigned int j=0; j<64; j+=8) { P(b,c,d,e,f,g,h,a,rk); P(c,d,e,f,g,h,a,b,rk); P(d,e,f,g,h,a,b,c,rk); P(e,f,g,h,a,b,c,d,rk); P(f,g,h,a,b,c,d,e,rk); P(g,h,a,b,c,d,e,f,rk); P(h,a,b,c,d,e,f,g,rk); P(a,b,c,d,e,f,g,h,rk); } /* * map cipher state to byte array block: */ Block::Put(xorBlock, outBlock)(a)(b)(c)(d)(e)(f)(g)(h); } // The SHACAL-2 round constants are identical to the SHA-256 round constants. const word32 SHACAL2::Base::K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; NAMESPACE_END ``````