File: aria.cpp

package info (click to toggle)
libcrypto++ 8.2.0-2
  • links: PTS
  • area: main
  • in suites: experimental
  • size: 22,780 kB
  • sloc: cpp: 105,015; sh: 7,353; asm: 5,120; makefile: 316
file content (343 lines) | stat: -rw-r--r-- 11,002 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// aria.cpp - written and placed in the public domain by Jeffrey Walton

#include "pch.h"
#include "config.h"

#include "aria.h"
#include "misc.h"
#include "cpu.h"

#if CRYPTOPP_SSE2_INTRIN_AVAILABLE
# define CRYPTOPP_ENABLE_ARIA_SSE2_INTRINSICS 1
#endif

#if CRYPTOPP_SSSE3_AVAILABLE
# define CRYPTOPP_ENABLE_ARIA_SSSE3_INTRINSICS 1
#endif

// GCC cast warning. Note: this is used on round key table,
// which is word32 and naturally aligned.
#define UINT32_CAST(x) ((word32 *)(void *)(x))

NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(ARIATab)

extern const word32 S1[256];
extern const word32 S2[256];
extern const word32 X1[256];
extern const word32 X2[256];
extern const word32 KRK[3][4];

NAMESPACE_END
NAMESPACE_END

NAMESPACE_BEGIN(CryptoPP)

using CryptoPP::ARIATab::S1;
using CryptoPP::ARIATab::S2;
using CryptoPP::ARIATab::X1;
using CryptoPP::ARIATab::X2;
using CryptoPP::ARIATab::KRK;

inline byte ARIA_BRF(const word32 x, const int y) {
	return static_cast<byte>(GETBYTE(x, y));
}

// Key XOR Layer
#define ARIA_KXL {  \
    typedef BlockGetAndPut<word32, NativeByteOrder, true, true>  NativeBlock; \
    NativeBlock::Put(rk, t)(t[0])(t[1])(t[2])(t[3]); \
  }

// S-Box Layer 1 + M
#define SBL1_M(T0,T1,T2,T3) {  \
    T0=S1[ARIA_BRF(T0,3)]^S2[ARIA_BRF(T0,2)]^X1[ARIA_BRF(T0,1)]^X2[ARIA_BRF(T0,0)];  \
    T1=S1[ARIA_BRF(T1,3)]^S2[ARIA_BRF(T1,2)]^X1[ARIA_BRF(T1,1)]^X2[ARIA_BRF(T1,0)];  \
    T2=S1[ARIA_BRF(T2,3)]^S2[ARIA_BRF(T2,2)]^X1[ARIA_BRF(T2,1)]^X2[ARIA_BRF(T2,0)];  \
    T3=S1[ARIA_BRF(T3,3)]^S2[ARIA_BRF(T3,2)]^X1[ARIA_BRF(T3,1)]^X2[ARIA_BRF(T3,0)];  \
  }

// S-Box Layer 2 + M
#define SBL2_M(T0,T1,T2,T3) {  \
    T0=X1[ARIA_BRF(T0,3)]^X2[ARIA_BRF(T0,2)]^S1[ARIA_BRF(T0,1)]^S2[ARIA_BRF(T0,0)];  \
    T1=X1[ARIA_BRF(T1,3)]^X2[ARIA_BRF(T1,2)]^S1[ARIA_BRF(T1,1)]^S2[ARIA_BRF(T1,0)];  \
    T2=X1[ARIA_BRF(T2,3)]^X2[ARIA_BRF(T2,2)]^S1[ARIA_BRF(T2,1)]^S2[ARIA_BRF(T2,0)];  \
    T3=X1[ARIA_BRF(T3,3)]^X2[ARIA_BRF(T3,2)]^S1[ARIA_BRF(T3,1)]^S2[ARIA_BRF(T3,0)];  \
  }

#define ARIA_P(T0,T1,T2,T3) {                                  \
    (T1) = (((T1)<< 8)&0xff00ff00) ^ (((T1)>> 8)&0x00ff00ff);  \
    (T2) = rotrConstant<16>(T2);                               \
    (T3) = ByteReverse((T3));                                  \
  }

#define ARIA_M(X,Y) {						\
    Y=(X)<<8 ^ (X)>>8 ^ (X)<<16 ^ (X)>>16 ^ (X)<<24 ^ (X)>>24;	\
  }

#define ARIA_MM(T0,T1,T2,T3) {           \
    (T1)^=(T2); (T2)^=(T3); (T0)^=(T1);  \
    (T3)^=(T1); (T2)^=(T0); (T1)^=(T2);  \
  }

#define ARIA_FO {SBL1_M(t[0],t[1],t[2],t[3]) ARIA_MM(t[0],t[1],t[2],t[3]) ARIA_P(t[0],t[1],t[2],t[3]) ARIA_MM(t[0],t[1],t[2],t[3])}
#define ARIA_FE {SBL2_M(t[0],t[1],t[2],t[3]) ARIA_MM(t[0],t[1],t[2],t[3]) ARIA_P(t[2],t[3],t[0],t[1]) ARIA_MM(t[0],t[1],t[2],t[3])}

#if (CRYPTOPP_ARM_NEON_AVAILABLE)
extern void ARIA_UncheckedSetKey_Schedule_NEON(byte* rk, word32* ws, unsigned int keylen);
extern void ARIA_ProcessAndXorBlock_NEON(const byte* xorBlock, byte* outblock, const byte *rk, word32 *t);
#endif

#if (CRYPTOPP_SSSE3_AVAILABLE)
extern void ARIA_ProcessAndXorBlock_SSSE3(const byte* xorBlock, byte* outBlock, const byte *rk, word32 *t);
#endif

// n-bit right shift of Y XORed to X
template <unsigned int N>
inline void ARIA_GSRK(const word32 X[4], const word32 Y[4], byte RK[16])
{
	// MSVC is not generating a "rotate immediate". Constify to help it along.
	static const unsigned int Q = 4-(N/32);
	static const unsigned int R = N % 32;
	UINT32_CAST(RK)[0] = (X[0]) ^ ((Y[(Q  )%4])>>R) ^ ((Y[(Q+3)%4])<<(32-R));
	UINT32_CAST(RK)[1] = (X[1]) ^ ((Y[(Q+1)%4])>>R) ^ ((Y[(Q  )%4])<<(32-R));
	UINT32_CAST(RK)[2] = (X[2]) ^ ((Y[(Q+2)%4])>>R) ^ ((Y[(Q+1)%4])<<(32-R));
	UINT32_CAST(RK)[3] = (X[3]) ^ ((Y[(Q+3)%4])>>R) ^ ((Y[(Q+2)%4])<<(32-R));
}

void ARIA::Base::UncheckedSetKey(const byte *key, unsigned int keylen, const NameValuePairs &params)
{
	CRYPTOPP_UNUSED(params);

	m_rk.New(16*17);  // round keys
	m_w.New(4*7);     // w0, w1, w2, w3, t and u

	byte *rk = m_rk.data();
	int Q, q, R, r;

	switch (keylen)
	{
	case 16:
		R = r = m_rounds = 12;
		Q = q = 0;
		break;
	case 32:
		R = r = m_rounds = 16;
		Q = q = 2;
		break;
	case 24:
		R = r = m_rounds = 14;
		Q = q = 1;
		break;
	default:
		Q = q = R = r = m_rounds = 0;
		CRYPTOPP_ASSERT(0);
	}

	// w0 has room for 32 bytes. w1-w3 each has room for 16 bytes. t and u are 16 byte temp areas.
	word32 *w0 = m_w.data(), *w1 = m_w.data()+8, *w2 = m_w.data()+12, *w3 = m_w.data()+16, *t = m_w.data()+20;

	GetBlock<word32, BigEndian, false>block(key);
	block(w0[0])(w0[1])(w0[2])(w0[3]);

	t[0]=w0[0]^KRK[q][0]; t[1]=w0[1]^KRK[q][1];
	t[2]=w0[2]^KRK[q][2]; t[3]=w0[3]^KRK[q][3];

	ARIA_FO;

	if (keylen == 32)
	{
		block(w1[0])(w1[1])(w1[2])(w1[3]);
	}
	else if (keylen == 24)
	{
		block(w1[0])(w1[1]); w1[2] = w1[3] = 0;
	}
	else
	{
		w1[0]=w1[1]=w1[2]=w1[3]=0;
	}

	w1[0]^=t[0]; w1[1]^=t[1]; w1[2]^=t[2]; w1[3]^=t[3];
	::memcpy(t, w1, 16);

	q = (q==2) ? 0 : (q+1);
	t[0]^=KRK[q][0]; t[1]^=KRK[q][1]; t[2]^=KRK[q][2]; t[3]^=KRK[q][3];

	ARIA_FE;

	t[0]^=w0[0]; t[1]^=w0[1]; t[2]^=w0[2]; t[3]^=w0[3];
	::memcpy(w2, t, 16);

	q = (q==2) ? 0 : (q+1);
	t[0]^=KRK[q][0]; t[1]^=KRK[q][1]; t[2]^=KRK[q][2]; t[3]^=KRK[q][3];

	ARIA_FO;

	w3[0]=t[0]^w1[0]; w3[1]=t[1]^w1[1]; w3[2]=t[2]^w1[2]; w3[3]=t[3]^w1[3];

#if CRYPTOPP_ARM_NEON_AVAILABLE
	if (HasNEON())
	{
		ARIA_UncheckedSetKey_Schedule_NEON(rk, m_w, keylen);
	}
	else
#endif  // CRYPTOPP_ARM_NEON_AVAILABLE
	{
		ARIA_GSRK<19>(w0, w1, rk +   0);
		ARIA_GSRK<19>(w1, w2, rk +  16);
		ARIA_GSRK<19>(w2, w3, rk +  32);
		ARIA_GSRK<19>(w3, w0, rk +  48);
		ARIA_GSRK<31>(w0, w1, rk +  64);
		ARIA_GSRK<31>(w1, w2, rk +  80);
		ARIA_GSRK<31>(w2, w3, rk +  96);
		ARIA_GSRK<31>(w3, w0, rk + 112);
		ARIA_GSRK<67>(w0, w1, rk + 128);
		ARIA_GSRK<67>(w1, w2, rk + 144);
		ARIA_GSRK<67>(w2, w3, rk + 160);
		ARIA_GSRK<67>(w3, w0, rk + 176);
		ARIA_GSRK<97>(w0, w1, rk + 192);

		if (keylen > 16)
		{
			ARIA_GSRK<97>(w1, w2, rk + 208);
			ARIA_GSRK<97>(w2, w3, rk + 224);

			if (keylen > 24)
			{
				ARIA_GSRK< 97>(w3, w0, rk + 240);
				ARIA_GSRK<109>(w0, w1, rk + 256);
			}
		}
	}

	// Decryption operation
	if (!IsForwardTransformation())
	{
		word32 *a, *z, *s;
		rk = m_rk.data();
		r = R; q = Q;

		a=UINT32_CAST(rk); s=m_w.data()+24; z=a+r*4;
		::memcpy(t, a, 16); ::memcpy(a, z, 16); ::memcpy(z, t, 16);

		a+=4; z-=4;
		for (; a<z; a+=4, z-=4)
		{
			ARIA_M(a[0],t[0]); ARIA_M(a[1],t[1]); ARIA_M(a[2],t[2]); ARIA_M(a[3],t[3]);
			ARIA_MM(t[0],t[1],t[2],t[3]); ARIA_P(t[0],t[1],t[2],t[3]); ARIA_MM(t[0],t[1],t[2],t[3]);
			::memcpy(s, t, 16);

			ARIA_M(z[0],t[0]); ARIA_M(z[1],t[1]); ARIA_M(z[2],t[2]); ARIA_M(z[3],t[3]);
			ARIA_MM(t[0],t[1],t[2],t[3]); ARIA_P(t[0],t[1],t[2],t[3]); ARIA_MM(t[0],t[1],t[2],t[3]);
			::memcpy(a, t, 16); ::memcpy(z, s, 16);
		}

		ARIA_M(a[0],t[0]); ARIA_M(a[1],t[1]); ARIA_M(a[2],t[2]); ARIA_M(a[3],t[3]);
		ARIA_MM(t[0],t[1],t[2],t[3]); ARIA_P(t[0],t[1],t[2],t[3]); ARIA_MM(t[0],t[1],t[2],t[3]);
		::memcpy(z, t, 16);
	}

	// Silence warnings
	CRYPTOPP_UNUSED(Q); CRYPTOPP_UNUSED(R);
	CRYPTOPP_UNUSED(q); CRYPTOPP_UNUSED(r);
}

void ARIA::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
	const byte *rk = reinterpret_cast<const byte*>(m_rk.data());
	word32 *t = const_cast<word32*>(m_w.data()+20);

	// Timing attack countermeasure. See comments in Rijndael for more details.
	// We used Yun's 32-bit implementation, so we use words rather than bytes.
	const int cacheLineSize = GetCacheLineSize();
	unsigned int i;
	volatile word32 _u = 0;
	word32 u = _u;

	for (i=0; i<COUNTOF(S1); i+=cacheLineSize/(sizeof(S1[0])))
		u |= *(S1+i);
	t[0] |= u;

	GetBlock<word32, BigEndian>block(inBlock);
	block(t[0])(t[1])(t[2])(t[3]);

	if (m_rounds > 12) {
		ARIA_KXL; rk+= 16; ARIA_FO;
		ARIA_KXL; rk+= 16; ARIA_FE;
	}

	if (m_rounds > 14) {
		ARIA_KXL; rk+= 16; ARIA_FO;
		ARIA_KXL; rk+= 16; ARIA_FE;
	}

	ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16; ARIA_FE;
	ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16; ARIA_FE;
	ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16; ARIA_FE;
	ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16; ARIA_FE;
	ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16; ARIA_FE;
	ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16;

#if CRYPTOPP_ENABLE_ARIA_SSSE3_INTRINSICS
	if (HasSSSE3())
	{
		ARIA_ProcessAndXorBlock_SSSE3(xorBlock, outBlock, rk, t);
		return;
	}
	else
#endif  // CRYPTOPP_ENABLE_ARIA_SSSE3_INTRINSICS
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
	if (HasNEON())
	{
		ARIA_ProcessAndXorBlock_NEON(xorBlock, outBlock, rk, t);
		return;
	}
	else
#endif  // CRYPTOPP_ARM_NEON_AVAILABLE
#if (CRYPTOPP_LITTLE_ENDIAN)
	{
		outBlock[ 0] = (byte)(X1[ARIA_BRF(t[0],3)]   ) ^ rk[ 3];
		outBlock[ 1] = (byte)(X2[ARIA_BRF(t[0],2)]>>8) ^ rk[ 2];
		outBlock[ 2] = (byte)(S1[ARIA_BRF(t[0],1)]   ) ^ rk[ 1];
		outBlock[ 3] = (byte)(S2[ARIA_BRF(t[0],0)]   ) ^ rk[ 0];
		outBlock[ 4] = (byte)(X1[ARIA_BRF(t[1],3)]   ) ^ rk[ 7];
		outBlock[ 5] = (byte)(X2[ARIA_BRF(t[1],2)]>>8) ^ rk[ 6];
		outBlock[ 6] = (byte)(S1[ARIA_BRF(t[1],1)]   ) ^ rk[ 5];
		outBlock[ 7] = (byte)(S2[ARIA_BRF(t[1],0)]   ) ^ rk[ 4];
		outBlock[ 8] = (byte)(X1[ARIA_BRF(t[2],3)]   ) ^ rk[11];
		outBlock[ 9] = (byte)(X2[ARIA_BRF(t[2],2)]>>8) ^ rk[10];
		outBlock[10] = (byte)(S1[ARIA_BRF(t[2],1)]   ) ^ rk[ 9];
		outBlock[11] = (byte)(S2[ARIA_BRF(t[2],0)]   ) ^ rk[ 8];
		outBlock[12] = (byte)(X1[ARIA_BRF(t[3],3)]   ) ^ rk[15];
		outBlock[13] = (byte)(X2[ARIA_BRF(t[3],2)]>>8) ^ rk[14];
		outBlock[14] = (byte)(S1[ARIA_BRF(t[3],1)]   ) ^ rk[13];
		outBlock[15] = (byte)(S2[ARIA_BRF(t[3],0)]   ) ^ rk[12];
	}
#else
	{
		outBlock[ 0] = (byte)(X1[ARIA_BRF(t[0],3)]   ) ^ rk[ 0];
		outBlock[ 1] = (byte)(X2[ARIA_BRF(t[0],2)]>>8) ^ rk[ 1];
		outBlock[ 2] = (byte)(S1[ARIA_BRF(t[0],1)]   ) ^ rk[ 2];
		outBlock[ 3] = (byte)(S2[ARIA_BRF(t[0],0)]   ) ^ rk[ 3];
		outBlock[ 4] = (byte)(X1[ARIA_BRF(t[1],3)]   ) ^ rk[ 4];
		outBlock[ 5] = (byte)(X2[ARIA_BRF(t[1],2)]>>8) ^ rk[ 5];
		outBlock[ 6] = (byte)(S1[ARIA_BRF(t[1],1)]   ) ^ rk[ 6];
		outBlock[ 7] = (byte)(S2[ARIA_BRF(t[1],0)]   ) ^ rk[ 7];
		outBlock[ 8] = (byte)(X1[ARIA_BRF(t[2],3)]   ) ^ rk[ 8];
		outBlock[ 9] = (byte)(X2[ARIA_BRF(t[2],2)]>>8) ^ rk[ 9];
		outBlock[10] = (byte)(S1[ARIA_BRF(t[2],1)]   ) ^ rk[10];
		outBlock[11] = (byte)(S2[ARIA_BRF(t[2],0)]   ) ^ rk[11];
		outBlock[12] = (byte)(X1[ARIA_BRF(t[3],3)]   ) ^ rk[12];
		outBlock[13] = (byte)(X2[ARIA_BRF(t[3],2)]>>8) ^ rk[13];
		outBlock[14] = (byte)(S1[ARIA_BRF(t[3],1)]   ) ^ rk[14];
		outBlock[15] = (byte)(S2[ARIA_BRF(t[3],0)]   ) ^ rk[15];
	}
#endif  // CRYPTOPP_LITTLE_ENDIAN

	if (xorBlock != NULLPTR)
		for (unsigned int n=0; n<ARIA::BLOCKSIZE; ++n)
			outBlock[n] ^= xorBlock[n];
}

NAMESPACE_END