File: gf2n_simd.cpp

package info (click to toggle)
libcrypto++ 8.2.0-2
  • links: PTS
  • area: main
  • in suites: experimental
  • size: 22,780 kB
  • sloc: cpp: 105,015; sh: 7,353; asm: 5,120; makefile: 316
file content (614 lines) | stat: -rw-r--r-- 18,781 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// gf2n_simd.cpp - written and placed in the public domain by Jeffrey Walton
//                 Also based on PCLMULQDQ code by Jankowski, Laurent and
//                 O'Mahony from Intel (see reference below).
//
//    This source file uses intrinsics and built-ins to gain access to
//    CLMUL, ARMv8a, and Power8 instructions. A separate source file is
//    needed because additional CXXFLAGS are required to enable the
//    appropriate instructions sets in some build configurations.
//
//    Several speedups were taken from Intel Polynomial Multiplication
//    Instruction and its Usage for Elliptic Curve Cryptography, by
//    Krzysztof Jankowski, Pierre Laurent and Aidan O'Mahony,
//    https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/polynomial-multiplication-instructions-paper.pdf
//    There may be more speedups available, see https://eprint.iacr.org/2011/589.pdf.
//    The IACR paper performs some optimizations that the compiler is
//    expected to perform, like Common Subexpression Elimination to save
//    on variables (among others). Note that the compiler may miss the
//    optimization so the IACR paper is useful. However, the code is GPL3
//    and toxic for some users of the library...

#include "pch.h"
#include "config.h"

#ifndef CRYPTOPP_IMPORTS

#include "gf2n.h"

#if (CRYPTOPP_CLMUL_AVAILABLE)
# include <emmintrin.h>
# include <wmmintrin.h>
#endif

#if (CRYPTOPP_ARM_PMULL_AVAILABLE)
# include "arm_simd.h"
#endif

#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
# include "ppc_simd.h"
#endif

ANONYMOUS_NAMESPACE_BEGIN

// ************************** ARMv8 ************************** //

using CryptoPP::word;

#if (CRYPTOPP_ARM_PMULL_AVAILABLE)

// c1c0 = a * b
inline void
F2N_Multiply_128x128_ARMv8(uint64x2_t& c1, uint64x2_t& c0, const uint64x2_t& a, const uint64x2_t& b)
{
    uint64x2_t t1, t2, z0={0};

    c0 = PMULL_00(a, b);
    c1 = PMULL_11(a, b);
    t1 = vmovq_n_u64(vgetq_lane_u64(a, 1));
    t1 = veorq_u64(a, t1);
    t2 = vmovq_n_u64(vgetq_lane_u64(b, 1));
    t2 = veorq_u64(b, t2);
    t1 = PMULL_00(t1, t2);
    t1 = veorq_u64(c0, t1);
    t1 = veorq_u64(c1, t1);
    t2 = t1;
    t1 = vextq_u64(z0, t1, 1);
    t2 = vextq_u64(t2, z0, 1);
    c0 = veorq_u64(c0, t1);
    c1 = veorq_u64(c1, t2);
}

// c3c2c1c0 = a1a0 * b1b0
inline void
F2N_Multiply_256x256_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1, uint64x2_t& c0,
    const uint64x2_t& b1, const uint64x2_t& b0, const uint64x2_t& a1, const uint64x2_t& a0)
{
    uint64x2_t c4, c5;
    uint64x2_t x0=a0, x1=a1, y0=b0, y1=b1;

    F2N_Multiply_128x128_ARMv8(c1, c0, x0, y0);
    F2N_Multiply_128x128_ARMv8(c3, c2, x1, y1);

    x0 = veorq_u64(x0, x1);
    y0 = veorq_u64(y0, y1);

    F2N_Multiply_128x128_ARMv8(c5, c4, x0, y0);

    c4 = veorq_u64(c4, c0);
    c4 = veorq_u64(c4, c2);
    c5 = veorq_u64(c5, c1);
    c5 = veorq_u64(c5, c3);
    c1 = veorq_u64(c1, c4);
    c2 = veorq_u64(c2, c5);
}

// c3c2c1c0 = a1a0 * a1a0
inline void
F2N_Square_256_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1,
    uint64x2_t& c0, const uint64x2_t& a1, const uint64x2_t& a0)
{
    c0 = PMULL_00(a0, a0);
    c1 = PMULL_11(a0, a0);
    c2 = PMULL_00(a1, a1);
    c3 = PMULL_11(a1, a1);
}

// x = (x << n), z = 0
template <unsigned int N>
inline uint64x2_t ShiftLeft128_ARMv8(uint64x2_t x)
{
    uint64x2_t u=x, v, z={0};
    x = vshlq_n_u64(x, N);
    u = vshrq_n_u64(u, (64-N));
    v = vcombine_u64(vget_low_u64(z), vget_low_u64(u));
    x = vorrq_u64(x, v);
    return x;
}

// c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at
// Intel paper or https://github.com/antonblanchard/crc32-vpmsum.
inline void
GF2NT_233_Reduce_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1, uint64x2_t& c0)
{
    const unsigned int mask[4] = {
        0xffffffff, 0xffffffff, 0xffffffff, 0x000001ff,
    };

    uint64x2_t b3, b2, b1, /*b0,*/ a1, a0, m0, z0={0};
    m0 = vreinterpretq_u64_u32(vld1q_u32(mask));
    b1 = c1; a1 = c1;
    a0 = vcombine_u64(vget_low_u64(c1), vget_low_u64(z0));
    a1 = vshlq_n_u64(a1, 23);
    a1 = vshrq_n_u64(a1, 23);
    c1 = vorrq_u64(a1, a0);
    b2 = vshrq_n_u64(c2, (64-23));
    c3 = ShiftLeft128_ARMv8<23>(c3);
    a0 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
    c3 = vorrq_u64(c3, a0);
    b1 = vshrq_n_u64(b1, (64-23));
    c2 = ShiftLeft128_ARMv8<23>(c2);
    a0 = vcombine_u64(vget_high_u64(b1), vget_high_u64(z0));
    c2 = vorrq_u64(c2, a0);
    b3 = c3;
    b2 = vshrq_n_u64(c2, (64-10));
    b3 = ShiftLeft128_ARMv8<10>(b3);
    a0 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
    b3 = vorrq_u64(b3, a0);
    a0 = vcombine_u64(vget_high_u64(c3), vget_high_u64(z0));
    b3 = veorq_u64(b3, a0);
    b1 = vshrq_n_u64(b3, (64-23));
    b3 = ShiftLeft128_ARMv8<23>(b3);
    b3 = vcombine_u64(vget_high_u64(b3), vget_high_u64(z0));
    b3 = vorrq_u64(b3, b1);
    c2 = veorq_u64(c2, b3);
    b3 = c3;
    b2 = vshrq_n_u64(c2, (64-10));
    b3 = ShiftLeft128_ARMv8<10>(b3);
    b2 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
    b3 = vorrq_u64(b3, b2);
    b2 = c2;
    b2 = ShiftLeft128_ARMv8<10>(b2);
    a0 = vcombine_u64(vget_low_u64(z0), vget_low_u64(b2));
    c2 = veorq_u64(c2, a0);
    a0 = vcombine_u64(vget_low_u64(z0), vget_low_u64(b3));
    a1 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
    a0 = vorrq_u64(a0, a1);
    c3 = veorq_u64(c3, a0);
    c0 = veorq_u64(c0, c2);
    c1 = veorq_u64(c1, c3);
    c1 = vandq_u64(c1, m0);
}

#endif

// ************************** SSE ************************** //

#if (CRYPTOPP_CLMUL_AVAILABLE)

using CryptoPP::word;

// c1c0 = a * b
inline void
F2N_Multiply_128x128_CLMUL(__m128i& c1, __m128i& c0, const __m128i& a, const __m128i& b)
{
    __m128i t1, t2;

    c0 = _mm_clmulepi64_si128(a, b, 0x00);
    c1 = _mm_clmulepi64_si128(a, b, 0x11);
    t1 = _mm_shuffle_epi32(a, 0xEE);
    t1 = _mm_xor_si128(a, t1);
    t2 = _mm_shuffle_epi32(b, 0xEE);
    t2 = _mm_xor_si128(b, t2);
    t1 = _mm_clmulepi64_si128(t1, t2, 0x00);
    t1 = _mm_xor_si128(c0, t1);
    t1 = _mm_xor_si128(c1, t1);
    t2 = t1;
    t1 = _mm_slli_si128(t1, 8);
    t2 = _mm_srli_si128(t2, 8);
    c0 = _mm_xor_si128(c0, t1);
    c1 = _mm_xor_si128(c1, t2);
}

// c3c2c1c0 = a1a0 * b1b0
inline void
F2N_Multiply_256x256_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1, __m128i& c0,
    const __m128i& b1, const __m128i& b0, const __m128i& a1, const __m128i& a0)
{
    __m128i c4, c5;
    __m128i x0=a0, x1=a1, y0=b0, y1=b1;

    F2N_Multiply_128x128_CLMUL(c1, c0, x0, y0);
    F2N_Multiply_128x128_CLMUL(c3, c2, x1, y1);

    x0 = _mm_xor_si128(x0, x1);
    y0 = _mm_xor_si128(y0, y1);

    F2N_Multiply_128x128_CLMUL(c5, c4, x0, y0);

    c4 = _mm_xor_si128(c4, c0);
    c4 = _mm_xor_si128(c4, c2);
    c5 = _mm_xor_si128(c5, c1);
    c5 = _mm_xor_si128(c5, c3);
    c1 = _mm_xor_si128(c1, c4);
    c2 = _mm_xor_si128(c2, c5);
}

// c3c2c1c0 = a1a0 * a1a0
inline void
F2N_Square_256_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1,
    __m128i& c0, const __m128i& a1, const __m128i& a0)
{
    c0 = _mm_clmulepi64_si128(a0, a0, 0x00);
    c1 = _mm_clmulepi64_si128(a0, a0, 0x11);
    c2 = _mm_clmulepi64_si128(a1, a1, 0x00);
    c3 = _mm_clmulepi64_si128(a1, a1, 0x11);
}

// x = (x << n), z = 0
template <unsigned int N>
inline __m128i ShiftLeft128_SSE(__m128i x, const __m128i& z)
{
    __m128i u=x, v;
    x = _mm_slli_epi64(x, N);
    u = _mm_srli_epi64(u, (64-N));
    v = _mm_unpacklo_epi64(z, u);
    x = _mm_or_si128(x, v);
    return x;
}

// c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at
// Intel paper or https://github.com/antonblanchard/crc32-vpmsum.
inline void
GF2NT_233_Reduce_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1, __m128i& c0)
{
    const unsigned int m[4] = {
        0xffffffff, 0xffffffff, 0xffffffff, 0x000001ff
    };

    __m128i b3, b2, b1, /*b0,*/ a1, a0, m0, z0;
    m0 = _mm_set_epi32(m[3], m[2], m[1], m[0]);
    z0 = _mm_setzero_si128();
    b1 = c1; a1 = c1;
    a0 = _mm_move_epi64(c1);
    a1 = _mm_slli_epi64(a1, 23);
    a1 = _mm_srli_epi64(a1, 23);
    c1 = _mm_or_si128(a1, a0);
    b2 = _mm_srli_epi64(c2, (64-23));
    c3 = ShiftLeft128_SSE<23>(c3, z0);
    a0 = _mm_unpackhi_epi64(b2, z0);
    c3 = _mm_or_si128(c3, a0);
    b1 = _mm_srli_epi64(b1, (64-23));
    c2 = ShiftLeft128_SSE<23>(c2, z0);
    a0 = _mm_unpackhi_epi64(b1, z0);
    c2 = _mm_or_si128(c2, a0);
    b3 = c3;
    b2 = _mm_srli_epi64(c2, (64-10));
    b3 = ShiftLeft128_SSE<10>(b3, z0);
    a0 = _mm_unpackhi_epi64(b2, z0);
    b3 = _mm_or_si128(b3, a0);
    a0 = _mm_unpackhi_epi64(c3, z0);
    b3 = _mm_xor_si128(b3, a0);
    b1 = _mm_srli_epi64(b3, (64-23));
    b3 = ShiftLeft128_SSE<23>(b3, z0);
    b3 = _mm_unpackhi_epi64(b3, z0);
    b3 = _mm_or_si128(b3, b1);
    c2 = _mm_xor_si128(c2, b3);
    b3 = c3;
    b2 = _mm_srli_epi64(c2, (64-10));
    b3 = ShiftLeft128_SSE<10>(b3, z0);
    b2 = _mm_unpackhi_epi64(b2, z0);
    b3 = _mm_or_si128(b3, b2);
    b2 = c2;
    b2 = ShiftLeft128_SSE<10>(b2, z0);
    a0 = _mm_unpacklo_epi64(z0, b2);
    c2 = _mm_xor_si128(c2, a0);
    a0 = _mm_unpacklo_epi64(z0, b3);
    a1 = _mm_unpackhi_epi64(b2, z0);
    a0 = _mm_or_si128(a0, a1);
    c3 = _mm_xor_si128(c3, a0);
    c0 = _mm_xor_si128(c0, c2);
    c1 = _mm_xor_si128(c1, c3);
    c1 = _mm_and_si128(c1, m0);
}

#endif

// ************************* Power8 ************************* //

#if (CRYPTOPP_POWER8_VMULL_AVAILABLE)

using CryptoPP::byte;
using CryptoPP::word;
using CryptoPP::uint8x16_p;
using CryptoPP::uint64x2_p;

using CryptoPP::VecLoad;
using CryptoPP::VecStore;

using CryptoPP::VecOr;
using CryptoPP::VecXor;
using CryptoPP::VecAnd;

using CryptoPP::VecPermute;
using CryptoPP::VecMergeLow;
using CryptoPP::VecMergeHigh;
using CryptoPP::VecShiftLeft;
using CryptoPP::VecShiftRight;

using CryptoPP::VecPolyMultiply00LE;
using CryptoPP::VecPolyMultiply11LE;

// c1c0 = a * b
inline void
F2N_Multiply_128x128_POWER8(uint64x2_p& c1, uint64x2_p& c0, const uint64x2_p& a, const uint64x2_p& b)
{
    uint64x2_p t1, t2;
    const uint64x2_p z0={0};

    c0 = VecPolyMultiply00LE(a, b);
    c1 = VecPolyMultiply11LE(a, b);
    t1 = VecMergeLow(a, a);
    t1 = VecXor(a, t1);
    t2 = VecMergeLow(b, b);
    t2 = VecXor(b, t2);
    t1 = VecPolyMultiply00LE(t1, t2);
    t1 = VecXor(c0, t1);
    t1 = VecXor(c1, t1);
    t2 = t1;
    t1 = VecMergeHigh(z0, t1);
    t2 = VecMergeLow(t2, z0);
    c0 = VecXor(c0, t1);
    c1 = VecXor(c1, t2);
}

// c3c2c1c0 = a1a0 * b1b0
inline void
F2N_Multiply_256x256_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1, uint64x2_p& c0,
    const uint64x2_p& b1, const uint64x2_p& b0, const uint64x2_p& a1, const uint64x2_p& a0)
{
    uint64x2_p c4, c5;
    uint64x2_p x0=a0, x1=a1, y0=b0, y1=b1;

    F2N_Multiply_128x128_POWER8(c1, c0, x0, y0);
    F2N_Multiply_128x128_POWER8(c3, c2, x1, y1);

    x0 = VecXor(x0, x1);
    y0 = VecXor(y0, y1);

    F2N_Multiply_128x128_POWER8(c5, c4, x0, y0);

    c4 = VecXor(c4, c0);
    c4 = VecXor(c4, c2);
    c5 = VecXor(c5, c1);
    c5 = VecXor(c5, c3);
    c1 = VecXor(c1, c4);
    c2 = VecXor(c2, c5);
}

// c3c2c1c0 = a1a0 * a1a0
inline void
F2N_Square_256_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1,
    uint64x2_p& c0, const uint64x2_p& a1, const uint64x2_p& a0)
{
    c0 = VecPolyMultiply00LE(a0, a0);
    c1 = VecPolyMultiply11LE(a0, a0);
    c2 = VecPolyMultiply00LE(a1, a1);
    c3 = VecPolyMultiply11LE(a1, a1);
}

// x = (x << n), z = 0
template <unsigned int N>
inline uint64x2_p ShiftLeft128_POWER8(uint64x2_p x)
{
    uint64x2_p u=x, v;
    const uint64x2_p z={0};

    x = VecShiftLeft<N>(x);
    u = VecShiftRight<64-N>(u);
    v = VecMergeHigh(z, u);
    x = VecOr(x, v);
    return x;
}

// c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at
// Intel paper or https://github.com/antonblanchard/crc32-vpmsum.
inline void
GF2NT_233_Reduce_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1, uint64x2_p& c0)
{
    const uint64_t mod[] = {W64LIT(0xffffffffffffffff), W64LIT(0x01ffffffffff)};
    const uint64x2_p m0 = (uint64x2_p)VecLoad(mod);

    uint64x2_p b3, b2, b1, /*b0,*/ a1, a0;
    const uint64x2_p z0={0};

    b1 = c1; a1 = c1;
    a0 = VecMergeHigh(c1, z0);
    a1 = VecShiftLeft<23>(a1);
    a1 = VecShiftRight<23>(a1);
    c1 = VecOr(a1, a0);
    b2 = VecShiftRight<64-23>(c2);
    c3 = ShiftLeft128_POWER8<23>(c3);
    a0 = VecMergeLow(b2, z0);
    c3 = VecOr(c3, a0);
    b1 = VecShiftRight<64-23>(b1);
    c2 = ShiftLeft128_POWER8<23>(c2);
    a0 = VecMergeLow(b1, z0);
    c2 = VecOr(c2, a0);
    b3 = c3;
    b2 = VecShiftRight<64-10>(c2);
    b3 = ShiftLeft128_POWER8<10>(b3);
    a0 = VecMergeLow(b2, z0);
    b3 = VecOr(b3, a0);
    a0 = VecMergeLow(c3, z0);
    b3 = VecXor(b3, a0);
    b1 = VecShiftRight<64-23>(b3);
    b3 = ShiftLeft128_POWER8<23>(b3);
    b3 = VecMergeLow(b3, z0);
    b3 = VecOr(b3, b1);
    c2 = VecXor(c2, b3);
    b3 = c3;
    b2 = VecShiftRight<64-10>(c2);
    b3 = ShiftLeft128_POWER8<10>(b3);
    b2 = VecMergeLow(b2, z0);
    b3 = VecOr(b3, b2);
    b2 = c2;
    b2 = ShiftLeft128_POWER8<10>(b2);
    a0 = VecMergeHigh(z0, b2);
    c2 = VecXor(c2, a0);
    a0 = VecMergeHigh(z0, b3);
    a1 = VecMergeLow(b2, z0);
    a0 = VecOr(a0, a1);
    c3 = VecXor(c3, a0);
    c0 = VecXor(c0, c2);
    c1 = VecXor(c1, c3);
    c1 = VecAnd(c1, m0);
}

#endif

ANONYMOUS_NAMESPACE_END

NAMESPACE_BEGIN(CryptoPP)

#if (CRYPTOPP_CLMUL_AVAILABLE)

void
GF2NT_233_Multiply_Reduce_CLMUL(const word* pA, const word* pB, word* pC)
{
    const __m128i* pAA = reinterpret_cast<const __m128i*>(pA);
    const __m128i* pBB = reinterpret_cast<const __m128i*>(pB);
    __m128i a0 = _mm_loadu_si128(pAA+0);
    __m128i a1 = _mm_loadu_si128(pAA+1);
    __m128i b0 = _mm_loadu_si128(pBB+0);
    __m128i b1 = _mm_loadu_si128(pBB+1);

    __m128i c0, c1, c2, c3;
    F2N_Multiply_256x256_CLMUL(c3, c2, c1, c0, a1, a0, b1, b0);
    GF2NT_233_Reduce_CLMUL(c3, c2, c1, c0);

    __m128i* pCC = reinterpret_cast<__m128i*>(pC);
    _mm_storeu_si128(pCC+0, c0);
    _mm_storeu_si128(pCC+1, c1);
}

void
GF2NT_233_Square_Reduce_CLMUL(const word* pA, word* pC)
{
    const __m128i* pAA = reinterpret_cast<const __m128i*>(pA);
    __m128i a0 = _mm_loadu_si128(pAA+0);
    __m128i a1 = _mm_loadu_si128(pAA+1);

    __m128i c0, c1, c2, c3;
    F2N_Square_256_CLMUL(c3, c2, c1, c0, a1, a0);
    GF2NT_233_Reduce_CLMUL(c3, c2, c1, c0);

    __m128i* pCC = reinterpret_cast<__m128i*>(pC);
    _mm_storeu_si128(pCC+0, c0);
    _mm_storeu_si128(pCC+1, c1);
}

#elif (CRYPTOPP_ARM_PMULL_AVAILABLE)

void
GF2NT_233_Multiply_Reduce_ARMv8(const word* pA, const word* pB, word* pC)
{
    // word is either 32-bit or 64-bit, depending on the platform.
    // Load using a 32-bit pointer to avoid possible alignment issues.
    const uint32_t* pAA = reinterpret_cast<const uint32_t*>(pA);
    const uint32_t* pBB = reinterpret_cast<const uint32_t*>(pB);

    uint64x2_t a0 = vreinterpretq_u64_u32(vld1q_u32(pAA+0));
    uint64x2_t a1 = vreinterpretq_u64_u32(vld1q_u32(pAA+4));
    uint64x2_t b0 = vreinterpretq_u64_u32(vld1q_u32(pBB+0));
    uint64x2_t b1 = vreinterpretq_u64_u32(vld1q_u32(pBB+4));

    uint64x2_t c0, c1, c2, c3;
    F2N_Multiply_256x256_ARMv8(c3, c2, c1, c0, a1, a0, b1, b0);
    GF2NT_233_Reduce_ARMv8(c3, c2, c1, c0);

    uint32_t* pCC = reinterpret_cast<uint32_t*>(pC);
    vst1q_u32(pCC+0, vreinterpretq_u32_u64(c0));
    vst1q_u32(pCC+4, vreinterpretq_u32_u64(c1));
}

void
GF2NT_233_Square_Reduce_ARMv8(const word* pA, word* pC)
{
    // word is either 32-bit or 64-bit, depending on the platform.
    // Load using a 32-bit pointer to avoid possible alignment issues.
    const uint32_t* pAA = reinterpret_cast<const uint32_t*>(pA);
    uint64x2_t a0 = vreinterpretq_u64_u32(vld1q_u32(pAA+0));
    uint64x2_t a1 = vreinterpretq_u64_u32(vld1q_u32(pAA+4));

    uint64x2_t c0, c1, c2, c3;
    F2N_Square_256_ARMv8(c3, c2, c1, c0, a1, a0);
    GF2NT_233_Reduce_ARMv8(c3, c2, c1, c0);

    uint32_t* pCC = reinterpret_cast<uint32_t*>(pC);
    vst1q_u32(pCC+0, vreinterpretq_u32_u64(c0));
    vst1q_u32(pCC+4, vreinterpretq_u32_u64(c1));
}

#elif (CRYPTOPP_POWER8_VMULL_AVAILABLE)

void
GF2NT_233_Multiply_Reduce_POWER8(const word* pA, const word* pB, word* pC)
{
    // word is either 32-bit or 64-bit, depending on the platform.
    // Load using a byte pointer to avoid possible alignment issues.
    const byte* pAA = reinterpret_cast<const byte*>(pA);
    const byte* pBB = reinterpret_cast<const byte*>(pB);

    uint64x2_p a0 = (uint64x2_p)VecLoad(pAA+0);
    uint64x2_p a1 = (uint64x2_p)VecLoad(pAA+16);
    uint64x2_p b0 = (uint64x2_p)VecLoad(pBB+0);
    uint64x2_p b1 = (uint64x2_p)VecLoad(pBB+16);

#if (CRYPTOPP_BIG_ENDIAN)
    const uint8_t mb[] = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
    const uint8x16_p m = (uint8x16_p)VecLoad(mb);
    a0 = VecPermute(a0, m);
    a1 = VecPermute(a1, m);
    b0 = VecPermute(b0, m);
    b1 = VecPermute(b1, m);
#endif

    uint64x2_p c0, c1, c2, c3;
    F2N_Multiply_256x256_POWER8(c3, c2, c1, c0, a1, a0, b1, b0);
    GF2NT_233_Reduce_POWER8(c3, c2, c1, c0);

#if (CRYPTOPP_BIG_ENDIAN)
    c0 = VecPermute(c0, m);
    c1 = VecPermute(c1, m);
#endif

    byte* pCC = reinterpret_cast<byte*>(pC);
    VecStore(c0, pCC+0);
    VecStore(c1, pCC+16);
}

void
GF2NT_233_Square_Reduce_POWER8(const word* pA, word* pC)
{
    // word is either 32-bit or 64-bit, depending on the platform.
    // Load using a byte pointer to avoid possible alignment issues.
    const byte* pAA = reinterpret_cast<const byte*>(pA);
    uint64x2_p a0 = (uint64x2_p)VecLoad(pAA+0);
    uint64x2_p a1 = (uint64x2_p)VecLoad(pAA+16);

#if (CRYPTOPP_BIG_ENDIAN)
    const uint8_t mb[] = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
    const uint8x16_p m = (uint8x16_p)VecLoad(mb);
    a0 = VecPermute(a0, m);
    a1 = VecPermute(a1, m);
#endif

    uint64x2_p c0, c1, c2, c3;
    F2N_Square_256_POWER8(c3, c2, c1, c0, a1, a0);
    GF2NT_233_Reduce_POWER8(c3, c2, c1, c0);

#if (CRYPTOPP_BIG_ENDIAN)
    c0 = VecPermute(c0, m);
    c1 = VecPermute(c1, m);
#endif

    byte* pCC = reinterpret_cast<byte*>(pC);
    VecStore(c0, pCC+0);
    VecStore(c1, pCC+16);
}

#endif

NAMESPACE_END

#endif  // CRYPTOPP_IMPORTS