File: ppc_simd.h

package info (click to toggle)
libcrypto++ 8.2.0-2
  • links: PTS
  • area: main
  • in suites: experimental
  • size: 22,780 kB
  • sloc: cpp: 105,015; sh: 7,353; asm: 5,120; makefile: 316
file content (1748 lines) | stat: -rw-r--r-- 63,508 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
// ppc_simd.h - written and placed in public domain by Jeffrey Walton

/// \file ppc_simd.h
/// \brief Support functions for PowerPC and vector operations
/// \details This header provides an agnostic interface into Clang, GCC
///   and IBM XL C/C++ compilers modulo their different built-in functions
///   for accessing vector intructions.
/// \details The abstractions are necesssary to support back to GCC 4.8 and
///   XLC 11 and 12. GCC 4.8 and 4.9 are still popular, and they are the
///   default compiler for GCC112, GCC118 and others on the compile farm.
///   Older IBM XL C/C++ compilers also experience it due to lack of
///   <tt>vec_xl</tt> and <tt>vec_xst</tt> support on some platforms. Modern
///   compilers provide best support and don't need many of the hacks
///   below.
/// \details The library is tested with the following PowerPC machines and
///   compilers. GCC110, GCC111, GCC112, GCC119 and GCC135 are provided by
///   the <A HREF="https://cfarm.tetaneutral.net/">GCC Compile Farm</A>
///   - PowerMac G5, OSX 10.5, POWER4, Apple GCC 4.0
///   - PowerMac G5, OSX 10.5, POWER4, Macports GCC 5.0
///   - GCC110, Linux, POWER7, GCC 4.8.5
///   - GCC110, Linux, POWER7, XLC 12.01
///   - GCC111, AIX, POWER7, GCC 4.8.1
///   - GCC111, AIX, POWER7, XLC 12.01
///   - GCC112, Linux, POWER8, GCC 4.8.5
///   - GCC112, Linux, POWER8, XLC 13.01
///   - GCC112, Linux, POWER8, Clang 7.0
///   - GCC119, AIX, POWER8, GCC 7.2.0
///   - GCC119, AIX, POWER8, XLC 13.01
///   - GCC135, Linux, POWER9, GCC 7.0
/// \details 12 machines are used for testing because the three compilers form
///   five profiles. The profiles are listed below.
///   - GCC (Linux GCC, Macports GCC, etc. Consistent across machines)
///   - XLC 13.0 and earlier (all IBM components)
///   - XLC 13.1 and later on Linux (LLVM front-end, no compatibility macros)
///   - XLC 13.1 and later on Linux (LLVM front-end, -qxlcompatmacros option)
///   - LLVM Clang (traditional Clang compiler)
/// \details The LLVM front-end makes it tricky to write portable code because
///   LLVM pretends to be other compilers but cannot consume other compiler's
///   builtins. When using XLC with -qxlcompatmacros the compiler pretends to
///   be GCC, Clang and XLC all at once but it can only consume it's variety
///   of builtins.
/// \details At Crypto++ 8.0 the various <tt>Vector{FuncName}</tt> were
///   renamed to <tt>Vec{FuncName}</tt>. For example, <tt>VectorAnd</tt> was
///   changed to <tt>VecAnd</tt>. The name change helped consolidate two
///   slightly different implementations.
/// \since Crypto++ 6.0, LLVM Clang compiler support since Crypto++ 8.0

// Use __ALTIVEC__, _ARCH_PWR7 and _ARCH_PWR8 when detecting actual
// availaibility of the feature for the source file being compiled. The
// preprocessor macros depend on compiler options like -maltivec; and
// not compiler versions.

// DO NOT USE this pattern in VecLoad and VecStore. We have to use the
// spaghetti code tangled in preprocessor macros because XLC 12 generates
// bad code in some places. To verify the bad code generation test on
// GCC111 with XLC 12.01 installed. XLC 13.01 on GCC112 and GCC119 are OK.
//
//   inline uint32x4_p VecLoad(const byte src[16])
//   {
//   #if defined(_ARCH_PWR8)
//       return (uint32x4_p) *(uint8x16_p*)((byte*)src);
//   #else
//       return VecLoad_ALTIVEC(src);
//   #endif
//   }

#ifndef CRYPTOPP_PPC_CRYPTO_H
#define CRYPTOPP_PPC_CRYPTO_H

#include "config.h"
#include "misc.h"

#if defined(__ALTIVEC__)
# include <altivec.h>
# undef vector
# undef pixel
# undef bool
#endif

// IBM XLC on AIX does not define __CRYPTO__ like it should with -qarch=pwr8.
// Crypto is available in XLC 13.1 and above. More LLVM front-end goodness.
#if defined(_AIX) && defined(_ARCH_PWR8) && (__xlC__ >= 0xd01)
# undef __CRYPTO__
# define __CRYPTO__ 1
#endif

// Hack to detect early XLC compilers. XLC compilers for POWER7 use
// vec_xlw4 and vec_xstw4 (and ld2 variants); not vec_xl and vec_st.
// Some XLC compilers for POWER7 and above use vec_xl and vec_xst.
// The way to tell the difference is, XLC compilers version 13.0 and
// earlier use vec_xlw4 and vec_xstw4. XLC compilers 13.1 and later
// are use vec_xl and vec_xst. The open question is, how to handle
// early Clang compilers for POWER7. We know the latest Clang
// compilers support vec_xl and vec_xst. Also see
// https://www-01.ibm.com/support/docview.wss?uid=swg21683541.

#if defined(__xlc__) && (__xlc__ < 0x0d01)
# define __early_xlc__ 1
#endif
#if defined(__xlC__) && (__xlC__ < 0x0d01)
# define __early_xlC__ 1
#endif

// VecLoad_ALTIVEC and VecStore_ALTIVEC are
// too noisy on modern compilers
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated"
#endif

NAMESPACE_BEGIN(CryptoPP)

#if defined(__ALTIVEC__) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

/// \brief Vector of 8-bit elements
/// \par Wraps
///   __vector unsigned char
/// \since Crypto++ 6.0
typedef __vector unsigned char   uint8x16_p;
/// \brief Vector of 16-bit elements
/// \par Wraps
///   __vector unsigned short
/// \since Crypto++ 6.0
typedef __vector unsigned short  uint16x8_p;
/// \brief Vector of 32-bit elements
/// \par Wraps
///   __vector unsigned int
/// \since Crypto++ 6.0
typedef __vector unsigned int    uint32x4_p;

#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief Vector of 64-bit elements
/// \details uint64x2_p is available on POWER7 and above. Some supporting
///   functions, like 64-bit <tt>vec_add</tt> (<tt>vaddudm</tt>), did not
///   arrive until POWER8.
/// \par Wraps
///   __vector unsigned long long
/// \since Crypto++ 6.0
typedef __vector unsigned long long uint64x2_p;
#endif  // _ARCH_PWR8

/// \brief The 0 vector
/// \returns a 32-bit vector of 0's
/// \since Crypto++ 8.0
inline uint32x4_p VecZero()
{
    const uint32x4_p v = {0,0,0,0};
    return v;
}

/// \brief The 1 vector
/// \returns a 32-bit vector of 1's
/// \since Crypto++ 8.0
inline uint32x4_p VecOne()
{
    const uint32x4_p v = {1,1,1,1};
    return v;
}

/// \brief Reverse bytes in a vector
/// \tparam T vector type
/// \param data the vector
/// \returns vector
/// \details VecReverse() reverses the bytes in a vector
/// \par Wraps
///   vec_perm
/// \since Crypto++ 6.0
template <class T>
inline T VecReverse(const T data)
{
#if (_ARCH_PWR9)
    return (T)vec_revb((uint8x16_p)data);
#else
    const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
    return (T)vec_perm(data, data, mask);
#endif
}

/// \name LOAD OPERATIONS
//@{

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details Loads a vector in native endian format from a byte array.
/// \details VecLoad_ALTIVEC() uses <tt>vec_ld</tt> if the effective address
///   of <tt>src</tt> is aligned. If unaligned it uses <tt>vec_lvsl</tt>,
///   <tt>vec_ld</tt>, <tt>vec_perm</tt> and <tt>src</tt>. The fixups using
///   <tt>vec_lvsl</tt> and <tt>vec_perm</tt> are relatively expensive so
///   you should provide aligned memory adresses.
/// \par Wraps
///   vec_ld, vec_lvsl, vec_perm
/// \since Crypto++ 6.0
inline uint32x4_p VecLoad_ALTIVEC(const byte src[16])
{
    // Avoid IsAlignedOn for convenience.
    uintptr_t eff = reinterpret_cast<uintptr_t>(src)+0;
    if (eff % 16 == 0)
    {
        return (uint32x4_p)vec_ld(0, src);
    }
    else
    {
        // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
        const uint8x16_p perm = vec_lvsl(0, src);
        const uint8x16_p low = vec_ld(0, src);
        const uint8x16_p high = vec_ld(15, src);
        return (uint32x4_p)vec_perm(low, high, perm);
    }
}

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details Loads a vector in native endian format from a byte array.
/// \details VecLoad_ALTIVEC() uses <tt>vec_ld</tt> if the effective address
///   of <tt>src</tt> is aligned. If unaligned it uses <tt>vec_lvsl</tt>,
///   <tt>vec_ld</tt>, <tt>vec_perm</tt> and <tt>src</tt>.
/// \details The fixups using <tt>vec_lvsl</tt> and <tt>vec_perm</tt> are
///   relatively expensive so you should provide aligned memory adresses.
/// \par Wraps
///   vec_ld, vec_lvsl, vec_perm
/// \since Crypto++ 6.0
inline uint32x4_p VecLoad_ALTIVEC(int off, const byte src[16])
{
    // Avoid IsAlignedOn for convenience.
    uintptr_t eff = reinterpret_cast<uintptr_t>(src)+off;
    if (eff % 16 == 0)
    {
        return (uint32x4_p)vec_ld(off, src);
    }
    else
    {
        // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
        const uint8x16_p perm = vec_lvsl(off, src);
        const uint8x16_p low = vec_ld(off, src);
        const uint8x16_p high = vec_ld(15, src);
        return (uint32x4_p)vec_perm(low, high, perm);
    }
}

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details VecLoad() loads a vector in from a byte array.
/// \details VecLoad() uses POWER7's <tt>vec_xl</tt> or
///   <tt>vec_vsx_ld</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
///   is not available. VecLoad_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xlw4, vec_xld2, vec_xl, vec_vsx_ld (and Altivec load)
/// \since Crypto++ 6.0
inline uint32x4_p VecLoad(const byte src[16])
{
#if defined(_ARCH_PWR8)
#  if defined(__early_xlc__) || defined(__early_xlC__)
    return (uint32x4_p)vec_xlw4(0, (byte*)src);
#  elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
    return (uint32x4_p)vec_xl(0, (byte*)src);
#  else
    return (uint32x4_p)vec_vsx_ld(0, (byte*)src);
#  endif
#else
    return VecLoad_ALTIVEC(src);
#endif
}

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the byte array
/// \details VecLoad() loads a vector in from a byte array.
/// \details VecLoad() uses POWER7's <tt>vec_xl</tt> or
///   <tt>vec_vsx_ld</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
///   is not available. VecLoad_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xlw4, vec_xld2, vec_xl, vec_vsx_ld (and Altivec load)
/// \since Crypto++ 6.0
inline uint32x4_p VecLoad(int off, const byte src[16])
{
#if defined(_ARCH_PWR8)
#  if defined(__early_xlc__) || defined(__early_xlC__)
    return (uint32x4_p)vec_xlw4(off, (byte*)src);
#  elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
    return (uint32x4_p)vec_xl(off, (byte*)src);
#  else
    return (uint32x4_p)vec_vsx_ld(off, (byte*)src);
#  endif
#else
    return VecLoad_ALTIVEC(off, src);
#endif
}

/// \brief Loads a vector from a word array
/// \param src the word array
/// \details VecLoad() loads a vector in from a word array.
/// \details VecLoad() uses POWER7's <tt>vec_xl</tt> or
///   <tt>vec_vsx_ld</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
///   is not available. VecLoad_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xlw4, vec_xld2, vec_xl, vec_vsx_ld (and Altivec load)
/// \since Crypto++ 8.0
inline uint32x4_p VecLoad(const word32 src[4])
{
    return VecLoad((const byte*)src);
}

/// \brief Loads a vector from a word array
/// \param src the word array
/// \param off offset into the word array
/// \details VecLoad() loads a vector in from a word array.
/// \details VecLoad() uses POWER7's <tt>vec_xl</tt> or
///   <tt>vec_vsx_ld</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
///   is not available. VecLoad_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xlw4, vec_xld2, vec_xl, vec_vsx_ld (and Altivec load)
/// \since Crypto++ 8.0
inline uint32x4_p VecLoad(int off, const word32 src[4])
{
    return VecLoad(off, (const byte*)src);
}

#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

/// \brief Loads a vector from a word array
/// \param src the word array
/// \details VecLoad() loads a vector in from a word array.
/// \details VecLoad() uses POWER7's <tt>vec_xl</tt> or
///   <tt>vec_vsx_ld</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
///   is not available. VecLoad_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \details VecLoad() with 64-bit elements is available on POWER7 and above.
/// \par Wraps
///   vec_xlw4, vec_xld2, vec_xl, vec_vsx_ld (and Altivec load)
/// \since Crypto++ 8.0
inline uint64x2_p VecLoad(const word64 src[2])
{
    return (uint64x2_p)VecLoad((const byte*)src);
}

/// \brief Loads a vector from a word array
/// \param src the word array
/// \param off offset into the word array
/// \details VecLoad() loads a vector in from a word array.
/// \details VecLoad() uses POWER7's <tt>vec_xl</tt> or
///   <tt>vec_vsx_ld</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
///   is not available. VecLoad_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \details VecLoad() with 64-bit elements is available on POWER8 and above.
/// \par Wraps
///   vec_xlw4, vec_xld2, vec_xl, vec_vsx_ld (and Altivec load)
/// \since Crypto++ 8.0
inline uint64x2_p VecLoad(int off, const word64 src[2])
{
    return (uint64x2_p)VecLoad(off, (const byte*)src);
}

#endif  // _ARCH_PWR8

/// \brief Loads a vector from an aligned byte array
/// \param src the byte array
/// \details VecLoadAligned() loads a vector in from an aligned byte array.
/// \details VecLoadAligned() uses POWER7's <tt>vec_xl</tt> or
///   <tt>vec_vsx_ld</tt> if available. The instructions do not require
///   aligned effective memory addresses. Altivec's <tt>vec_ld</tt> is used
///   if POWER7 is not available. The effective address of <tt>src</tt> must
///   be aligned.
/// \par Wraps
///   vec_ld, vec_xlw4, vec_xld2, vec_xl, vec_vsx_ld
/// \since Crypto++ 8.0
inline uint32x4_p VecLoadAligned(const byte src[16])
{
#if defined(_ARCH_PWR8)
#  if defined(__early_xlc__) || defined(__early_xlC__)
    return (uint32x4_p)vec_xlw4(0, (byte*)src);
#  elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
    return (uint32x4_p)vec_xl(0, (byte*)src);
#  else
    return (uint32x4_p)vec_vsx_ld(0, (byte*)src);
#  endif
#else  // _ARCH_PWR8
    CRYPTOPP_ASSERT(((uintptr_t)src) % 16 == 0);
    return (uint32x4_p)vec_ld(0, (byte*)src);
#endif  // _ARCH_PWR8
}

/// \brief Loads a vector from an aligned byte array
/// \param src the byte array
/// \param off offset into the byte array
/// \details VecLoadAligned() loads a vector in from an aligned byte array.
/// \details VecLoadAligned() uses POWER7's <tt>vec_xl</tt> or
///   <tt>vec_vsx_ld</tt> if available. The instructions do not require
///   aligned effective memory addresses. Altivec's <tt>vec_ld</tt> is used
///   if POWER7 is not available. The effective address of <tt>src</tt> must
///   be aligned.
/// \par Wraps
///   vec_ld, vec_xlw4, vec_xld2, vec_xl, vec_vsx_ld
/// \since Crypto++ 8.0
inline uint32x4_p VecLoadAligned(int off, const byte src[16])
{
#if defined(_ARCH_PWR8)
#  if defined(__early_xlc__) || defined(__early_xlC__)
    return (uint32x4_p)vec_xlw4(off, (byte*)src);
#  elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
    return (uint32x4_p)vec_xl(off, (byte*)src);
#  else
    return (uint32x4_p)vec_vsx_ld(off, (byte*)src);
#  endif
#else  // _ARCH_PWR8
    CRYPTOPP_ASSERT((((uintptr_t)src)+off) % 16 == 0);
    return (uint32x4_p)vec_ld(off, (byte*)src);
#endif  // _ARCH_PWR8
}

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details VecLoadBE() loads a vector in from a byte array. VecLoadBE
///   will reverse all bytes in the array on a little endian system.
/// \details VecLoadBE() uses POWER7's <tt>vec_xl</tt> or
///   <tt>vec_vsx_ld</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
///   is not available. VecLoad_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xlw4, vec_xld2, vec_xl, vec_vsx_ld (and Altivec load)
/// \since Crypto++ 6.0
inline uint32x4_p VecLoadBE(const byte src[16])
{
#if defined(_ARCH_PWR8)
#  if defined(__early_xlc__) || defined(__early_xlC__)
#    if (CRYPTOPP_BIG_ENDIAN)
       return (uint32x4_p)vec_xlw4(0, (byte*)src);
#    else
       return (uint32x4_p)VecReverse(vec_xlw4(0, (byte*)src));
#    endif
#  elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
       return (uint32x4_p)vec_xl_be(0, (byte*)src);
#  else
#    if (CRYPTOPP_BIG_ENDIAN)
       return (uint32x4_p)vec_vsx_ld(0, (byte*)src);
#    else
       return (uint32x4_p)VecReverse(vec_vsx_ld(0, (byte*)src));
#    endif
#  endif
#else  // _ARCH_PWR8
#  if (CRYPTOPP_BIG_ENDIAN)
     return (uint32x4_p)VecLoad((const byte*)src);
#  else
     return (uint32x4_p)VecReverse(VecLoad((const byte*)src));
#  endif
#endif  // _ARCH_PWR8
}

/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details VecLoadBE() loads a vector in from a byte array. VecLoadBE
///   will reverse all bytes in the array on a little endian system.
/// \details VecLoadBE() uses POWER7's <tt>vec_xl</tt> or
///   <tt>vec_vsx_ld</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecLoad_ALTIVEC() is used if POWER7
///   is not available. VecLoad_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xlw4, vec_xld2, vec_xl, vec_vsx_ld (and Altivec load)
/// \since Crypto++ 6.0
inline uint32x4_p VecLoadBE(int off, const byte src[16])
{
#if defined(_ARCH_PWR8)
#  if defined(__early_xlc__) || defined(__early_xlC__)
#    if (CRYPTOPP_BIG_ENDIAN)
       return (uint32x4_p)vec_xlw4(off, (byte*)src);
#    else
       return (uint32x4_p)VecReverse(vec_xlw4(off, (byte*)src));
#    endif
#  elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
       return (uint32x4_p)vec_xl_be(off, (byte*)src);
#  else
#    if (CRYPTOPP_BIG_ENDIAN)
       return (uint32x4_p)vec_vsx_ld(off, (byte*)src);
#    else
       return (uint32x4_p)VecReverse(vec_vsx_ld(off, (byte*)src));
#    endif
#  endif
#else  // _ARCH_PWR8
#  if (CRYPTOPP_BIG_ENDIAN)
     return (uint32x4_p)VecLoad(off, (const byte*)src);
#  else
     return (uint32x4_p)VecReverse(VecLoad(off, (const byte*)src));
#  endif
#endif  // _ARCH_PWR8
}

//@}

/// \name STORE OPERATIONS
//@{

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param dest the byte array
/// \details VecStore_ALTIVEC() stores a vector to a byte array.
/// \details VecStore_ALTIVEC() uses <tt>vec_st</tt> if the effective address
///   of <tt>dest</tt> is aligned, and uses <tt>vec_ste</tt> otherwise.
///   <tt>vec_ste</tt> is relatively expensive so you should provide aligned
///   memory adresses.
/// \details VecStore_ALTIVEC() is used automatically when POWER7 or above
///   and unaligned loads is not available.
/// \par Wraps
///   vec_st, vec_ste, vec_lvsr, vec_perm
/// \since Crypto++ 8.0
template<class T>
inline void VecStore_ALTIVEC(const T data, byte dest[16])
{
    // Avoid IsAlignedOn for convenience.
    uintptr_t eff = reinterpret_cast<uintptr_t>(dest)+0;
    if (eff % 16 == 0)
    {
        vec_st((uint8x16_p)data, 0,  dest);
    }
    else
    {
        // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
        uint8x16_p perm = (uint8x16_p)vec_perm(data, data, vec_lvsr(0, dest));
        vec_ste((uint8x16_p) perm,  0, (unsigned char*) dest);
        vec_ste((uint16x8_p) perm,  1, (unsigned short*)dest);
        vec_ste((uint32x4_p) perm,  3, (unsigned int*)  dest);
        vec_ste((uint32x4_p) perm,  4, (unsigned int*)  dest);
        vec_ste((uint32x4_p) perm,  8, (unsigned int*)  dest);
        vec_ste((uint32x4_p) perm, 12, (unsigned int*)  dest);
        vec_ste((uint16x8_p) perm, 14, (unsigned short*)dest);
        vec_ste((uint8x16_p) perm, 15, (unsigned char*) dest);
    }
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param off the byte offset into the array
/// \param dest the byte array
/// \details VecStore_ALTIVEC() stores a vector to a byte array.
/// \details VecStore_ALTIVEC() uses <tt>vec_st</tt> if the effective address
///   of <tt>dest</tt> is aligned, and uses <tt>vec_ste</tt> otherwise.
///   <tt>vec_ste</tt> is relatively expensive so you should provide aligned
///   memory adresses.
/// \details VecStore_ALTIVEC() is used automatically when POWER7 or above
///   and unaligned loads is not available.
/// \par Wraps
///   vec_st, vec_ste, vec_lvsr, vec_perm
/// \since Crypto++ 8.0
template<class T>
inline void VecStore_ALTIVEC(const T data, int off, byte dest[16])
{
    // Avoid IsAlignedOn for convenience.
    uintptr_t eff = reinterpret_cast<uintptr_t>(dest)+off;
    if (eff % 16 == 0)
    {
        vec_st((uint8x16_p)data, off,  dest);
    }
    else
    {
        // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
        uint8x16_p perm = (uint8x16_p)vec_perm(data, data, vec_lvsr(off, dest));
        vec_ste((uint8x16_p) perm,  0, (unsigned char*) dest);
        vec_ste((uint16x8_p) perm,  1, (unsigned short*)dest);
        vec_ste((uint32x4_p) perm,  3, (unsigned int*)  dest);
        vec_ste((uint32x4_p) perm,  4, (unsigned int*)  dest);
        vec_ste((uint32x4_p) perm,  8, (unsigned int*)  dest);
        vec_ste((uint32x4_p) perm, 12, (unsigned int*)  dest);
        vec_ste((uint16x8_p) perm, 14, (unsigned short*)dest);
        vec_ste((uint8x16_p) perm, 15, (unsigned char*) dest);
    }
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param dest the byte array
/// \details VecStore() stores a vector to a byte array.
/// \details VecStore() uses POWER7's <tt>vec_xst</tt> or
///   <tt>vec_vsx_st</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
///   is not available. VecStore_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xstw4, vec_xstld2, vec_xst, vec_vsx_st (and Altivec store)
/// \since Crypto++ 6.0
template<class T>
inline void VecStore(const T data, byte dest[16])
{
#if defined(_ARCH_PWR8)
#  if defined(__early_xlc__) || defined(__early_xlC__)
    vec_xstw4((uint8x16_p)data, 0, (byte*)dest);
#  elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
    vec_xst((uint8x16_p)data, 0, (byte*)dest);
#  else
    vec_vsx_st((uint8x16_p)data, 0, (byte*)dest);
#  endif
#else
    VecStore_ALTIVEC((uint8x16_p)data, 0, (byte*)dest);
#endif
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param off the byte offset into the array
/// \param dest the byte array
/// \details VecStore() stores a vector to a byte array.
/// \details VecStore() uses POWER7's <tt>vec_xst</tt> or
///   <tt>vec_vsx_st</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
///   is not available. VecStore_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xstw4, vec_xstld2, vec_xst, vec_vsx_st (and Altivec store)
/// \since Crypto++ 6.0
template<class T>
inline void VecStore(const T data, int off, byte dest[16])
{
#if defined(_ARCH_PWR8)
#  if defined(__early_xlc__) || defined(__early_xlC__)
    vec_xstw4((uint8x16_p)data, off, (byte*)dest);
#  elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
    vec_xst((uint8x16_p)data, off, (byte*)dest);
#  else
    vec_vsx_st((uint8x16_p)data, off, (byte*)dest);
#  endif
#else
    VecStore_ALTIVEC((uint8x16_p)data, off, (byte*)dest);
#endif
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param dest the word array
/// \details VecStore() stores a vector to a word array.
/// \details VecStore() uses POWER7's <tt>vec_xst</tt> or
///   <tt>vec_vsx_st</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
///   is not available. VecStore_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xstw4, vec_xstld2, vec_xst, vec_vsx_st (and Altivec store)
/// \since Crypto++ 8.0
template<class T>
inline void VecStore(const T data, word32 dest[4])
{
    VecStore((uint8x16_p)data, 0, (byte*)dest);
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param off the byte offset into the array
/// \param dest the word array
/// \details VecStore() stores a vector to a word array.
/// \details VecStore() uses POWER7's <tt>vec_xst</tt> or
///   <tt>vec_vsx_st</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
///   is not available. VecStore_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xstw4, vec_xstld2, vec_xst, vec_vsx_st (and Altivec store)
/// \since Crypto++ 8.0
template<class T>
inline void VecStore(const T data, int off, word32 dest[4])
{
    VecStore((uint8x16_p)data, off, (byte*)dest);
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param dest the word array
/// \details VecStore() stores a vector to a word array.
/// \details VecStore() uses POWER7's <tt>vec_xst</tt> or
///   <tt>vec_vsx_st</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
///   is not available. VecStore_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \details VecStore() with 64-bit elements is available on POWER8 and above.
/// \par Wraps
///   vec_xstw4, vec_xstld2, vec_xst, vec_vsx_st (and Altivec store)
/// \since Crypto++ 8.0
template<class T>
inline void VecStore(const T data, word64 dest[2])
{
    VecStore((uint8x16_p)data, 0, (byte*)dest);
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param off the byte offset into the array
/// \param dest the word array
/// \details VecStore() stores a vector to a word array.
/// \details VecStore() uses POWER7's <tt>vec_xst</tt> or
///   <tt>vec_vsx_st</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
///   is not available. VecStore_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \details VecStore() with 64-bit elements is available on POWER8 and above.
/// \par Wraps
///   vec_xstw4, vec_xstld2, vec_xst, vec_vsx_st (and Altivec store)
/// \since Crypto++ 8.0
template<class T>
inline void VecStore(const T data, int off, word64 dest[2])
{
    VecStore((uint8x16_p)data, off, (byte*)dest);
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param dest the byte array
/// \details VecStoreBE() stores a vector to a byte array. VecStoreBE
///   will reverse all bytes in the array on a little endian system.
/// \details VecStoreBE() uses POWER7's <tt>vec_xst</tt> or
///   <tt>vec_vsx_st</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
///   is not available. VecStore_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xstw4, vec_xstld2, vec_xst, vec_vsx_st (and Altivec store)
/// \since Crypto++ 6.0
template <class T>
inline void VecStoreBE(const T data, byte dest[16])
{
#if defined(_ARCH_PWR8)
#  if defined(__early_xlc__) || defined(__early_xlC__)
#    if (CRYPTOPP_BIG_ENDIAN)
       vec_xstw4((uint8x16_p)data, 0, (byte*)dest);
#    else
       vec_xstw4((uint8x16_p)VecReverse(data), 0, (byte*)dest);
#    endif
#  elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
       vec_xst_be((uint8x16_p)data, 0, (byte*)dest);
#  else
#    if (CRYPTOPP_BIG_ENDIAN)
       vec_vsx_st((uint8x16_p)data, 0, (byte*)dest);
#    else
       vec_vsx_st((uint8x16_p)VecReverse(data), 0, (byte*)dest);
#    endif
#  endif
#else  // _ARCH_PWR8
#  if (CRYPTOPP_BIG_ENDIAN)
     VecStore_ALTIVEC((uint8x16_p)data, 0, (byte*)dest);
#  else
     VecStore_ALTIVEC((uint8x16_p)VecReverse(data), 0, (byte*)dest);
#  endif
#endif  // _ARCH_PWR8
}

/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param off offset into the dest byte array
/// \param dest the byte array
/// \details VecStoreBE() stores a vector to a byte array. VecStoreBE
///   will reverse all bytes in the array on a little endian system.
/// \details VecStoreBE() uses POWER7's <tt>vec_xst</tt> or
///   <tt>vec_vsx_st</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
///   is not available. VecStore_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xstw4, vec_xstld2, vec_xst, vec_vsx_st (and Altivec store)
/// \since Crypto++ 6.0
template <class T>
inline void VecStoreBE(const T data, int off, byte dest[16])
{
#if defined(_ARCH_PWR8)
#  if defined(__early_xlc__) || defined(__early_xlC__)
#    if (CRYPTOPP_BIG_ENDIAN)
       vec_xstw4((uint8x16_p)data, off, (byte*)dest);
#    else
       vec_xstw4((uint8x16_p)VecReverse(data), off, (byte*)dest);
#    endif
#  elif defined(__xlc__) || defined(__xlC__) || defined(__clang__)
     vec_xst_be((uint8x16_p)data, off, (byte*)dest);
#  else
#    if (CRYPTOPP_BIG_ENDIAN)
       vec_vsx_st((uint8x16_p)data, off, (byte*)dest);
#    else
       vec_vsx_st((uint8x16_p)VecReverse(data), off, (byte*)dest);
#    endif
#  endif
#else  // _ARCH_PWR8
#  if (CRYPTOPP_BIG_ENDIAN)
     VecStore_ALTIVEC((uint8x16_p)data, off, (byte*)dest);
#  else
     VecStore_ALTIVEC((uint8x16_p)VecReverse(data), off, (byte*)dest);
#  endif
#endif  // _ARCH_PWR8
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param dest the word array
/// \details VecStoreBE() stores a vector to a word array. VecStoreBE
///   will reverse all bytes in the array on a little endian system.
/// \details VecStoreBE() uses POWER7's <tt>vec_xst</tt> or
///   <tt>vec_vsx_st</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
///   is not available. VecStore_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xstw4, vec_xstld2, vec_xst, vec_vsx_st (and Altivec store)
/// \since Crypto++ 8.0
template <class T>
inline void VecStoreBE(const T data, word32 dest[4])
{
    return VecStoreBE((uint8x16_p)data, (byte*)dest);
}

/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param off offset into the dest word array
/// \param dest the word array
/// \details VecStoreBE() stores a vector to a word array. VecStoreBE
///   will reverse all words in the array on a little endian system.
/// \details VecStoreBE() uses POWER7's <tt>vec_xst</tt> or
///   <tt>vec_vsx_st</tt> if available. The instructions do not require
///   aligned effective memory addresses. VecStore_ALTIVEC() is used if POWER7
///   is not available. VecStore_ALTIVEC() can be relatively expensive if
///   extra instructions are required to fix up unaligned memory
///   addresses.
/// \par Wraps
///   vec_xstw4, vec_xstld2, vec_xst, vec_vsx_st (and Altivec store)
/// \since Crypto++ 8.0
template <class T>
inline void VecStoreBE(const T data, int off, word32 dest[4])
{
    return VecStoreBE((uint8x16_p)data, off, (byte*)dest);
}

//@}

/// \name LOGICAL OPERATIONS
//@{

/// \brief AND two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \details VecAnd() returns a new vector from vec1 and vec2. The return
///   vector is the same type as vec1.
/// \par Wraps
///   vec_and
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecAnd(const T1 vec1, const T2 vec2)
{
    return (T1)vec_and(vec1, (T1)vec2);
}

/// \brief OR two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \details VecOr() returns a new vector from vec1 and vec2. The return
///   vector is the same type as vec1.
/// \par Wraps
///   vec_or
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecOr(const T1 vec1, const T2 vec2)
{
    return (T1)vec_or(vec1, (T1)vec2);
}

/// \brief XOR two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \details VecXor() returns a new vector from vec1 and vec2. The return
///   vector is the same type as vec1.
/// \par Wraps
///   vec_xor
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecXor(const T1 vec1, const T2 vec2)
{
    return (T1)vec_xor(vec1, (T1)vec2);
}

//@}

/// \name ARITHMETIC OPERATIONS
//@{

/// \brief Add two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \details VecAdd() returns a new vector from vec1 and vec2.
///   vec2 is cast to the same type as vec1. The return vector
///   is the same type as vec1.
/// \par Wraps
///   vec_add
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecAdd(const T1 vec1, const T2 vec2)
{
    return (T1)vec_add(vec1, (T1)vec2);
}

/// \brief Subtract two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \details VecSub() returns a new vector from vec1 and vec2.
///   vec2 is cast to the same type as vec1. The return vector
///   is the same type as vec1.
/// \par Wraps
///   vec_sub
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecSub(const T1 vec1, const T2 vec2)
{
    return (T1)vec_sub(vec1, (T1)vec2);
}

/// \brief Add two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \details VecAdd64() returns a new vector from vec1 and vec2.
///   vec1 and vec2 are added as if uint64x2_p vectors. On POWER7
///   and below VecAdd64() manages the carries from two elements in
///   a uint32x4_p vector.
/// \par Wraps
///   vec_add for POWER8, vec_addc, vec_perm, vec_add for Altivec
/// \since Crypto++ 8.0
inline uint32x4_p VecAdd64(const uint32x4_p& vec1, const uint32x4_p& vec2)
{
    // 64-bit elements available at POWER7, but addudm requires POWER8
#if defined(_ARCH_PWR8)
    return (uint32x4_p)vec_add((uint64x2_p)vec1, (uint64x2_p)vec2);
#else
    // The carry mask selects carries from elements 1 and 3 and sets remaining
    // elements to 0. The mask also shifts the carried values left by 4 bytes
    // so the carries are added to elements 0 and 2.
    const uint8x16_p cmask = {4,5,6,7, 16,16,16,16, 12,13,14,15, 16,16,16,16};
    const uint32x4_p zero = {0, 0, 0, 0};

    uint32x4_p cy = vec_addc(vec1, vec2);
    cy = vec_perm(cy, zero, cmask);
    return vec_add(vec_add(vec1, vec2), cy);
#endif
}

//@}

/// \name OTHER OPERATIONS
//@{

/// \brief Permutes a vector
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec the vector
/// \param mask vector mask
/// \returns vector
/// \details VecPermute() returns a new vector from vec based on
///   mask. mask is an uint8x16_p type vector. The return
///   vector is the same type as vec.
/// \par Wraps
///   vec_perm
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecPermute(const T1 vec, const T2 mask)
{
    return (T1)vec_perm(vec, vec, (uint8x16_p)mask);
}

/// \brief Permutes two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \param mask vector mask
/// \returns vector
/// \details VecPermute() returns a new vector from vec1 and vec2
///   based on mask. mask is an uint8x16_p type vector. The return
///   vector is the same type as vec1.
/// \par Wraps
///   vec_perm
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VecPermute(const T1 vec1, const T1 vec2, const T2 mask)
{
    return (T1)vec_perm(vec1, (T1)vec2, (uint8x16_p)mask);
}

/// \brief Shift a vector left
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \returns vector
/// \details VecShiftLeftOctet() returns a new vector after shifting the
///   concatenation of the zero vector and the source vector by the specified
///   number of bytes. The return vector is the same type as vec.
/// \details On big endian machines VecShiftLeftOctet() is <tt>vec_sld(a, z,
///   c)</tt>. On little endian machines VecShiftLeftOctet() is translated to
///   <tt>vec_sld(z, a, 16-c)</tt>. You should always call the function as
///   if on a big endian machine as shown below.
/// <pre>
///    uint8x16_p x = VecLoad(ptr);
///    uint8x16_p y = VecShiftLeftOctet<12>(x);
/// </pre>
/// \par Wraps
///   vec_sld
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
///   endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VecShiftLeftOctet(const T vec)
{
    const T zero = {0};
    if (C >= 16)
    {
        // Out of range
        return zero;
    }
    else if (C == 0)
    {
        // Noop
        return vec;
    }
    else
    {
#if (CRYPTOPP_BIG_ENDIAN)
    enum { R=C&0xf };
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)zero, R);
#else
    enum { R=(16-C)&0xf };  // Linux xlC 13.1 workaround in Debug builds
    return (T)vec_sld((uint8x16_p)zero, (uint8x16_p)vec, R);
#endif
    }
}

/// \brief Shift a vector right
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \returns vector
/// \details VecShiftRightOctet() returns a new vector after shifting the
///   concatenation of the zero vector and the source vector by the specified
///   number of bytes. The return vector is the same type as vec.
/// \details On big endian machines VecShiftRightOctet() is <tt>vec_sld(a, z,
///   c)</tt>. On little endian machines VecShiftRightOctet() is translated to
///   <tt>vec_sld(z, a, 16-c)</tt>. You should always call the function as
///   if on a big endian machine as shown below.
/// <pre>
///    uint8x16_p x = VecLoad(ptr);
///    uint8x16_p y = VecShiftRightOctet<12>(y);
/// </pre>
/// \par Wraps
///   vec_sld
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
///   endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VecShiftRightOctet(const T vec)
{
    const T zero = {0};
    if (C >= 16)
    {
        // Out of range
        return zero;
    }
    else if (C == 0)
    {
        // Noop
        return vec;
    }
    else
    {
#if (CRYPTOPP_BIG_ENDIAN)
    enum { R=(16-C)&0xf };  // Linux xlC 13.1 workaround in Debug builds
    return (T)vec_sld((uint8x16_p)zero, (uint8x16_p)vec, R);
#else
    enum { R=C&0xf };
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)zero, R);
#endif
    }
}

/// \brief Rotate a vector left
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \returns vector
/// \details VecRotateLeftOctet() returns a new vector after rotating the
///   concatenation of the source vector with itself by the specified
///   number of bytes. The return vector is the same type as vec.
/// \par Wraps
///   vec_sld
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
///   endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VecRotateLeftOctet(const T vec)
{
#if (CRYPTOPP_BIG_ENDIAN)
    enum { R = C&0xf };
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
#else
    enum { R=(16-C)&0xf };  // Linux xlC 13.1 workaround in Debug builds
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
#endif
}

/// \brief Rotate a vector right
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \returns vector
/// \details VecRotateRightOctet() returns a new vector after rotating the
///   concatenation of the source vector with itself by the specified
///   number of bytes. The return vector is the same type as vec.
/// \par Wraps
///   vec_sld
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
///   endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VecRotateRightOctet(const T vec)
{
#if (CRYPTOPP_BIG_ENDIAN)
    enum { R=(16-C)&0xf };  // Linux xlC 13.1 workaround in Debug builds
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
#else
    enum { R = C&0xf };
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
#endif
}

/// \brief Rotate a packed vector left
/// \tparam C shift bit count
/// \param vec the vector
/// \returns vector
/// \details VecRotateLeft() rotates each element in a packed vector by bit count.
/// \par Wraps
///   vec_rl
/// \since Crypto++ 7.0
template<unsigned int C>
inline uint32x4_p VecRotateLeft(const uint32x4_p vec)
{
    const uint32x4_p m = {C, C, C, C};
    return vec_rl(vec, m);
}

/// \brief Shift a packed vector left
/// \tparam C shift bit count
/// \param vec the vector
/// \returns vector
/// \details VecShiftLeft() rotates each element in a packed vector by bit count.
/// \par Wraps
///   vec_sl
/// \since Crypto++ 8.1
template<unsigned int C>
inline uint32x4_p VecShiftLeft(const uint32x4_p vec)
{
    const uint32x4_p m = {C, C, C, C};
    return vec_sl(vec, m);
}

/// \brief Merge two vectors
/// \tparam T vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \par Wraps
///   vec_mergeh
/// \since Crypto++ 8.1
template <class T>
inline T VecMergeHigh(const T vec1, const T vec2)
{
    return vec_mergeh(vec1, vec2);
}

/// \brief Merge two vectors
/// \tparam T vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \par Wraps
///   vec_mergel
/// \since Crypto++ 8.1
template <class T>
inline T VecMergeLow(const T vec1, const T vec2)
{
    return vec_mergel(vec1, vec2);
}

#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

/// \brief Rotate a packed vector left
/// \tparam C shift bit count
/// \param vec the vector
/// \returns vector
/// \details VecRotateLeft() rotates each element in a packed vector by bit count.
/// \details VecRotateLeft() with 64-bit elements is available on POWER8 and above.
/// \par Wraps
///   vec_rl
/// \since Crypto++ 8.0
template<unsigned int C>
inline uint64x2_p VecRotateLeft(const uint64x2_p vec)
{
    const uint64x2_p m = {C, C};
    return vec_rl(vec, m);
}

/// \brief Shift a packed vector left
/// \tparam C shift bit count
/// \param vec the vector
/// \returns vector
/// \details VecShiftLeft() rotates each element in a packed vector by bit count.
/// \details VecShiftLeft() with 64-bit elements is available on POWER8 and above.
/// \par Wraps
///   vec_sl
/// \since Crypto++ 8.1
template<unsigned int C>
inline uint64x2_p VecShiftLeft(const uint64x2_p vec)
{
    const uint64x2_p m = {C, C};
    return vec_sl(vec, m);
}

#endif

/// \brief Rotate a packed vector right
/// \tparam C shift bit count
/// \param vec the vector
/// \returns vector
/// \details VecRotateRight() rotates each element in a packed vector by bit count.
/// \par Wraps
///   vec_rl
/// \since Crypto++ 7.0
template<unsigned int C>
inline uint32x4_p VecRotateRight(const uint32x4_p vec)
{
    const uint32x4_p m = {32-C, 32-C, 32-C, 32-C};
    return vec_rl(vec, m);
}

/// \brief Shift a packed vector right
/// \tparam C shift bit count
/// \param vec the vector
/// \returns vector
/// \details VecShiftRight() rotates each element in a packed vector by bit count.
/// \par Wraps
///   vec_rl
/// \since Crypto++ 8.1
template<unsigned int C>
inline uint32x4_p VecShiftRight(const uint32x4_p vec)
{
    const uint32x4_p m = {C, C, C, C};
    return vec_sr(vec, m);
}

#if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

/// \brief Rotate a packed vector right
/// \tparam C shift bit count
/// \param vec the vector
/// \returns vector
/// \details VecRotateRight() rotates each element in a packed vector by bit count.
/// \details VecRotateRight() with 64-bit elements is available on POWER8 and above.
/// \par Wraps
///   vec_rl
/// \since Crypto++ 8.0
template<unsigned int C>
inline uint64x2_p VecRotateRight(const uint64x2_p vec)
{
    const uint64x2_p m = {64-C, 64-C};
    return vec_rl(vec, m);
}

/// \brief Shift a packed vector right
/// \tparam C shift bit count
/// \param vec the vector
/// \returns vector
/// \details VecShiftRight() rotates each element in a packed vector by bit count.
/// \details VecShiftRight() with 64-bit elements is available on POWER8 and above.
/// \par Wraps
///   vec_sr
/// \since Crypto++ 8.1
template<unsigned int C>
inline uint64x2_p VecShiftRight(const uint64x2_p vec)
{
    const uint64x2_p m = {C, C};
    return vec_sr(vec, m);
}

#endif

/// \brief Exchange high and low double words
/// \tparam T vector type
/// \param vec the vector
/// \returns vector
/// \par Wraps
///   vec_sld
/// \since Crypto++ 7.0
template <class T>
inline T VecSwapWords(const T vec)
{
    return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, 8);
}

/// \brief Extract a dword from a vector
/// \tparam T vector type
/// \param val the vector
/// \returns vector created from low dword
/// \details VecGetLow() extracts the low dword from a vector. The low dword
///   is composed of the least significant bits and occupies bytes 8 through 15
///   when viewed as a big endian array. The return vector is the same type as
///   the original vector and padded with 0's in the most significant bit positions.
/// \par Wraps
///   vec_sld
/// \since Crypto++ 7.0
template <class T>
inline T VecGetLow(const T val)
{
#if (CRYPTOPP_BIG_ENDIAN) && (_ARCH_PWR8)
    const T zero = {0};
    return (T)VecMergeLow((uint64x2_p)zero, (uint64x2_p)val);
#else
    return VecShiftRightOctet<8>(VecShiftLeftOctet<8>(val));
#endif
}

/// \brief Extract a dword from a vector
/// \tparam T vector type
/// \param val the vector
/// \returns vector created from high dword
/// \details VecGetHigh() extracts the high dword from a vector. The high dword
///   is composed of the most significant bits and occupies bytes 0 through 7
///   when viewed as a big endian array. The return vector is the same type as
///   the original vector and padded with 0's in the most significant bit positions.
/// \par Wraps
///   vec_sld
/// \since Crypto++ 7.0
template <class T>
inline T VecGetHigh(const T val)
{
#if (CRYPTOPP_BIG_ENDIAN) && (_ARCH_PWR8)
    const T zero = {0};
    return (T)VecMergeHigh((uint64x2_p)zero, (uint64x2_p)val);
#else
    return VecShiftRightOctet<8>(val);
#endif
}

/// \brief Compare two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns true if vec1 equals vec2, false otherwise
/// \details VecEqual() performs a bitwise compare. The vector element types do
///  not matter.
/// \par Wraps
///   vec_all_eq
/// \since Crypto++ 8.0
template <class T1, class T2>
inline bool VecEqual(const T1 vec1, const T2 vec2)
{
    return 1 == vec_all_eq((uint32x4_p)vec1, (uint32x4_p)vec2);
}

/// \brief Compare two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns true if vec1 does not equal vec2, false otherwise
/// \details VecNotEqual() performs a bitwise compare. The vector element types do
///  not matter.
/// \par Wraps
///   vec_all_eq
/// \since Crypto++ 8.0
template <class T1, class T2>
inline bool VecNotEqual(const T1 vec1, const T2 vec2)
{
    return 0 == vec_all_eq((uint32x4_p)vec1, (uint32x4_p)vec2);
}

//@}

//////////////////////// Power8 Crypto ////////////////////////

#if defined(__CRYPTO__) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

/// \name POLYNOMIAL MULTIPLICATION
//@{

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \returns vector product
/// \details VecPolyMultiply() performs polynomial multiplication. POWER8
///   polynomial multiplication multiplies the high and low terms, and then
///   XOR's the high and low products. That is, the result is <tt>ah*bh XOR
///   al*bl</tt>. It is different behavior than Intel polynomial
///   multiplication. To obtain a single product without the XOR, then set
///   one of the high or low terms to 0. For example, setting <tt>ah=0</tt>
///   results in <tt>0*bh XOR al*bl = al*bl</tt>.
/// \par Wraps
///   __vpmsumw, __builtin_altivec_crypto_vpmsumw and __builtin_crypto_vpmsumw.
/// \since Crypto++ 8.1
inline uint32x4_p VecPolyMultiply(const uint32x4_p& a, const uint32x4_p& b)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return __vpmsumw (a, b);
#elif defined(__clang__)
    return __builtin_altivec_crypto_vpmsumw (a, b);
#else
    return __builtin_crypto_vpmsumw (a, b);
#endif
}

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \returns vector product
/// \details VecPolyMultiply() performs polynomial multiplication. POWER8
///   polynomial multiplication multiplies the high and low terms, and then
///   XOR's the high and low products. That is, the result is <tt>ah*bh XOR
///   al*bl</tt>. It is different behavior than Intel polynomial
///   multiplication. To obtain a single product without the XOR, then set
///   one of the high or low terms to 0. For example, setting <tt>ah=0</tt>
///   results in <tt>0*bh XOR al*bl = al*bl</tt>.
/// \par Wraps
///   __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
/// \since Crypto++ 8.1
inline uint64x2_p VecPolyMultiply(const uint64x2_p& a, const uint64x2_p& b)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return __vpmsumd (a, b);
#elif defined(__clang__)
    return __builtin_altivec_crypto_vpmsumd (a, b);
#else
    return __builtin_crypto_vpmsumd (a, b);
#endif
}

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \returns vector product
/// \details VecPolyMultiply00LE() performs polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x00)</tt>.
///  The <tt>0x00</tt> indicates the low 64-bits of <tt>a</tt> and <tt>b</tt>
///  are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the the rightmost bit is LSB and numbered 0.
/// \par Wraps
///   __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
/// \since Crypto++ 8.0
inline uint64x2_p VecPolyMultiply00LE(const uint64x2_p& a, const uint64x2_p& b)
{
#if (CRYPTOPP_BIG_ENDIAN)
    return VecSwapWords(VecPolyMultiply(VecGetHigh(a), VecGetHigh(b)));
#else
    return VecPolyMultiply(VecGetHigh(a), VecGetHigh(b));
#endif
}

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \returns vector product
/// \details VecPolyMultiply01LE performs() polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x01)</tt>.
///  The <tt>0x01</tt> indicates the low 64-bits of <tt>a</tt> and high
///  64-bits of <tt>b</tt> are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the the rightmost bit is LSB and numbered 0.
/// \par Wraps
///   __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
/// \since Crypto++ 8.0
inline uint64x2_p VecPolyMultiply01LE(const uint64x2_p& a, const uint64x2_p& b)
{
#if (CRYPTOPP_BIG_ENDIAN)
    return VecSwapWords(VecPolyMultiply(a, VecGetHigh(b)));
#else
    return VecPolyMultiply(a, VecGetHigh(b));
#endif
}

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \returns vector product
/// \details VecPolyMultiply10LE() performs polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x10)</tt>.
///  The <tt>0x10</tt> indicates the high 64-bits of <tt>a</tt> and low
///  64-bits of <tt>b</tt> are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the the rightmost bit is LSB and numbered 0.
/// \par Wraps
///   __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
/// \since Crypto++ 8.0
inline uint64x2_p VecPolyMultiply10LE(const uint64x2_p& a, const uint64x2_p& b)
{
#if (CRYPTOPP_BIG_ENDIAN)
    return VecSwapWords(VecPolyMultiply(VecGetHigh(a), b));
#else
    return VecPolyMultiply(VecGetHigh(a), b);
#endif
}

/// \brief Polynomial multiplication
/// \param a the first term
/// \param b the second term
/// \returns vector product
/// \details VecPolyMultiply11LE() performs polynomial multiplication and presents
///  the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x11)</tt>.
///  The <tt>0x11</tt> indicates the high 64-bits of <tt>a</tt> and <tt>b</tt>
///  are multiplied.
/// \note An Intel XMM register is composed of 128-bits. The leftmost bit
///  is MSB and numbered 127, while the the rightmost bit is LSB and numbered 0.
/// \par Wraps
///   __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
/// \since Crypto++ 8.0
inline uint64x2_p VecPolyMultiply11LE(const uint64x2_p& a, const uint64x2_p& b)
{
#if (CRYPTOPP_BIG_ENDIAN)
    return VecSwapWords(VecPolyMultiply(VecGetLow(a), b));
#else
    return VecPolyMultiply(VecGetLow(a), b);
#endif
}

//@}

/// \name AES ENCRYPTION
//@{

/// \brief One round of AES encryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VecEncrypt() performs one round of AES encryption of state
///   using subkey key. The return vector is the same type as vec1.
/// \details VecEncrypt() is available on POWER8 and above.
/// \par Wraps
///   __vcipher, __builtin_altivec_crypto_vcipher, __builtin_crypto_vcipher
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <class T1, class T2>
inline T1 VecEncrypt(const T1 state, const T2 key)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T1)__vcipher((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__clang__)
    return (T1)__builtin_altivec_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
#elif defined(__GNUC__)
    return (T1)__builtin_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

/// \brief Final round of AES encryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VecEncryptLast() performs the final round of AES encryption
///   of state using subkey key. The return vector is the same type as vec1.
/// \details VecEncryptLast() is available on POWER8 and above.
/// \par Wraps
///   __vcipherlast, __builtin_altivec_crypto_vcipherlast, __builtin_crypto_vcipherlast
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <class T1, class T2>
inline T1 VecEncryptLast(const T1 state, const T2 key)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T1)__vcipherlast((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__clang__)
    return (T1)__builtin_altivec_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
#elif defined(__GNUC__)
    return (T1)__builtin_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

/// \brief One round of AES decryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VecDecrypt() performs one round of AES decryption of state
///   using subkey key. The return vector is the same type as vec1.
/// \details VecDecrypt() is available on POWER8 and above.
/// \par Wraps
///   __vncipher, __builtin_altivec_crypto_vncipher, __builtin_crypto_vncipher
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <class T1, class T2>
inline T1 VecDecrypt(const T1 state, const T2 key)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T1)__vncipher((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__clang__)
    return (T1)__builtin_altivec_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
#elif defined(__GNUC__)
    return (T1)__builtin_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

/// \brief Final round of AES decryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VecDecryptLast() performs the final round of AES decryption
///   of state using subkey key. The return vector is the same type as vec1.
/// \details VecDecryptLast() is available on POWER8 and above.
/// \par Wraps
///   __vncipherlast, __builtin_altivec_crypto_vncipherlast, __builtin_crypto_vncipherlast
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <class T1, class T2>
inline T1 VecDecryptLast(const T1 state, const T2 key)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T1)__vncipherlast((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__clang__)
    return (T1)__builtin_altivec_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
#elif defined(__GNUC__)
    return (T1)__builtin_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

//@}

/// \name SHA DIGESTS
//@{

/// \brief SHA256 Sigma functions
/// \tparam func function
/// \tparam fmask function mask
/// \tparam T vector type
/// \param vec the block to transform
/// \details VecSHA256() selects sigma0, sigma1, Sigma0, Sigma1 based on
///   func and fmask. The return vector is the same type as vec.
/// \details VecSHA256() is available on POWER8 and above.
/// \par Wraps
///   __vshasigmaw, __builtin_altivec_crypto_vshasigmaw, __builtin_crypto_vshasigmaw
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <int func, int fmask, class T>
inline T VecSHA256(const T vec)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T)__vshasigmaw((uint32x4_p)vec, func, fmask);
#elif defined(__clang__)
    return (T)__builtin_altivec_crypto_vshasigmaw((uint32x4_p)vec, func, fmask);
#elif defined(__GNUC__)
    return (T)__builtin_crypto_vshasigmaw((uint32x4_p)vec, func, fmask);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

/// \brief SHA512 Sigma functions
/// \tparam func function
/// \tparam fmask function mask
/// \tparam T vector type
/// \param vec the block to transform
/// \details VecSHA512() selects sigma0, sigma1, Sigma0, Sigma1 based on
///   func and fmask. The return vector is the same type as vec.
/// \details VecSHA512() is available on POWER8 and above.
/// \par Wraps
///   __vshasigmad, __builtin_altivec_crypto_vshasigmad, __builtin_crypto_vshasigmad
/// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
template <int func, int fmask, class T>
inline T VecSHA512(const T vec)
{
#if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
    return (T)__vshasigmad((uint64x2_p)vec, func, fmask);
#elif defined(__clang__)
    return (T)__builtin_altivec_crypto_vshasigmad((uint64x2_p)vec, func, fmask);
#elif defined(__GNUC__)
    return (T)__builtin_crypto_vshasigmad((uint64x2_p)vec, func, fmask);
#else
    CRYPTOPP_ASSERT(0);
#endif
}

//@}

#endif  // __CRYPTO__

#endif  // _ALTIVEC_

NAMESPACE_END

#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic pop
#endif

#endif  // CRYPTOPP_PPC_CRYPTO_H