File: rijndael_simd.cpp

package info (click to toggle)
libcrypto++ 8.2.0-2
  • links: PTS
  • area: main
  • in suites: experimental
  • size: 22,780 kB
  • sloc: cpp: 105,015; sh: 7,353; asm: 5,120; makefile: 316
file content (738 lines) | stat: -rw-r--r-- 25,634 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
// rijndael_simd.cpp - written and placed in the public domain by
//                     Jeffrey Walton, Uri Blumenthal and Marcel Raad.
//                     AES-NI code originally written by Wei Dai.
//
//    This source file uses intrinsics and built-ins to gain access to
//    AES-NI, ARMv8a AES and Power8 AES instructions. A separate source
//    file is needed because additional CXXFLAGS are required to enable
//    the appropriate instructions sets in some build configurations.
//
//    ARMv8a AES code based on CriticalBlue code from Johannes Schneiders,
//    Skip Hovsmith and Barry O'Rourke for the mbedTLS project. Stepping
//    mbedTLS under a debugger was helped for us to determine problems
//    with our subkey generation and scheduling.
//
//    AltiVec and Power8 code based on http://github.com/noloader/AES-Intrinsics and
//    http://www.ibm.com/developerworks/library/se-power8-in-core-cryptography/
//    For Power8 do not remove the casts, even when const-ness is cast away. It causes
//    failed compiles and a 0.3 to 0.6 cpb drop in performance. The IBM documentation
//    absolutely sucks. Thanks to Andy Polyakov, Paul R and Trudeaun for answering
//    questions and filling the gaps in the IBM documentation.
//

#include "pch.h"
#include "config.h"
#include "misc.h"

#if (CRYPTOPP_AESNI_AVAILABLE)
# include "adv_simd.h"
# include <emmintrin.h>
# include <smmintrin.h>
# include <wmmintrin.h>
#endif

// C1189: error: This header is specific to ARM targets
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
# include "adv_simd.h"
# ifndef _M_ARM64
#  include <arm_neon.h>
# endif
#endif

#if (CRYPTOPP_ARM_ACLE_AVAILABLE)
# include <stdint.h>
# include <arm_acle.h>
#endif

#if defined(CRYPTOPP_POWER8_AES_AVAILABLE)
# include "adv_simd.h"
# include "ppc_simd.h"
#endif

#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
# include <signal.h>
# include <setjmp.h>
#endif

#ifndef EXCEPTION_EXECUTE_HANDLER
# define EXCEPTION_EXECUTE_HANDLER 1
#endif

// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))

// Squash MS LNK4221 and libtool warnings
extern const char RIJNDAEL_SIMD_FNAME[] = __FILE__;

NAMESPACE_BEGIN(CryptoPP)

// ************************* Feature Probes ************************* //

#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
extern "C" {
    typedef void (*SigHandler)(int);

    static jmp_buf s_jmpSIGILL;
    static void SigIllHandler(int)
    {
        longjmp(s_jmpSIGILL, 1);
    }
}
#endif  // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY

#if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARMV8)
bool CPU_ProbeAES()
{
#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
    return false;
#elif (CRYPTOPP_ARM_AES_AVAILABLE)
# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
    volatile bool result = true;
    __try
    {
        // AES encrypt and decrypt
        uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0);
        uint8x16_t r1 = vaeseq_u8(data, key);
        uint8x16_t r2 = vaesdq_u8(data, key);
        r1 = vaesmcq_u8(r1);
        r2 = vaesimcq_u8(r2);

        result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7));
    }
    __except (EXCEPTION_EXECUTE_HANDLER)
    {
        return false;
    }
    return result;
# else

    // longjmp and clobber warnings. Volatile is required.
    // http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854
    volatile bool result = true;

    volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
    if (oldHandler == SIG_ERR)
        return false;

    volatile sigset_t oldMask;
    if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
        return false;

    if (setjmp(s_jmpSIGILL))
        result = false;
    else
    {
        uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0);
        uint8x16_t r1 = vaeseq_u8(data, key);
        uint8x16_t r2 = vaesdq_u8(data, key);
        r1 = vaesmcq_u8(r1);
        r2 = vaesimcq_u8(r2);

        // Hack... GCC optimizes away the code and returns true
        result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7));
    }

    sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
    signal(SIGILL, oldHandler);
    return result;
# endif
#else
    return false;
#endif  // CRYPTOPP_ARM_AES_AVAILABLE
}
#endif  // ARM32 or ARM64

// ***************************** ARMv8 ***************************** //

#if (CRYPTOPP_ARM_AES_AVAILABLE)

ANONYMOUS_NAMESPACE_BEGIN

static inline void ARMV8_Enc_Block(uint64x2_t &data, const word32 *subkeys, unsigned int rounds)
{
    CRYPTOPP_ASSERT(subkeys);
    const byte *keys = reinterpret_cast<const byte*>(subkeys);
    uint8x16_t block = vreinterpretq_u8_u64(data);

    // AES single round encryption
    block = vaeseq_u8(block, vld1q_u8(keys+0*16));
    // AES mix columns
    block = vaesmcq_u8(block);

    for (unsigned int i=1; i<rounds-1; i+=2)
    {
        // AES single round encryption
        block = vaeseq_u8(block, vld1q_u8(keys+i*16));
        // AES mix columns
        block = vaesmcq_u8(block);
        // AES single round encryption
        block = vaeseq_u8(block, vld1q_u8(keys+(i+1)*16));
        // AES mix columns
        block = vaesmcq_u8(block);
    }

    // AES single round encryption
    block = vaeseq_u8(block, vld1q_u8(keys+(rounds-1)*16));
    // Final Add (bitwise Xor)
    block = veorq_u8(block, vld1q_u8(keys+rounds*16));

    data = vreinterpretq_u64_u8(block);
}

static inline void ARMV8_Enc_6_Blocks(uint64x2_t &data0, uint64x2_t &data1,
    uint64x2_t &data2, uint64x2_t &data3, uint64x2_t &data4, uint64x2_t &data5,
    const word32 *subkeys, unsigned int rounds)
{
    CRYPTOPP_ASSERT(subkeys);
    const byte *keys = reinterpret_cast<const byte*>(subkeys);

    uint8x16_t block0 = vreinterpretq_u8_u64(data0);
    uint8x16_t block1 = vreinterpretq_u8_u64(data1);
    uint8x16_t block2 = vreinterpretq_u8_u64(data2);
    uint8x16_t block3 = vreinterpretq_u8_u64(data3);
    uint8x16_t block4 = vreinterpretq_u8_u64(data4);
    uint8x16_t block5 = vreinterpretq_u8_u64(data5);

    uint8x16_t key;
    for (unsigned int i=0; i<rounds-1; ++i)
    {
        key = vld1q_u8(keys+i*16);
        // AES single round encryption
        block0 = vaeseq_u8(block0, key);
        // AES mix columns
        block0 = vaesmcq_u8(block0);
        // AES single round encryption
        block1 = vaeseq_u8(block1, key);
        // AES mix columns
        block1 = vaesmcq_u8(block1);
        // AES single round encryption
        block2 = vaeseq_u8(block2, key);
        // AES mix columns
        block2 = vaesmcq_u8(block2);
        // AES single round encryption
        block3 = vaeseq_u8(block3, key);
        // AES mix columns
        block3 = vaesmcq_u8(block3);
        // AES single round encryption
        block4 = vaeseq_u8(block4, key);
        // AES mix columns
        block4 = vaesmcq_u8(block4);
        // AES single round encryption
        block5 = vaeseq_u8(block5, key);
        // AES mix columns
        block5 = vaesmcq_u8(block5);
    }

    // AES single round encryption
    key = vld1q_u8(keys+(rounds-1)*16);
    block0 = vaeseq_u8(block0, key);
    block1 = vaeseq_u8(block1, key);
    block2 = vaeseq_u8(block2, key);
    block3 = vaeseq_u8(block3, key);
    block4 = vaeseq_u8(block4, key);
    block5 = vaeseq_u8(block5, key);

    // Final Add (bitwise Xor)
    key = vld1q_u8(keys+rounds*16);
    data0 = vreinterpretq_u64_u8(veorq_u8(block0, key));
    data1 = vreinterpretq_u64_u8(veorq_u8(block1, key));
    data2 = vreinterpretq_u64_u8(veorq_u8(block2, key));
    data3 = vreinterpretq_u64_u8(veorq_u8(block3, key));
    data4 = vreinterpretq_u64_u8(veorq_u8(block4, key));
    data5 = vreinterpretq_u64_u8(veorq_u8(block5, key));
}

static inline void ARMV8_Dec_Block(uint64x2_t &data, const word32 *subkeys, unsigned int rounds)
{
    CRYPTOPP_ASSERT(subkeys);
    const byte *keys = reinterpret_cast<const byte*>(subkeys);
    uint8x16_t block = vreinterpretq_u8_u64(data);

    // AES single round decryption
    block = vaesdq_u8(block, vld1q_u8(keys+0*16));
    // AES inverse mix columns
    block = vaesimcq_u8(block);

    for (unsigned int i=1; i<rounds-1; i+=2)
    {
        // AES single round decryption
        block = vaesdq_u8(block, vld1q_u8(keys+i*16));
        // AES inverse mix columns
        block = vaesimcq_u8(block);
        // AES single round decryption
        block = vaesdq_u8(block, vld1q_u8(keys+(i+1)*16));
        // AES inverse mix columns
        block = vaesimcq_u8(block);
    }

    // AES single round decryption
    block = vaesdq_u8(block, vld1q_u8(keys+(rounds-1)*16));
    // Final Add (bitwise Xor)
    block = veorq_u8(block, vld1q_u8(keys+rounds*16));

    data = vreinterpretq_u64_u8(block);
}

static inline void ARMV8_Dec_6_Blocks(uint64x2_t &data0, uint64x2_t &data1,
    uint64x2_t &data2, uint64x2_t &data3, uint64x2_t &data4, uint64x2_t &data5,
    const word32 *subkeys, unsigned int rounds)
{
    CRYPTOPP_ASSERT(subkeys);
    const byte *keys = reinterpret_cast<const byte*>(subkeys);

    uint8x16_t block0 = vreinterpretq_u8_u64(data0);
    uint8x16_t block1 = vreinterpretq_u8_u64(data1);
    uint8x16_t block2 = vreinterpretq_u8_u64(data2);
    uint8x16_t block3 = vreinterpretq_u8_u64(data3);
    uint8x16_t block4 = vreinterpretq_u8_u64(data4);
    uint8x16_t block5 = vreinterpretq_u8_u64(data5);

    uint8x16_t key;
    for (unsigned int i=0; i<rounds-1; ++i)
    {
        key = vld1q_u8(keys+i*16);
        // AES single round decryption
        block0 = vaesdq_u8(block0, key);
        // AES inverse mix columns
        block0 = vaesimcq_u8(block0);
        // AES single round decryption
        block1 = vaesdq_u8(block1, key);
        // AES inverse mix columns
        block1 = vaesimcq_u8(block1);
        // AES single round decryption
        block2 = vaesdq_u8(block2, key);
        // AES inverse mix columns
        block2 = vaesimcq_u8(block2);
        // AES single round decryption
        block3 = vaesdq_u8(block3, key);
        // AES inverse mix columns
        block3 = vaesimcq_u8(block3);
        // AES single round decryption
        block4 = vaesdq_u8(block4, key);
        // AES inverse mix columns
        block4 = vaesimcq_u8(block4);
        // AES single round decryption
        block5 = vaesdq_u8(block5, key);
        // AES inverse mix columns
        block5 = vaesimcq_u8(block5);
    }

    // AES single round decryption
    key = vld1q_u8(keys+(rounds-1)*16);
    block0 = vaesdq_u8(block0, key);
    block1 = vaesdq_u8(block1, key);
    block2 = vaesdq_u8(block2, key);
    block3 = vaesdq_u8(block3, key);
    block4 = vaesdq_u8(block4, key);
    block5 = vaesdq_u8(block5, key);

    // Final Add (bitwise Xor)
    key = vld1q_u8(keys+rounds*16);
    data0 = vreinterpretq_u64_u8(veorq_u8(block0, key));
    data1 = vreinterpretq_u64_u8(veorq_u8(block1, key));
    data2 = vreinterpretq_u64_u8(veorq_u8(block2, key));
    data3 = vreinterpretq_u64_u8(veorq_u8(block3, key));
    data4 = vreinterpretq_u64_u8(veorq_u8(block4, key));
    data5 = vreinterpretq_u64_u8(veorq_u8(block5, key));
}

ANONYMOUS_NAMESPACE_END

size_t Rijndael_Enc_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds,
            const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
    return AdvancedProcessBlocks128_6x1_NEON(ARMV8_Enc_Block, ARMV8_Enc_6_Blocks,
            subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}

size_t Rijndael_Dec_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds,
            const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
    return AdvancedProcessBlocks128_6x1_NEON(ARMV8_Dec_Block, ARMV8_Dec_6_Blocks,
            subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}

#endif  // CRYPTOPP_ARM_AES_AVAILABLE

// ***************************** AES-NI ***************************** //

#if (CRYPTOPP_AESNI_AVAILABLE)

ANONYMOUS_NAMESPACE_BEGIN

/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
CRYPTOPP_ALIGN_DATA(16)
const word32 s_rconLE[] = {
    0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
};

static inline void AESNI_Enc_Block(__m128i &block, MAYBE_CONST word32 *subkeys, unsigned int rounds)
{
    const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);

    block = _mm_xor_si128(block, skeys[0]);
    for (unsigned int i=1; i<rounds-1; i+=2)
    {
        block = _mm_aesenc_si128(block, skeys[i]);
        block = _mm_aesenc_si128(block, skeys[i+1]);
    }
    block = _mm_aesenc_si128(block, skeys[rounds-1]);
    block = _mm_aesenclast_si128(block, skeys[rounds]);
}

static inline void AESNI_Enc_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3,
                               MAYBE_CONST word32 *subkeys, unsigned int rounds)
{
    const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);

    __m128i rk = skeys[0];
    block0 = _mm_xor_si128(block0, rk);
    block1 = _mm_xor_si128(block1, rk);
    block2 = _mm_xor_si128(block2, rk);
    block3 = _mm_xor_si128(block3, rk);
    for (unsigned int i=1; i<rounds; i++)
    {
        rk = skeys[i];
        block0 = _mm_aesenc_si128(block0, rk);
        block1 = _mm_aesenc_si128(block1, rk);
        block2 = _mm_aesenc_si128(block2, rk);
        block3 = _mm_aesenc_si128(block3, rk);
    }
    rk = skeys[rounds];
    block0 = _mm_aesenclast_si128(block0, rk);
    block1 = _mm_aesenclast_si128(block1, rk);
    block2 = _mm_aesenclast_si128(block2, rk);
    block3 = _mm_aesenclast_si128(block3, rk);
}

static inline void AESNI_Dec_Block(__m128i &block, MAYBE_CONST word32 *subkeys, unsigned int rounds)
{
    const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);

    block = _mm_xor_si128(block, skeys[0]);
    for (unsigned int i=1; i<rounds-1; i+=2)
    {
        block = _mm_aesdec_si128(block, skeys[i]);
        block = _mm_aesdec_si128(block, skeys[i+1]);
    }
    block = _mm_aesdec_si128(block, skeys[rounds-1]);
    block = _mm_aesdeclast_si128(block, skeys[rounds]);
}

static inline void AESNI_Dec_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3,
                        MAYBE_CONST word32 *subkeys, unsigned int rounds)
{
    const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);

    __m128i rk = skeys[0];
    block0 = _mm_xor_si128(block0, rk);
    block1 = _mm_xor_si128(block1, rk);
    block2 = _mm_xor_si128(block2, rk);
    block3 = _mm_xor_si128(block3, rk);
    for (unsigned int i=1; i<rounds; i++)
    {
        rk = skeys[i];
        block0 = _mm_aesdec_si128(block0, rk);
        block1 = _mm_aesdec_si128(block1, rk);
        block2 = _mm_aesdec_si128(block2, rk);
        block3 = _mm_aesdec_si128(block3, rk);
    }
    rk = skeys[rounds];
    block0 = _mm_aesdeclast_si128(block0, rk);
    block1 = _mm_aesdeclast_si128(block1, rk);
    block2 = _mm_aesdeclast_si128(block2, rk);
    block3 = _mm_aesdeclast_si128(block3, rk);
}

ANONYMOUS_NAMESPACE_END

void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, word32 *rk)
{
    const size_t rounds = keyLen / 4 + 6;
    const word32 *rc = s_rconLE;

    __m128i temp = _mm_loadu_si128(M128_CAST(userKey+keyLen-16));
    std::memcpy(rk, userKey, keyLen);

    // keySize: m_key allocates 4*(rounds+1) word32's.
    const size_t keySize = 4*(rounds+1);
    const word32* end = rk + keySize;

    while (true)
    {
        rk[keyLen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++);
        rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4];
        rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1];
        rk[keyLen/4+3] = rk[3] ^ rk[keyLen/4+2];

        if (rk + keyLen/4 + 4 == end)
            break;

        if (keyLen == 24)
        {
            rk[10] = rk[ 4] ^ rk[ 9];
            rk[11] = rk[ 5] ^ rk[10];
            temp = _mm_insert_epi32(temp, rk[11], 3);
        }
        else if (keyLen == 32)
        {
            temp = _mm_insert_epi32(temp, rk[11], 3);
            rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2);
            rk[13] = rk[ 5] ^ rk[12];
            rk[14] = rk[ 6] ^ rk[13];
            rk[15] = rk[ 7] ^ rk[14];
            temp = _mm_insert_epi32(temp, rk[15], 3);
        }
        else
        {
            temp = _mm_insert_epi32(temp, rk[7], 3);
        }

        rk += keyLen/4;
    }
}

void Rijndael_UncheckedSetKeyRev_AESNI(word32 *key, unsigned int rounds)
{
    unsigned int i, j;
    __m128i temp;

    vec_swap(*M128_CAST(key), *M128_CAST(key+4*rounds));

    for (i = 4, j = 4*rounds-4; i < j; i += 4, j -= 4)
    {
        temp = _mm_aesimc_si128(*M128_CAST(key+i));
        *M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+j));
        *M128_CAST(key+j) = temp;
    }

    *M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+i));
}

size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
        const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
    // SunCC workaround
    MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
    MAYBE_CONST   byte* ib = MAYBE_UNCONST_CAST(byte*,  inBlocks);
    MAYBE_CONST   byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);

    return AdvancedProcessBlocks128_4x1_SSE(AESNI_Enc_Block, AESNI_Enc_4_Blocks,
                sk, rounds, ib, xb, outBlocks, length, flags);
}

size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
        const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
    MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
    MAYBE_CONST   byte* ib = MAYBE_UNCONST_CAST(byte*,  inBlocks);
    MAYBE_CONST   byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);

    return AdvancedProcessBlocks128_4x1_SSE(AESNI_Dec_Block, AESNI_Dec_4_Blocks,
                sk, rounds, ib, xb, outBlocks, length, flags);
}

#endif  // CRYPTOPP_AESNI_AVAILABLE

// ************************** Power 8 Crypto ************************** //

#if (CRYPTOPP_POWER8_AES_AVAILABLE)

ANONYMOUS_NAMESPACE_BEGIN

/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
CRYPTOPP_ALIGN_DATA(16)
static const uint32_t s_rconBE[] = {
    0x01000000, 0x02000000, 0x04000000, 0x08000000,
    0x10000000, 0x20000000, 0x40000000, 0x80000000,
    0x1B000000, 0x36000000
};

static inline void POWER8_Enc_Block(uint32x4_p &block, const word32 *subkeys, unsigned int rounds)
{
    CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
    const byte *keys = reinterpret_cast<const byte*>(subkeys);

    uint32x4_p k = VecLoad(keys);
    block = VecXor(block, k);

    for (size_t i=1; i<rounds-1; i+=2)
    {
        block = VecEncrypt(block, VecLoad(  i*16,   keys));
        block = VecEncrypt(block, VecLoad((i+1)*16, keys));
    }

    block = VecEncrypt(block, VecLoad((rounds-1)*16, keys));
    block = VecEncryptLast(block, VecLoad(rounds*16, keys));
}

static inline void POWER8_Enc_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
            uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
            uint32x4_p &block5, const word32 *subkeys, unsigned int rounds)
{
    CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
    const byte *keys = reinterpret_cast<const byte*>(subkeys);

    uint32x4_p k = VecLoad(keys);
    block0 = VecXor(block0, k);
    block1 = VecXor(block1, k);
    block2 = VecXor(block2, k);
    block3 = VecXor(block3, k);
    block4 = VecXor(block4, k);
    block5 = VecXor(block5, k);

    for (size_t i=1; i<rounds; ++i)
    {
        k = VecLoad(i*16, keys);
        block0 = VecEncrypt(block0, k);
        block1 = VecEncrypt(block1, k);
        block2 = VecEncrypt(block2, k);
        block3 = VecEncrypt(block3, k);
        block4 = VecEncrypt(block4, k);
        block5 = VecEncrypt(block5, k);
    }

    k = VecLoad(rounds*16, keys);
    block0 = VecEncryptLast(block0, k);
    block1 = VecEncryptLast(block1, k);
    block2 = VecEncryptLast(block2, k);
    block3 = VecEncryptLast(block3, k);
    block4 = VecEncryptLast(block4, k);
    block5 = VecEncryptLast(block5, k);
}

static inline void POWER8_Dec_Block(uint32x4_p &block, const word32 *subkeys, unsigned int rounds)
{
    CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
    const byte *keys = reinterpret_cast<const byte*>(subkeys);

    uint32x4_p k = VecLoad(rounds*16, keys);
    block = VecXor(block, k);

    for (size_t i=rounds-1; i>1; i-=2)
    {
        block = VecDecrypt(block, VecLoad(  i*16,   keys));
        block = VecDecrypt(block, VecLoad((i-1)*16, keys));
    }

    block = VecDecrypt(block, VecLoad(16, keys));
    block = VecDecryptLast(block, VecLoad(0, keys));
}

static inline void POWER8_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
            uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
            uint32x4_p &block5, const word32 *subkeys, unsigned int rounds)
{
    CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
    const byte *keys = reinterpret_cast<const byte*>(subkeys);

    uint32x4_p k = VecLoad(rounds*16, keys);
    block0 = VecXor(block0, k);
    block1 = VecXor(block1, k);
    block2 = VecXor(block2, k);
    block3 = VecXor(block3, k);
    block4 = VecXor(block4, k);
    block5 = VecXor(block5, k);

    for (size_t i=rounds-1; i>0; --i)
    {
        k = VecLoad(i*16, keys);
        block0 = VecDecrypt(block0, k);
        block1 = VecDecrypt(block1, k);
        block2 = VecDecrypt(block2, k);
        block3 = VecDecrypt(block3, k);
        block4 = VecDecrypt(block4, k);
        block5 = VecDecrypt(block5, k);
    }

    k = VecLoad(0, keys);
    block0 = VecDecryptLast(block0, k);
    block1 = VecDecryptLast(block1, k);
    block2 = VecDecryptLast(block2, k);
    block3 = VecDecryptLast(block3, k);
    block4 = VecDecryptLast(block4, k);
    block5 = VecDecryptLast(block5, k);
}

ANONYMOUS_NAMESPACE_END

void Rijndael_UncheckedSetKey_POWER8(const byte* userKey, size_t keyLen, word32* rk, const byte* Se)
{
    const size_t rounds = keyLen / 4 + 6;
    const word32 *rc = s_rconBE;
    word32 *rkey = rk, temp;

    GetUserKey(BIG_ENDIAN_ORDER, rkey, keyLen/4, userKey, keyLen);

    // keySize: m_key allocates 4*(rounds+1) word32's.
    const size_t keySize = 4*(rounds+1);
    const word32* end = rkey + keySize;

    while (true)
    {
        temp  = rkey[keyLen/4-1];
        word32 x = (word32(Se[GETBYTE(temp, 2)]) << 24) ^ (word32(Se[GETBYTE(temp, 1)]) << 16) ^
                    (word32(Se[GETBYTE(temp, 0)]) << 8) ^ Se[GETBYTE(temp, 3)];
        rkey[keyLen/4] = rkey[0] ^ x ^ *(rc++);
        rkey[keyLen/4+1] = rkey[1] ^ rkey[keyLen/4];
        rkey[keyLen/4+2] = rkey[2] ^ rkey[keyLen/4+1];
        rkey[keyLen/4+3] = rkey[3] ^ rkey[keyLen/4+2];

        if (rkey + keyLen/4 + 4 == end)
            break;

        if (keyLen == 24)
        {
            rkey[10] = rkey[ 4] ^ rkey[ 9];
            rkey[11] = rkey[ 5] ^ rkey[10];
        }
        else if (keyLen == 32)
        {
            temp = rkey[11];
            rkey[12] = rkey[ 4] ^ (word32(Se[GETBYTE(temp, 3)]) << 24) ^ (word32(Se[GETBYTE(temp, 2)]) << 16) ^ (word32(Se[GETBYTE(temp, 1)]) << 8) ^ Se[GETBYTE(temp, 0)];
            rkey[13] = rkey[ 5] ^ rkey[12];
            rkey[14] = rkey[ 6] ^ rkey[13];
            rkey[15] = rkey[ 7] ^ rkey[14];
        }
        rkey += keyLen/4;
    }

#if (CRYPTOPP_LITTLE_ENDIAN)
    rkey = rk;
    const uint8x16_p mask = ((uint8x16_p){12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3});
    const uint8x16_p zero = {0};

    unsigned int i=0;
    for (i=0; i<rounds; i+=2, rkey+=8)
    {
        const uint8x16_p d1 = vec_vsx_ld( 0, (uint8_t*)rkey);
        const uint8x16_p d2 = vec_vsx_ld(16, (uint8_t*)rkey);
        vec_vsx_st(VecPermute(d1, zero, mask),  0, (uint8_t*)rkey);
        vec_vsx_st(VecPermute(d2, zero, mask), 16, (uint8_t*)rkey);
    }

    for ( ; i<rounds+1; i++, rkey+=4)
    {
        const uint8x16_p d = vec_vsx_ld( 0, (uint8_t*)rkey);
        vec_vsx_st(VecPermute(d, zero, mask),  0, (uint8_t*)rkey);
    }
#endif
}

size_t Rijndael_Enc_AdvancedProcessBlocks128_6x1_ALTIVEC(const word32 *subKeys, size_t rounds,
            const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
    return AdvancedProcessBlocks128_6x1_ALTIVEC(POWER8_Enc_Block, POWER8_Enc_6_Blocks,
        subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}

size_t Rijndael_Dec_AdvancedProcessBlocks128_6x1_ALTIVEC(const word32 *subKeys, size_t rounds,
            const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
    return AdvancedProcessBlocks128_6x1_ALTIVEC(POWER8_Dec_Block, POWER8_Dec_6_Blocks,
        subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}

#endif  // CRYPTOPP_POWER8_AES_AVAILABLE
NAMESPACE_END