File: secblock.h

package info (click to toggle)
libcrypto++ 8.2.0-2
  • links: PTS
  • area: main
  • in suites: experimental
  • size: 22,780 kB
  • sloc: cpp: 105,015; sh: 7,353; asm: 5,120; makefile: 316
file content (1135 lines) | stat: -rw-r--r-- 47,939 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
// secblock.h - originally written and placed in the public domain by Wei Dai

/// \file secblock.h
/// \brief Classes and functions for secure memory allocations.

#ifndef CRYPTOPP_SECBLOCK_H
#define CRYPTOPP_SECBLOCK_H

#include "config.h"
#include "stdcpp.h"
#include "misc.h"

#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4231 4275 4700)
# if (CRYPTOPP_MSC_VERSION >= 1400)
#  pragma warning(disable: 6011 6386 28193)
# endif
#endif

NAMESPACE_BEGIN(CryptoPP)

// ************** secure memory allocation ***************

/// \brief Base class for all allocators used by SecBlock
/// \tparam T the class or type
template<class T>
class AllocatorBase
{
public:
	typedef T value_type;
	typedef size_t size_type;
	typedef std::ptrdiff_t difference_type;
	typedef T * pointer;
	typedef const T * const_pointer;
	typedef T & reference;
	typedef const T & const_reference;

	pointer address(reference r) const {return (&r);}
	const_pointer address(const_reference r) const {return (&r); }
	void construct(pointer p, const T& val) {new (p) T(val);}
	void destroy(pointer p) {CRYPTOPP_UNUSED(p); p->~T();}

	/// \brief Returns the maximum number of elements the allocator can provide
	/// \details <tt>ELEMS_MAX</tt> is the maximum number of elements the
	///   <tt>Allocator</tt> can provide. The value of <tt>ELEMS_MAX</tt> is
	///   <tt>SIZE_MAX/sizeof(T)</tt>. <tt>std::numeric_limits</tt> was avoided
	///   due to lack of <tt>constexpr</tt>-ness in C++03 and below.
	/// \note In C++03 and below <tt>ELEMS_MAX</tt> is a static data member of type
	///   <tt>size_type</tt>. In C++11 and above <tt>ELEMS_MAX</tt> is an <tt>enum</tt>
	///   inheriting from <tt>size_type</tt>. In both cases <tt>ELEMS_MAX</tt> can be
	///   used before objects are fully constructed, and it does not suffer the
	///   limitations of class methods like <tt>max_size</tt>.
	/// \sa <A HREF="http://github.com/weidai11/cryptopp/issues/346">Issue 346/CVE-2016-9939</A>
	/// \since Crypto++ 6.0
#if defined(CRYPTOPP_DOXYGEN_PROCESSING)
	static const size_type ELEMS_MAX = ...;
#elif defined(_MSC_VER) && (_MSC_VER <= 1400)
	static const size_type ELEMS_MAX = (~(size_type)0)/sizeof(T);
#elif defined(CRYPTOPP_CXX11_ENUM)
	enum : size_type {ELEMS_MAX = SIZE_MAX/sizeof(T)};
#else
	static const size_type ELEMS_MAX = SIZE_MAX/sizeof(T);
#endif

	/// \brief Returns the maximum number of elements the allocator can provide
	/// \returns the maximum number of elements the allocator can provide
	/// \details Internally, preprocessor macros are used rather than std::numeric_limits
	///   because the latter is not a constexpr. Some compilers, like Clang, do not
	///   optimize it well under all circumstances. Compilers like GCC, ICC and MSVC appear
	///   to optimize it well in either form.
	CRYPTOPP_CONSTEXPR size_type max_size() const {return ELEMS_MAX;}

#if defined(__SUNPRO_CC)
	// https://github.com/weidai11/cryptopp/issues/770
	// and https://stackoverflow.com/q/53999461/608639
	CRYPTOPP_CONSTEXPR size_type max_size(size_type n) const {return (~(size_type)0)/n;}
#endif

#if defined(CRYPTOPP_CXX11_VARIADIC_TEMPLATES) || defined(CRYPTOPP_DOXYGEN_PROCESSING)

	/// \brief Constructs a new V using variadic arguments
	/// \tparam V the type to be forwarded
	/// \tparam Args the arguments to be forwarded
	/// \param ptr pointer to type V
	/// \param args variadic arguments
	/// \details This is a C++11 feature. It is available when CRYPTOPP_CXX11_VARIADIC_TEMPLATES
	///   is defined. The define is controlled by compiler versions detected in config.h.
    template<typename V, typename... Args>
    void construct(V* ptr, Args&&... args) {::new ((void*)ptr) V(std::forward<Args>(args)...);}

	/// \brief Destroys an V constructed with variadic arguments
	/// \tparam V the type to be forwarded
	/// \details This is a C++11 feature. It is available when CRYPTOPP_CXX11_VARIADIC_TEMPLATES
	///   is defined. The define is controlled by compiler versions detected in config.h.
    template<typename V>
    void destroy(V* ptr) {if (ptr) ptr->~V();}

#endif

protected:

	/// \brief Verifies the allocator can satisfy a request based on size
	/// \param size the size of the allocation, in elements
	/// \throws InvalidArgument
	/// \details CheckSize verifies the number of elements requested is valid.
	/// \details If size is greater than max_size(), then InvalidArgument is thrown.
	///   The library throws InvalidArgument if the size is too large to satisfy.
	/// \details Internally, preprocessor macros are used rather than std::numeric_limits
	///   because the latter is not a constexpr. Some compilers, like Clang, do not
	///   optimize it well under all circumstances. Compilers like GCC, ICC and MSVC appear
	///   to optimize it well in either form.
	/// \details The <tt>sizeof(T) != 1</tt> in the condition attempts to help the
	///   compiler optimize the check for byte types. Coverity findings for
	///   CONSTANT_EXPRESSION_RESULT were generated without it. For byte types,
	///   size never exceeded ELEMS_MAX but the code was not removed.
	/// \note size is the count of elements, and not the number of bytes
	static void CheckSize(size_t size)
	{
		// Squash MSC C4100 warning for size. Also see commit 42b7c4ea5673.
		CRYPTOPP_UNUSED(size);
		// C++ throws std::bad_alloc (C++03) or std::bad_array_new_length (C++11) here.
		if (sizeof(T) != 1 && size > ELEMS_MAX)
			throw InvalidArgument("AllocatorBase: requested size would cause integer overflow");
	}
};

#define CRYPTOPP_INHERIT_ALLOCATOR_TYPES	\
typedef typename AllocatorBase<T>::value_type value_type;\
typedef typename AllocatorBase<T>::size_type size_type;\
typedef typename AllocatorBase<T>::difference_type difference_type;\
typedef typename AllocatorBase<T>::pointer pointer;\
typedef typename AllocatorBase<T>::const_pointer const_pointer;\
typedef typename AllocatorBase<T>::reference reference;\
typedef typename AllocatorBase<T>::const_reference const_reference;

/// \brief Reallocation function
/// \tparam T the class or type
/// \tparam A the class or type's allocator
/// \param alloc the allocator
/// \param oldPtr the previous allocation
/// \param oldSize the size of the previous allocation
/// \param newSize the new, requested size
/// \param preserve flag that indicates if the old allocation should be preserved
/// \note oldSize and newSize are the count of elements, and not the
///   number of bytes.
template <class T, class A>
typename A::pointer StandardReallocate(A& alloc, T *oldPtr, typename A::size_type oldSize, typename A::size_type newSize, bool preserve)
{
	CRYPTOPP_ASSERT((oldPtr && oldSize) || !(oldPtr || oldSize));
	if (oldSize == newSize)
		return oldPtr;

	if (preserve)
	{
		typename A::pointer newPointer = alloc.allocate(newSize, NULLPTR);
		const size_t copySize = STDMIN(oldSize, newSize) * sizeof(T);

		if (oldPtr && newPointer) {memcpy_s(newPointer, copySize, oldPtr, copySize);}
		alloc.deallocate(oldPtr, oldSize);
		return newPointer;
	}
	else
	{
		alloc.deallocate(oldPtr, oldSize);
		return alloc.allocate(newSize, NULLPTR);
	}
}

/// \brief Allocates a block of memory with cleanup
/// \tparam T class or type
/// \tparam T_Align16 boolean that determines whether allocations should be aligned on a 16-byte boundary
/// \details If T_Align16 is true, then AllocatorWithCleanup calls AlignedAllocate()
///    for memory allocations. If T_Align16 is false, then AllocatorWithCleanup() calls
///    UnalignedAllocate() for memory allocations.
/// \details Template parameter T_Align16 is effectively controlled by cryptlib.h and mirrors
///    CRYPTOPP_BOOL_ALIGN16. CRYPTOPP_BOOL_ALIGN16 is often used as the template parameter.
template <class T, bool T_Align16 = false>
class AllocatorWithCleanup : public AllocatorBase<T>
{
public:
	CRYPTOPP_INHERIT_ALLOCATOR_TYPES

	/// \brief Allocates a block of memory
	/// \param ptr the size of the allocation
	/// \param size the size of the allocation, in elements
	/// \returns a memory block
	/// \throws InvalidArgument
	/// \details allocate() first checks the size of the request. If it is non-0
	///   and less than max_size(), then an attempt is made to fulfill the request using either
	///   AlignedAllocate() or UnalignedAllocate().
	/// \details AlignedAllocate() is used if T_Align16 is true.
	///   UnalignedAllocate() used if T_Align16 is false.
	/// \details This is the C++ *Placement New* operator. ptr is not used, and the function
	///   CRYPTOPP_ASSERTs in Debug builds if ptr is non-NULL.
	/// \sa CallNewHandler() for the methods used to recover from a failed
	///   allocation attempt.
	/// \note size is the count of elements, and not the number of bytes
	pointer allocate(size_type size, const void *ptr = NULLPTR)
	{
		CRYPTOPP_UNUSED(ptr); CRYPTOPP_ASSERT(ptr == NULLPTR);
		this->CheckSize(size);
		if (size == 0)
			return NULLPTR;

#if CRYPTOPP_BOOL_ALIGN16
		// TODO: Does this need the test 'size*sizeof(T) >= 16'?
		if (T_Align16 && size)
			return reinterpret_cast<pointer>(AlignedAllocate(size*sizeof(T)));
#endif

		return reinterpret_cast<pointer>(UnalignedAllocate(size*sizeof(T)));
	}

	/// \brief Deallocates a block of memory
	/// \param ptr the pointer for the allocation
	/// \param size the size of the allocation, in elements
	/// \details Internally, SecureWipeArray() is called before deallocating the memory.
	///   Once the memory block is wiped or zeroized, AlignedDeallocate() or
	///   UnalignedDeallocate() is called.
	/// \details AlignedDeallocate() is used if T_Align16 is true.
	///   UnalignedDeallocate() used if T_Align16 is false.
	void deallocate(void *ptr, size_type size)
	{
		// This will fire if SetMark(0) was called in the SecBlock
		//  Our self tests exercise it, disable it now.
		// CRYPTOPP_ASSERT((ptr && size) || !(ptr || size));
		SecureWipeArray(reinterpret_cast<pointer>(ptr), size);

#if CRYPTOPP_BOOL_ALIGN16
		if (T_Align16 && size)
			return AlignedDeallocate(ptr);
#endif

		UnalignedDeallocate(ptr);
	}

	/// \brief Reallocates a block of memory
	/// \param oldPtr the previous allocation
	/// \param oldSize the size of the previous allocation
	/// \param newSize the new, requested size
	/// \param preserve flag that indicates if the old allocation should be preserved
	/// \returns pointer to the new memory block
	/// \details Internally, reallocate() calls StandardReallocate().
	/// \details If preserve is true, then index 0 is used to begin copying the
	///   old memory block to the new one. If the block grows, then the old array
	///   is copied in its entirety. If the block shrinks, then only newSize
	///   elements are copied from the old block to the new one.
	/// \note oldSize and newSize are the count of elements, and not the
	///   number of bytes.
	pointer reallocate(T *oldPtr, size_type oldSize, size_type newSize, bool preserve)
	{
		CRYPTOPP_ASSERT((oldPtr && oldSize) || !(oldPtr || oldSize));
		return StandardReallocate(*this, oldPtr, oldSize, newSize, preserve);
	}

	/// \brief Template class member Rebind
	/// \tparam V bound class or type
	/// \details Rebind allows a container class to allocate a different type of object
	///   to store elements. For example, a std::list will allocate std::list_node to
	///   store elements in the list.
	/// \details VS.NET STL enforces the policy of "All STL-compliant allocators
	///   have to provide a template class member called rebind".
    template <class V> struct rebind { typedef AllocatorWithCleanup<V, T_Align16> other; };
#if _MSC_VER >= 1500
	AllocatorWithCleanup() {}
	template <class V, bool A> AllocatorWithCleanup(const AllocatorWithCleanup<V, A> &) {}
#endif
};

CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<byte>;
CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<word16>;
CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<word32>;
CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<word64>;
#if defined(CRYPTOPP_WORD128_AVAILABLE)
CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<word128, true>; // for Integer
#endif
#if CRYPTOPP_BOOL_X86
CRYPTOPP_DLL_TEMPLATE_CLASS AllocatorWithCleanup<word, true>;	 // for Integer
#endif

/// \brief NULL allocator
/// \tparam T class or type
/// \details A NullAllocator is useful for fixed-size, stack based allocations
///   (i.e., static arrays used by FixedSizeAllocatorWithCleanup).
/// \details A NullAllocator always returns 0 for max_size(), and always returns
///   NULL for allocation requests. Though the allocator does not allocate at
///   runtime, it does perform a secure wipe or zeroization during cleanup.
template <class T>
class NullAllocator : public AllocatorBase<T>
{
public:
	//LCOV_EXCL_START
	CRYPTOPP_INHERIT_ALLOCATOR_TYPES

	// TODO: should this return NULL or throw bad_alloc? Non-Windows C++ standard
	// libraries always throw. And late mode Windows throws. Early model Windows
	// (circa VC++ 6.0) returned NULL.
	pointer allocate(size_type n, const void* unused = NULLPTR)
	{
		CRYPTOPP_UNUSED(n); CRYPTOPP_UNUSED(unused);
		CRYPTOPP_ASSERT(false); return NULLPTR;
	}

	void deallocate(void *p, size_type n)
	{
		CRYPTOPP_UNUSED(p); CRYPTOPP_UNUSED(n);
		CRYPTOPP_ASSERT(false);
	}

	CRYPTOPP_CONSTEXPR size_type max_size() const {return 0;}
	//LCOV_EXCL_STOP
};

/// \brief Static secure memory block with cleanup
/// \tparam T class or type
/// \tparam S fixed-size of the stack-based memory block, in elements
/// \tparam T_Align16 boolean that determines whether allocations should
///    be aligned on a 16-byte boundary
/// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
///    based allocation at compile time. The class can grow its memory
///    block at runtime if a suitable allocator is available. If size
///    grows beyond S and a suitable allocator is available, then the
///    statically allocated array is obsoleted.
/// \note This allocator can't be used with standard collections because
///   they require that all objects of the same allocator type are equivalent.
template <class T, size_t S, class A = NullAllocator<T>, bool T_Align16 = false>
class FixedSizeAllocatorWithCleanup : public AllocatorBase<T>
{
	// The body of FixedSizeAllocatorWithCleanup is provided in the two
	// partial specializations that follow. The two specialiations
	// pivot on the boolean template parameter T_Align16. AIX, Solaris,
	// IBM XLC and SunCC receive a little extra help. We managed to
	// clear most of the warnings.
};

/// \brief Static secure memory block with cleanup
/// \tparam T class or type
/// \tparam S fixed-size of the stack-based memory block, in elements
/// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
///    based allocation at compile time. The class can grow its memory
///    block at runtime if a suitable allocator is available. If size
///    grows beyond S and a suitable allocator is available, then the
///    statically allocated array is obsoleted.
/// \note This allocator can't be used with standard collections because
///   they require that all objects of the same allocator type are equivalent.
template <class T, size_t S, class A>
class FixedSizeAllocatorWithCleanup<T, S, A, true> : public AllocatorBase<T>
{
public:
	CRYPTOPP_INHERIT_ALLOCATOR_TYPES

	/// \brief Constructs a FixedSizeAllocatorWithCleanup
	FixedSizeAllocatorWithCleanup() : m_allocated(false) {}

	/// \brief Allocates a block of memory
	/// \param size the count elements in the memory block
	/// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-based
	///   allocation at compile time. If size is less than or equal to
	///   <tt>S</tt>, then a pointer to the static array is returned.
	/// \details The class can grow its memory block at runtime if a suitable
	///   allocator is available. If size grows beyond S and a suitable
	///   allocator is available, then the statically allocated array is
	///   obsoleted. If a suitable allocator is not available, as with a
	///   NullAllocator, then the function returns NULL and a runtime error
	///   eventually occurs.
	/// \sa reallocate(), SecBlockWithHint
	pointer allocate(size_type size)
	{
		CRYPTOPP_ASSERT(IsAlignedOn(m_array, 8));

		if (size <= S && !m_allocated)
		{
			m_allocated = true;
			return GetAlignedArray();
		}
		else
			return m_fallbackAllocator.allocate(size);
	}

	/// \brief Allocates a block of memory
	/// \param size the count elements in the memory block
	/// \param hint an unused hint
	/// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
	///   based allocation at compile time. If size is less than or equal to
	///   S, then a pointer to the static array is returned.
	/// \details The class can grow its memory block at runtime if a suitable
	///   allocator is available. If size grows beyond S and a suitable
	///   allocator is available, then the statically allocated array is
	///   obsoleted. If a suitable allocator is not available, as with a
	///   NullAllocator, then the function returns NULL and a runtime error
	///   eventually occurs.
	/// \sa reallocate(), SecBlockWithHint
	pointer allocate(size_type size, const void *hint)
	{
		if (size <= S && !m_allocated)
		{
			m_allocated = true;
			return GetAlignedArray();
		}
		else
			return m_fallbackAllocator.allocate(size, hint);
	}

	/// \brief Deallocates a block of memory
	/// \param ptr a pointer to the memory block to deallocate
	/// \param size the count elements in the memory block
	/// \details The memory block is wiped or zeroized before deallocation.
	///   If the statically allocated memory block is active, then no
	///   additional actions are taken after the wipe.
	/// \details If a dynamic memory block is active, then the pointer and
	///   size are passed to the allocator for deallocation.
	void deallocate(void *ptr, size_type size)
	{
		if (ptr == GetAlignedArray())
		{
			// If the m_allocated assert fires then the bit twiddling for
			// GetAlignedArray() is probably incorrect for the platform.
			// Be sure to check CRYPTOPP_ALIGN_DATA(8). The platform may
			// not have a way to declaritively align data to 8.
			CRYPTOPP_ASSERT(size <= S);
			CRYPTOPP_ASSERT(m_allocated);
			m_allocated = false;
			SecureWipeArray(reinterpret_cast<pointer>(ptr), size);
		}
		else
			m_fallbackAllocator.deallocate(ptr, size);
	}

	/// \brief Reallocates a block of memory
	/// \param oldPtr the previous allocation
	/// \param oldSize the size of the previous allocation
	/// \param newSize the new, requested size
	/// \param preserve flag that indicates if the old allocation should
	///   be preserved
	/// \returns pointer to the new memory block
	/// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
	///   based allocation at compile time. If size is less than or equal to
	///   S, then a pointer to the static array is returned.
	/// \details The class can grow its memory block at runtime if a suitable
	///   allocator is available. If size grows beyond S and a suitable
	///   allocator is available, then the statically allocated array is
	///   obsoleted. If a suitable allocator is not available, as with a
	///   NullAllocator, then the function returns NULL and a runtime error
	///   eventually occurs.
	/// \note size is the count of elements, and not the number of bytes.
	/// \sa reallocate(), SecBlockWithHint
	pointer reallocate(pointer oldPtr, size_type oldSize, size_type newSize, bool preserve)
	{
		if (oldPtr == GetAlignedArray() && newSize <= S)
		{
			CRYPTOPP_ASSERT(oldSize <= S);
			if (oldSize > newSize)
				SecureWipeArray(oldPtr+newSize, oldSize-newSize);
			return oldPtr;
		}

		pointer newPointer = allocate(newSize, NULLPTR);
		if (preserve && newSize)
		{
			const size_t copySize = STDMIN(oldSize, newSize);
			memcpy_s(newPointer, sizeof(T)*newSize, oldPtr, sizeof(T)*copySize);
		}
		deallocate(oldPtr, oldSize);
		return newPointer;
	}

	CRYPTOPP_CONSTEXPR size_type max_size() const
	{
		return STDMAX(m_fallbackAllocator.max_size(), S);
	}

private:

#if defined(CRYPTOPP_BOOL_ALIGN16) && (defined(_M_X64) || defined(__x86_64__))
	// Before we can add additional platforms we need to check the
	// linker documentation for alignment behavior for stack variables.
	// CRYPTOPP_ALIGN_DATA(16) is known OK on Linux, OS X, Solaris.
	// Also see http://stackoverflow.com/a/1468656/608639.
	T* GetAlignedArray() {
		CRYPTOPP_ASSERT(IsAlignedOn(m_array, 16));
		return m_array;
	}
	CRYPTOPP_ALIGN_DATA(16) T m_array[S];

#elif defined(CRYPTOPP_BOOL_ALIGN16)

	// There be demons here... We cannot use CRYPTOPP_ALIGN_DATA(16)
	// because linkers on 32-bit machines (and some 64-bit machines)
	// align the stack to 8-bytes or less by default, not 16-bytes as
	// requested. Additionally, the AIX linker seems to use 4-bytes
	// by default. However, all linkers tested appear to honor
	// CRYPTOPP_ALIGN_DATA(8). Also see
	// http://stackoverflow.com/a/1468656/608639.
	//
	// The 16-byte alignment is achieved by padding the requested
	// size with extra elements so we have at least 16-bytes of slack
	// to work with. Then the pointer is moved down to achieve a
	// 16-byte alignment (stacks grow down).
	//
	// The additional 16-bytes introduces a small secondary issue.
	// The secondary issue is, a large T results in 0 = 8/sizeof(T).
	// The library is OK but users may hit it. So we need to guard
	// for a large T, and that is what PAD achieves.
	T* GetAlignedArray() {
		T* p_array = reinterpret_cast<T*>(static_cast<void*>((reinterpret_cast<byte*>(m_array)) + (0-reinterpret_cast<size_t>(m_array))%16));
		// Verify the 16-byte alignment
		CRYPTOPP_ASSERT(IsAlignedOn(p_array, 16));
		// Verify allocated array with pad is large enough.
		CRYPTOPP_ASSERT(p_array+S <= m_array+(S+PAD));
		return p_array;
	}

#   if defined(_AIX)
	// PAD is elements, not bytes, and rounded up to ensure no overflow.
	enum { Q = sizeof(T), PAD = (Q >= 16) ? 1 : (Q >= 8) ? 2 : (Q >= 4) ? 4 : (Q >= 2) ? 8 : 16 };
	CRYPTOPP_ALIGN_DATA(8) T m_array[S+PAD];
#   else
	// PAD is elements, not bytes, and rounded up to ensure no overflow.
	enum { Q = sizeof(T), PAD = (Q >= 8) ? 1 : (Q >= 4) ? 2 : (Q >= 2) ? 4 : 8 };
	CRYPTOPP_ALIGN_DATA(8) T m_array[S+PAD];
#   endif

#else

	// CRYPTOPP_BOOL_ALIGN16 is 0. Use natural alignment of T.
	T* GetAlignedArray() {return m_array;}
	CRYPTOPP_ALIGN_DATA(4) T m_array[S];

#endif

	A m_fallbackAllocator;
	bool m_allocated;
};

/// \brief Static secure memory block with cleanup
/// \tparam T class or type
/// \tparam S fixed-size of the stack-based memory block, in elements
/// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
///    based allocation at compile time. The class can grow its memory
///    block at runtime if a suitable allocator is available. If size
///    grows beyond S and a suitable allocator is available, then the
///    statically allocated array is obsoleted.
/// \note This allocator can't be used with standard collections because
///   they require that all objects of the same allocator type are equivalent.
template <class T, size_t S, class A>
class FixedSizeAllocatorWithCleanup<T, S, A, false> : public AllocatorBase<T>
{
public:
	CRYPTOPP_INHERIT_ALLOCATOR_TYPES

	/// \brief Constructs a FixedSizeAllocatorWithCleanup
	FixedSizeAllocatorWithCleanup() : m_allocated(false) {}

	/// \brief Allocates a block of memory
	/// \param size the count elements in the memory block
	/// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-based
	///   allocation at compile time. If size is less than or equal to
	///   <tt>S</tt>, then a pointer to the static array is returned.
	/// \details The class can grow its memory block at runtime if a suitable
	///   allocator is available. If size grows beyond S and a suitable
	///   allocator is available, then the statically allocated array is
	///   obsoleted. If a suitable allocator is not available, as with a
	///   NullAllocator, then the function returns NULL and a runtime error
	///   eventually occurs.
	/// \sa reallocate(), SecBlockWithHint
	pointer allocate(size_type size)
	{
		CRYPTOPP_ASSERT(IsAlignedOn(m_array, 8));

		if (size <= S && !m_allocated)
		{
			m_allocated = true;
			return GetAlignedArray();
		}
		else
			return m_fallbackAllocator.allocate(size);
	}

	/// \brief Allocates a block of memory
	/// \param size the count elements in the memory block
	/// \param hint an unused hint
	/// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
	///   based allocation at compile time. If size is less than or equal to
	///   S, then a pointer to the static array is returned.
	/// \details The class can grow its memory block at runtime if a suitable
	///   allocator is available. If size grows beyond S and a suitable
	///   allocator is available, then the statically allocated array is
	///   obsoleted. If a suitable allocator is not available, as with a
	///   NullAllocator, then the function returns NULL and a runtime error
	///   eventually occurs.
	/// \sa reallocate(), SecBlockWithHint
	pointer allocate(size_type size, const void *hint)
	{
		if (size <= S && !m_allocated)
		{
			m_allocated = true;
			return GetAlignedArray();
		}
		else
			return m_fallbackAllocator.allocate(size, hint);
	}

	/// \brief Deallocates a block of memory
	/// \param ptr a pointer to the memory block to deallocate
	/// \param size the count elements in the memory block
	/// \details The memory block is wiped or zeroized before deallocation.
	///   If the statically allocated memory block is active, then no
	///   additional actions are taken after the wipe.
	/// \details If a dynamic memory block is active, then the pointer and
	///   size are passed to the allocator for deallocation.
	void deallocate(void *ptr, size_type size)
	{
		if (ptr == GetAlignedArray())
		{
			// If the m_allocated assert fires then
			// something overwrote the flag.
			CRYPTOPP_ASSERT(size <= S);
			CRYPTOPP_ASSERT(m_allocated);
			m_allocated = false;
			SecureWipeArray((pointer)ptr, size);
		}
		else
			m_fallbackAllocator.deallocate(ptr, size);
	}

	/// \brief Reallocates a block of memory
	/// \param oldPtr the previous allocation
	/// \param oldSize the size of the previous allocation
	/// \param newSize the new, requested size
	/// \param preserve flag that indicates if the old allocation should
	///   be preserved
	/// \returns pointer to the new memory block
	/// \details FixedSizeAllocatorWithCleanup provides a fixed-size, stack-
	///   based allocation at compile time. If size is less than or equal to
	///   S, then a pointer to the static array is returned.
	/// \details The class can grow its memory block at runtime if a suitable
	///   allocator is available. If size grows beyond S and a suitable
	///   allocator is available, then the statically allocated array is
	///   obsoleted. If a suitable allocator is not available, as with a
	///   NullAllocator, then the function returns NULL and a runtime error
	///   eventually occurs.
	/// \note size is the count of elements, and not the number of bytes.
	/// \sa reallocate(), SecBlockWithHint
	pointer reallocate(pointer oldPtr, size_type oldSize, size_type newSize, bool preserve)
	{
		if (oldPtr == GetAlignedArray() && newSize <= S)
		{
			CRYPTOPP_ASSERT(oldSize <= S);
			if (oldSize > newSize)
				SecureWipeArray(oldPtr+newSize, oldSize-newSize);
			return oldPtr;
		}

		pointer newPointer = allocate(newSize, NULLPTR);
		if (preserve && newSize)
		{
			const size_t copySize = STDMIN(oldSize, newSize);
			memcpy_s(newPointer, sizeof(T)*newSize, oldPtr, sizeof(T)*copySize);
		}
		deallocate(oldPtr, oldSize);
		return newPointer;
	}

	CRYPTOPP_CONSTEXPR size_type max_size() const
	{
		return STDMAX(m_fallbackAllocator.max_size(), S);
	}

private:

	// The 8-byte alignments follows convention of Linux and Windows.
	// Linux and Windows receives most testing. Duplicate it here for
	// other platforms like AIX and Solaris. AIX and Solaris often use
	// alignments smaller than expected. In fact AIX caught us by
	// surprise with word16 and word32.
	T* GetAlignedArray() {return m_array;}
	CRYPTOPP_ALIGN_DATA(8) T m_array[S];

	A m_fallbackAllocator;
	bool m_allocated;
};

/// \brief Secure memory block with allocator and cleanup
/// \tparam T a class or type
/// \tparam A AllocatorWithCleanup derived class for allocation and cleanup
template <class T, class A = AllocatorWithCleanup<T> >
class SecBlock
{
public:
	typedef typename A::value_type value_type;
	typedef typename A::pointer iterator;
	typedef typename A::const_pointer const_iterator;
	typedef typename A::size_type size_type;

	/// \brief Returns the maximum number of elements the block can hold
	/// \details <tt>ELEMS_MAX</tt> is the maximum number of elements the
	///   <tt>SecBlock</tt> can hold. The value of <tt>ELEMS_MAX</tt> is
	///   <tt>SIZE_MAX/sizeof(T)</tt>. <tt>std::numeric_limits</tt> was avoided
	///   due to lack of <tt>constexpr</tt>-ness in C++03 and below.
	/// \note In C++03 and below <tt>ELEMS_MAX</tt> is a static data member of type
	///   <tt>size_type</tt>. In C++11 and above <tt>ELEMS_MAX</tt> is an <tt>enum</tt>
	///   inheriting from <tt>size_type</tt>. In both cases <tt>ELEMS_MAX</tt> can be
	///   used before objects are fully constructed, and it does not suffer the
	///   limitations of class methods like <tt>max_size</tt>.
	/// \sa <A HREF="http://github.com/weidai11/cryptopp/issues/346">Issue 346/CVE-2016-9939</A>
	/// \since Crypto++ 6.0
#if defined(CRYPTOPP_DOXYGEN_PROCESSING)
	static const size_type ELEMS_MAX = ...;
#elif defined(_MSC_VER) && (_MSC_VER <= 1400)
	static const size_type ELEMS_MAX = (~(size_type)0)/sizeof(T);
#elif defined(CRYPTOPP_CXX11_ENUM)
	enum : size_type {ELEMS_MAX = A::ELEMS_MAX};
#else
	static const size_type ELEMS_MAX = SIZE_MAX/sizeof(T);
#endif

	/// \brief Construct a SecBlock with space for size elements.
	/// \param size the size of the allocation, in elements
	/// \throws std::bad_alloc
	/// \details The elements are not initialized.
	/// \note size is the count of elements, and not the number of bytes
	explicit SecBlock(size_type size=0)
		: m_mark(ELEMS_MAX), m_size(size), m_ptr(m_alloc.allocate(size, NULLPTR)) { }

	/// \brief Copy construct a SecBlock from another SecBlock
	/// \param t the other SecBlock
	/// \throws std::bad_alloc
	SecBlock(const SecBlock<T, A> &t)
		: m_mark(t.m_mark), m_size(t.m_size), m_ptr(m_alloc.allocate(t.m_size, NULLPTR)) {
			CRYPTOPP_ASSERT((!t.m_ptr && !m_size) || (t.m_ptr && m_size));
			if (t.m_ptr) {memcpy_s(m_ptr, m_size*sizeof(T), t.m_ptr, t.m_size*sizeof(T));}
		}

	/// \brief Construct a SecBlock from an array of elements.
	/// \param ptr a pointer to an array of T
	/// \param len the number of elements in the memory block
	/// \throws std::bad_alloc
	/// \details If <tt>ptr!=NULL</tt> and <tt>len!=0</tt>, then the block is initialized from the pointer
	///    <tt>ptr</tt>. If <tt>ptr==NULL</tt> and <tt>len!=0</tt>, then the block is initialized to 0.
	///    Otherwise, the block is empty and not initialized.
	/// \note size is the count of elements, and not the number of bytes
	SecBlock(const T *ptr, size_type len)
		: m_mark(ELEMS_MAX), m_size(len), m_ptr(m_alloc.allocate(len, NULLPTR)) {
			CRYPTOPP_ASSERT((!m_ptr && !m_size) || (m_ptr && m_size));
			if (ptr && m_ptr)
				memcpy_s(m_ptr, m_size*sizeof(T), ptr, len*sizeof(T));
			else if (m_size)
				memset(m_ptr, 0, m_size*sizeof(T));
		}

	~SecBlock()
		{m_alloc.deallocate(m_ptr, STDMIN(m_size, m_mark));}

#ifdef __BORLANDC__
	operator T *() const
		{return (T*)m_ptr;}
#else
	operator const void *() const
		{return m_ptr;}
	operator void *()
		{return m_ptr;}

	operator const T *() const
		{return m_ptr;}
	operator T *()
		{return m_ptr;}
#endif

	/// \brief Provides an iterator pointing to the first element in the memory block
	/// \returns iterator pointing to the first element in the memory block
	iterator begin()
		{return m_ptr;}
	/// \brief Provides a constant iterator pointing to the first element in the memory block
	/// \returns constant iterator pointing to the first element in the memory block
	const_iterator begin() const
		{return m_ptr;}
	/// \brief Provides an iterator pointing beyond the last element in the memory block
	/// \returns iterator pointing beyond the last element in the memory block
	iterator end()
		{return m_ptr+m_size;}
	/// \brief Provides a constant iterator pointing beyond the last element in the memory block
	/// \returns constant iterator pointing beyond the last element in the memory block
	const_iterator end() const
		{return m_ptr+m_size;}

	/// \brief Provides a pointer to the first element in the memory block
	/// \returns pointer to the first element in the memory block
	typename A::pointer data() {return m_ptr;}
	/// \brief Provides a pointer to the first element in the memory block
	/// \returns constant pointer to the first element in the memory block
	typename A::const_pointer data() const {return m_ptr;}

	/// \brief Provides the count of elements in the SecBlock
	/// \returns number of elements in the memory block
	/// \note the return value is the count of elements, and not the number of bytes
	size_type size() const {return m_size;}
	/// \brief Determines if the SecBlock is empty
	/// \returns true if number of elements in the memory block is 0, false otherwise
	bool empty() const {return m_size == 0;}

	/// \brief Provides a byte pointer to the first element in the memory block
	/// \returns byte pointer to the first element in the memory block
	byte * BytePtr() {return (byte *)m_ptr;}
	/// \brief Return a byte pointer to the first element in the memory block
	/// \returns constant byte pointer to the first element in the memory block
	const byte * BytePtr() const {return (const byte *)m_ptr;}
	/// \brief Provides the number of bytes in the SecBlock
	/// \return the number of bytes in the memory block
	/// \note the return value is the number of bytes, and not count of elements.
	size_type SizeInBytes() const {return m_size*sizeof(T);}

	/// \brief Sets the number of elements to zeroize
	/// \param count the number of elements
	/// \details SetMark is a remediation for Issue 346/CVE-2016-9939 while
	///    preserving the streaming interface. The <tt>count</tt> controls the number of
	///    elements zeroized, which can be less than <tt>size</tt> or 0.
	/// \details An internal variable, <tt>m_mark</tt>, is initialized to the maximum number
	///    of elements. The maximum number of elements is <tt>ELEMS_MAX</tt>. Deallocation
	///    triggers a zeroization, and the number of elements zeroized is
	///    <tt>STDMIN(m_size, m_mark)</tt>. After zeroization, the memory is returned to the
	///    system.
	/// \details The ASN.1 decoder uses SetMark() to set the element count to 0
	///    before throwing an exception. In this case, the attacker provides a large
	///    BER encoded length (say 64MB) but only a small number of content octets
	///    (say 16). If the allocator zeroized all 64MB, then a transient DoS could
	///    occur as CPU cycles are spent zeroizing unintialized memory.
	/// \details Generally speaking, any operation which changes the size of the SecBlock
	///    results in the mark being reset to <tt>ELEMS_MAX</tt>. In particular, if Assign(),
	///    New(), Grow(), CleanNew(), CleanGrow() are called, then the count is reset to
	///    <tt>ELEMS_MAX</tt>. The list is not exhaustive.
	/// \since Crypto++ 6.0
	/// \sa <A HREF="http://github.com/weidai11/cryptopp/issues/346">Issue 346/CVE-2016-9939</A>
	void SetMark(size_t count) {m_mark = count;}

	/// \brief Set contents and size from an array
	/// \param ptr a pointer to an array of T
	/// \param len the number of elements in the memory block
	/// \details If the memory block is reduced in size, then the reclaimed memory is set to 0.
	///   Assign() resets the element count after the previous block is zeroized.
	void Assign(const T *ptr, size_type len)
	{
		New(len);
		if (m_ptr && ptr)
			{memcpy_s(m_ptr, m_size*sizeof(T), ptr, len*sizeof(T));}
		m_mark = ELEMS_MAX;
	}

	/// \brief Set contents from a value
	/// \param count the number of values to copy
	/// \param value the value, repeated count times
	/// \details If the memory block is reduced in size, then the reclaimed memory is set to 0.
	///   Assign() resets the element count after the previous block is zeroized.
	void Assign(size_type count, T value)
	{
		New(count);
		for (size_t i=0; i<count; ++i)
			m_ptr[i] = value;

		m_mark = ELEMS_MAX;
	}

	/// \brief Copy contents from another SecBlock
	/// \param t the other SecBlock
	/// \details Assign checks for self assignment.
	/// \details If the memory block is reduced in size, then the reclaimed memory is set to 0.
	///   If an assignment occurs, then Assign() resets the element count after the previous block
	///   is zeroized.
	void Assign(const SecBlock<T, A> &t)
	{
		if (this != &t)
		{
			New(t.m_size);
			if (m_ptr && t.m_ptr)
				{memcpy_s(m_ptr, m_size*sizeof(T), t, t.m_size*sizeof(T));}
		}
		m_mark = ELEMS_MAX;
	}

	/// \brief Assign contents from another SecBlock
	/// \param t the other SecBlock
	/// \details Internally, operator=() calls Assign().
	/// \details If the memory block is reduced in size, then the reclaimed memory is set to 0.
	///   If an assignment occurs, then Assign() resets the element count after the previous block
	///   is zeroized.
	SecBlock<T, A>& operator=(const SecBlock<T, A> &t)
	{
		// Assign guards for self-assignment
		Assign(t);
		return *this;
	}

	/// \brief Append contents from another SecBlock
	/// \param t the other SecBlock
	/// \details Internally, this SecBlock calls Grow and then appends t.
	SecBlock<T, A>& operator+=(const SecBlock<T, A> &t)
	{
		CRYPTOPP_ASSERT((!t.m_ptr && !t.m_size) || (t.m_ptr && t.m_size));
		if (t.m_size)
		{
			const size_type oldSize = m_size;
			if (this != &t)  // s += t
			{
				Grow(m_size+t.m_size);
				memcpy_s(m_ptr+oldSize, (m_size-oldSize)*sizeof(T), t.m_ptr, t.m_size*sizeof(T));
			}
			else            // t += t
			{
				Grow(m_size*2);
				memcpy_s(m_ptr+oldSize, (m_size-oldSize)*sizeof(T), m_ptr, oldSize*sizeof(T));
			}
		}
		m_mark = ELEMS_MAX;
		return *this;
	}

	/// \brief Construct a SecBlock from this and another SecBlock
	/// \param t the other SecBlock
	/// \returns a newly constructed SecBlock that is a conacentation of this and t
	/// \details Internally, a new SecBlock is created from this and a concatenation of t.
	SecBlock<T, A> operator+(const SecBlock<T, A> &t)
	{
		CRYPTOPP_ASSERT((!m_ptr && !m_size) || (m_ptr && m_size));
		CRYPTOPP_ASSERT((!t.m_ptr && !t.m_size) || (t.m_ptr && t.m_size));
		if(!t.m_size) return SecBlock(*this);

		SecBlock<T, A> result(m_size+t.m_size);
		if (m_size) {memcpy_s(result.m_ptr, result.m_size*sizeof(T), m_ptr, m_size*sizeof(T));}
		memcpy_s(result.m_ptr+m_size, (result.m_size-m_size)*sizeof(T), t.m_ptr, t.m_size*sizeof(T));
		return result;
	}

	/// \brief Bitwise compare two SecBlocks
	/// \param t the other SecBlock
	/// \returns true if the size and bits are equal, false otherwise
	/// \details Uses a constant time compare if the arrays are equal size. The constant time
	///    compare is VerifyBufsEqual() found in misc.h.
	/// \sa operator!=()
	bool operator==(const SecBlock<T, A> &t) const
	{
		return m_size == t.m_size &&
			VerifyBufsEqual(reinterpret_cast<const byte*>(m_ptr), reinterpret_cast<const byte*>(t.m_ptr), m_size*sizeof(T));
	}

	/// \brief Bitwise compare two SecBlocks
	/// \param t the other SecBlock
	/// \returns true if the size and bits are equal, false otherwise
	/// \details Uses a constant time compare if the arrays are equal size. The constant time
	///    compare is VerifyBufsEqual() found in misc.h.
	/// \details Internally, operator!=() returns the inverse of operator==().
	/// \sa operator==()
	bool operator!=(const SecBlock<T, A> &t) const
	{
		return !operator==(t);
	}

	/// \brief Change size without preserving contents
	/// \param newSize the new size of the memory block
	/// \details Old content is not preserved. If the memory block is reduced in size,
	///    then the reclaimed memory is set to 0. If the memory block grows in size, then
	///    the new memory is not initialized. New() resets the element count after the
	///    previous block is zeroized.
	/// \details Internally, this SecBlock calls reallocate().
	/// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
	void New(size_type newSize)
	{
		m_ptr = m_alloc.reallocate(m_ptr, m_size, newSize, false);
		m_size = newSize;
		m_mark = ELEMS_MAX;
	}

	/// \brief Change size without preserving contents
	/// \param newSize the new size of the memory block
	/// \details Old content is not preserved. If the memory block is reduced in size,
	///    then the reclaimed content is set to 0. If the memory block grows in size, then
	///    the new memory is initialized to 0. CleanNew() resets the element count after the
	///    previous block is zeroized.
	/// \details Internally, this SecBlock calls New().
	/// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
	void CleanNew(size_type newSize)
	{
		New(newSize);
		if (m_ptr) {memset_z(m_ptr, 0, m_size*sizeof(T));}
		m_mark = ELEMS_MAX;
	}

	/// \brief Change size and preserve contents
	/// \param newSize the new size of the memory block
	/// \details Old content is preserved. New content is not initialized.
	/// \details Internally, this SecBlock calls reallocate() when size must increase. If the
	///    size does not increase, then Grow() does not take action. If the size must
	///    change, then use resize(). Grow() resets the element count after the
	///    previous block is zeroized.
	/// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
	void Grow(size_type newSize)
	{
		if (newSize > m_size)
		{
			m_ptr = m_alloc.reallocate(m_ptr, m_size, newSize, true);
			m_size = newSize;
		}
		m_mark = ELEMS_MAX;
	}

	/// \brief Change size and preserve contents
	/// \param newSize the new size of the memory block
	/// \details Old content is preserved. New content is initialized to 0.
	/// \details Internally, this SecBlock calls reallocate() when size must increase. If the
	///    size does not increase, then CleanGrow() does not take action. If the size must
	///    change, then use resize(). CleanGrow() resets the element count after the
	///    previous block is zeroized.
	/// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
	void CleanGrow(size_type newSize)
	{
		if (newSize > m_size)
		{
			m_ptr = m_alloc.reallocate(m_ptr, m_size, newSize, true);
			memset_z(m_ptr+m_size, 0, (newSize-m_size)*sizeof(T));
			m_size = newSize;
		}
		m_mark = ELEMS_MAX;
	}

	/// \brief Change size and preserve contents
	/// \param newSize the new size of the memory block
	/// \details Old content is preserved. If the memory block grows in size, then
	///    new memory is not initialized. resize() resets the element count after
	///    the previous block is zeroized.
	/// \details Internally, this SecBlock calls reallocate().
	/// \sa New(), CleanNew(), Grow(), CleanGrow(), resize()
	void resize(size_type newSize)
	{
		m_ptr = m_alloc.reallocate(m_ptr, m_size, newSize, true);
		m_size = newSize;
		m_mark = ELEMS_MAX;
	}

	/// \brief Swap contents with another SecBlock
	/// \param b the other SecBlock
	/// \details Internally, std::swap() is called on m_alloc, m_size and m_ptr.
	void swap(SecBlock<T, A> &b)
	{
		// Swap must occur on the allocator in case its FixedSize that spilled into the heap.
		std::swap(m_alloc, b.m_alloc);
		std::swap(m_mark, b.m_mark);
		std::swap(m_size, b.m_size);
		std::swap(m_ptr, b.m_ptr);
	}

protected:
	A m_alloc;
	size_type m_mark, m_size;
	T *m_ptr;
};

#ifdef CRYPTOPP_DOXYGEN_PROCESSING
/// \brief \ref SecBlock "SecBlock<byte>" typedef.
class SecByteBlock : public SecBlock<byte> {};
/// \brief \ref SecBlock "SecBlock<word>" typedef.
class SecWordBlock : public SecBlock<word> {};
/// \brief SecBlock using \ref AllocatorWithCleanup "AllocatorWithCleanup<byte, true>" typedef
class AlignedSecByteBlock : public SecBlock<byte, AllocatorWithCleanup<byte, true> > {};
#else
typedef SecBlock<byte> SecByteBlock;
typedef SecBlock<word> SecWordBlock;
typedef SecBlock<byte, AllocatorWithCleanup<byte, true> > AlignedSecByteBlock;
#endif

// No need for move semantics on derived class *if* the class does not add any
//   data members; see http://stackoverflow.com/q/31755703, and Rule of {0|3|5}.

/// \brief Fixed size stack-based SecBlock
/// \tparam T class or type
/// \tparam S fixed-size of the stack-based memory block, in elements
/// \tparam A AllocatorBase derived class for allocation and cleanup
template <class T, unsigned int S, class A = FixedSizeAllocatorWithCleanup<T, S> >
class FixedSizeSecBlock : public SecBlock<T, A>
{
public:
	/// \brief Construct a FixedSizeSecBlock
	explicit FixedSizeSecBlock() : SecBlock<T, A>(S) {}
};

/// \brief Fixed size stack-based SecBlock with 16-byte alignment
/// \tparam T class or type
/// \tparam S fixed-size of the stack-based memory block, in elements
/// \tparam T_Align16 boolean that determines whether allocations should be aligned on a 16-byte boundary
template <class T, unsigned int S, bool T_Align16 = true>
class FixedSizeAlignedSecBlock : public FixedSizeSecBlock<T, S, FixedSizeAllocatorWithCleanup<T, S, NullAllocator<T>, T_Align16> >
{
};

/// \brief Stack-based SecBlock that grows into the heap
/// \tparam T class or type
/// \tparam S fixed-size of the stack-based memory block, in elements
/// \tparam A AllocatorBase derived class for allocation and cleanup
template <class T, unsigned int S, class A = FixedSizeAllocatorWithCleanup<T, S, AllocatorWithCleanup<T> > >
class SecBlockWithHint : public SecBlock<T, A>
{
public:
	/// construct a SecBlockWithHint with a count of elements
	explicit SecBlockWithHint(size_t size) : SecBlock<T, A>(size) {}
};

template<class T, bool A, class V, bool B>
inline bool operator==(const CryptoPP::AllocatorWithCleanup<T, A>&, const CryptoPP::AllocatorWithCleanup<V, B>&) {return (true);}
template<class T, bool A, class V, bool B>
inline bool operator!=(const CryptoPP::AllocatorWithCleanup<T, A>&, const CryptoPP::AllocatorWithCleanup<V, B>&) {return (false);}

NAMESPACE_END

NAMESPACE_BEGIN(std)
template <class T, class A>
inline void swap(CryptoPP::SecBlock<T, A> &a, CryptoPP::SecBlock<T, A> &b)
{
	a.swap(b);
}

#if defined(_STLP_DONT_SUPPORT_REBIND_MEMBER_TEMPLATE) || (defined(_STLPORT_VERSION) && !defined(_STLP_MEMBER_TEMPLATE_CLASSES))
// working for STLport 5.1.3 and MSVC 6 SP5
template <class _Tp1, class _Tp2>
inline CryptoPP::AllocatorWithCleanup<_Tp2>&
__stl_alloc_rebind(CryptoPP::AllocatorWithCleanup<_Tp1>& __a, const _Tp2*)
{
	return (CryptoPP::AllocatorWithCleanup<_Tp2>&)(__a);
}
#endif

NAMESPACE_END

#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif

#endif