File: simple.h

package info (click to toggle)
libcrypto++ 8.2.0-2
  • links: PTS
  • area: main
  • in suites: experimental
  • size: 22,780 kB
  • sloc: cpp: 105,015; sh: 7,353; asm: 5,120; makefile: 316
file content (365 lines) | stat: -rw-r--r-- 17,261 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
// simple.h - originally written and placed in the public domain by Wei Dai

/// \file simple.h
/// \brief Classes providing basic library services.

#ifndef CRYPTOPP_SIMPLE_H
#define CRYPTOPP_SIMPLE_H

#include "config.h"

#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4127 4189)
#endif

#include "cryptlib.h"
#include "misc.h"

NAMESPACE_BEGIN(CryptoPP)

/// \brief Base class for identifying alogorithm
/// \tparam BASE base class from which to derive
/// \tparam DERIVED class which to clone
template <class DERIVED, class BASE>
class CRYPTOPP_NO_VTABLE ClonableImpl : public BASE
{
public:
	Clonable * Clone() const {return new DERIVED(*static_cast<const DERIVED *>(this));}
};

/// \brief Base class information
/// \tparam BASE an Algorithm derived class
/// \tparam ALGORITHM_INFO an Algorithm derived class
/// \details AlgorithmImpl provides StaticAlgorithmName from the template parameter BASE
template <class BASE, class ALGORITHM_INFO=BASE>
class CRYPTOPP_NO_VTABLE AlgorithmImpl : public BASE
{
public:
	/// \brief The algorithm name
	/// \returns the algorithm name
	/// \details StaticAlgorithmName returns the algorithm's name as a static member function.
	///    The name is taken from information provided by BASE.
	static std::string CRYPTOPP_API StaticAlgorithmName() {return ALGORITHM_INFO::StaticAlgorithmName();}
	/// \brief The algorithm name
	/// \returns the algorithm name
	/// \details AlgorithmName returns the algorithm's name as a member function.
	///    The name is is acquired by calling StaticAlgorithmName.
	std::string AlgorithmName() const {return ALGORITHM_INFO::StaticAlgorithmName();}
};

/// \brief Exception thrown when an invalid key length is encountered
class CRYPTOPP_DLL InvalidKeyLength : public InvalidArgument
{
public:
	explicit InvalidKeyLength(const std::string &algorithm, size_t length) : InvalidArgument(algorithm + ": " + IntToString(length) + " is not a valid key length") {}
};

/// \brief Exception thrown when an invalid number of rounds is encountered
class CRYPTOPP_DLL InvalidRounds : public InvalidArgument
{
public:
	explicit InvalidRounds(const std::string &algorithm, unsigned int rounds) : InvalidArgument(algorithm + ": " + IntToString(rounds) + " is not a valid number of rounds") {}
};

/// \brief Exception thrown when an invalid block size is encountered
class CRYPTOPP_DLL InvalidBlockSize : public InvalidArgument
{
public:
	explicit InvalidBlockSize(const std::string &algorithm, size_t length) : InvalidArgument(algorithm + ": " + IntToString(length) + " is not a valid block size") {}
};

/// \brief Exception thrown when an invalid derived key length is encountered
class CRYPTOPP_DLL InvalidDerivedLength : public InvalidArgument
{
public:
	explicit InvalidDerivedLength(const std::string &algorithm, size_t length) : InvalidArgument(algorithm + ": " + IntToString(length) + " is not a valid derived key length") {}
};

/// \brief Exception thrown when an invalid personalization string length is encountered
class CRYPTOPP_DLL InvalidPersonalizationLength : public InvalidArgument
{
public:
	explicit InvalidPersonalizationLength(const std::string &algorithm, size_t length) : InvalidArgument(algorithm + ": " + IntToString(length) + " is not a valid salt length") {}
};

/// \brief Exception thrown when an invalid salt length is encountered
class CRYPTOPP_DLL InvalidSaltLength : public InvalidArgument
{
public:
	explicit InvalidSaltLength(const std::string &algorithm, size_t length) : InvalidArgument(algorithm + ": " + IntToString(length) + " is not a valid salt length") {}
};

// *****************************

/// \brief Base class for bufferless filters
/// \tparam T the class or type
template <class T>
class CRYPTOPP_NO_VTABLE Bufferless : public T
{
public:
	bool IsolatedFlush(bool hardFlush, bool blocking)
		{CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); return false;}
};

/// \brief Base class for unflushable filters
/// \tparam T the class or type
template <class T>
class CRYPTOPP_NO_VTABLE Unflushable : public T
{
public:
	bool Flush(bool completeFlush, int propagation=-1, bool blocking=true)
		{return ChannelFlush(DEFAULT_CHANNEL, completeFlush, propagation, blocking);}
	bool IsolatedFlush(bool hardFlush, bool blocking)
		{CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); CRYPTOPP_ASSERT(false); return false;}
	bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true)
	{
		if (hardFlush && !InputBufferIsEmpty())
			throw CannotFlush("Unflushable<T>: this object has buffered input that cannot be flushed");
		else
		{
			BufferedTransformation *attached = this->AttachedTransformation();
			return attached && propagation ? attached->ChannelFlush(channel, hardFlush, propagation-1, blocking) : false;
		}
	}

protected:
	virtual bool InputBufferIsEmpty() const {return false;}
};

/// \brief Base class for input rejecting filters
/// \tparam T the class or type
/// \details T should be a BufferedTransformation derived class
template <class T>
class CRYPTOPP_NO_VTABLE InputRejecting : public T
{
public:
	struct InputRejected : public NotImplemented
		{InputRejected() : NotImplemented("BufferedTransformation: this object doesn't allow input") {}};

	///	\name INPUT
	//@{

	/// \brief Input a byte array for processing
	/// \param inString the byte array to process
	/// \param length the size of the string, in bytes
	/// \param messageEnd means how many filters to signal MessageEnd() to, including this one
	/// \param blocking specifies whether the object should block when processing input
	/// \throws InputRejected
	/// \returns the number of bytes that remain in the block (i.e., bytes not processed)
	/// \details Internally, the default implementation throws InputRejected.
	size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
		{CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); throw InputRejected();}
	//@}

	///	\name SIGNALS
	//@{
	bool IsolatedFlush(bool hardFlush, bool blocking)
		{CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); return false;}
	bool IsolatedMessageSeriesEnd(bool blocking)
		{CRYPTOPP_UNUSED(blocking); throw InputRejected();}
	size_t ChannelPut2(const std::string &channel, const byte *inString, size_t length, int messageEnd, bool blocking)
		{CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); throw InputRejected();}
	bool ChannelMessageSeriesEnd(const std::string& channel, int messageEnd, bool blocking)
		{CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); throw InputRejected();}
	//@}
};

/// \brief Interface for custom flush signals propagation
/// \tparam T BufferedTransformation derived class
template <class T>
class CRYPTOPP_NO_VTABLE CustomFlushPropagation : public T
{
public:
	///	\name SIGNALS
	//@{

	/// \brief Flush buffered input and/or output, with signal propagation
	/// \param hardFlush is used to indicate whether all data should be flushed
	/// \param propagation the number of attached transformations the  Flush() signal should be passed
	/// \param blocking specifies whether the object should block when processing input
	/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
	///   object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
	/// \note Hard flushes must be used with care. It means try to process and output everything, even if
	///   there may not be enough data to complete the action. For example, hard flushing a HexDecoder
	///   would cause an error if you do it after inputing an odd number of hex encoded characters.
	/// \note For some types of filters, like  ZlibDecompressor, hard flushes can only
	///   be done at "synchronization points". These synchronization points are positions in the data
	///   stream that are created by hard flushes on the corresponding reverse filters, in this
	///   example ZlibCompressor. This is useful when zlib compressed data is moved across a
	///   network in packets and compression state is preserved across packets, as in the SSH2 protocol.
	virtual bool Flush(bool hardFlush, int propagation=-1, bool blocking=true) =0;

	//@}

private:
	bool IsolatedFlush(bool hardFlush, bool blocking)
		{CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); CRYPTOPP_ASSERT(false); return false;}
};

/// \brief Interface for custom flush signals
/// \tparam T BufferedTransformation derived class
template <class T>
class CRYPTOPP_NO_VTABLE CustomSignalPropagation : public CustomFlushPropagation<T>
{
public:
	/// \brief Initialize or reinitialize this object, with signal propagation
	/// \param parameters a set of NameValuePairs to initialize or reinitialize this object
	/// \param propagation the number of attached transformations the Initialize() signal should be passed
	/// \details Initialize() is used to initialize or reinitialize an object using a variable number of
	///   arbitrarily typed arguments. The function avoids the need for multiple constructors providing
	///   all possible combintations of configurable parameters.
	/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
	///   object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
	virtual void Initialize(const NameValuePairs &parameters=g_nullNameValuePairs, int propagation=-1) =0;

private:
	void IsolatedInitialize(const NameValuePairs &parameters)
		{CRYPTOPP_UNUSED(parameters); CRYPTOPP_ASSERT(false);}
};

/// \brief Multiple channels support for custom signal processing
/// \tparam T the class or type
/// \details T should be a BufferedTransformation derived class
template <class T>
class CRYPTOPP_NO_VTABLE Multichannel : public CustomFlushPropagation<T>
{
public:
	bool Flush(bool hardFlush, int propagation=-1, bool blocking=true)
		{return this->ChannelFlush(DEFAULT_CHANNEL, hardFlush, propagation, blocking);}

	/// \brief Marks the end of a series of messages, with signal propagation
	/// \param propagation the number of attached transformations the  MessageSeriesEnd() signal should be passed
	/// \param blocking specifies whether the object should block when processing input
	/// \details Each object that receives the signal will perform its processing, decrement
	///    propagation, and then pass the signal on to attached transformations if the value is not 0.
	/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
	///   object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
	/// \note There should be a MessageEnd() immediately before MessageSeriesEnd().
	bool MessageSeriesEnd(int propagation=-1, bool blocking=true)
		{return this->ChannelMessageSeriesEnd(DEFAULT_CHANNEL, propagation, blocking);}

	/// \brief Request space which can be written into by the caller
	/// \param size the requested size of the buffer
	/// \details The purpose of this method is to help avoid extra memory allocations.
	/// \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
	///    size is the requested size of the buffer. When the call returns,  size is the size of
	///   the array returned to the caller.
	/// \details The base class implementation sets  size to 0 and returns  NULL.
	/// \note Some objects, like ArraySink, cannot create a space because its fixed. In the case of
	/// an ArraySink, the pointer to the array is returned and the  size is remaining size.
	byte * CreatePutSpace(size_t &size)
		{return this->ChannelCreatePutSpace(DEFAULT_CHANNEL, size);}

	/// \brief Input multiple bytes for processing
	/// \param inString the byte buffer to process
	/// \param length the size of the string, in bytes
	/// \param messageEnd means how many filters to signal MessageEnd() to, including this one
	/// \param blocking specifies whether the object should block when processing input
	/// \details Derived classes must implement Put2().
	size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
		{return this->ChannelPut2(DEFAULT_CHANNEL, inString, length, messageEnd, blocking);}

	/// \brief Input multiple bytes that may be modified by callee.
	/// \param inString the byte buffer to process.
	/// \param length the size of the string, in bytes.
	/// \param messageEnd means how many filters to signal MessageEnd() to, including this one.
	/// \param blocking specifies whether the object should block when processing input.
	/// \details Internally, PutModifiable2() calls Put2().
	size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking)
		{return this->ChannelPutModifiable2(DEFAULT_CHANNEL, inString, length, messageEnd, blocking);}

//	void ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1)
//		{PropagateMessageSeriesEnd(propagation, channel);}
	byte * ChannelCreatePutSpace(const std::string &channel, size_t &size)
		{CRYPTOPP_UNUSED(channel); size = 0; return NULLPTR;}
	bool ChannelPutModifiable(const std::string &channel, byte *inString, size_t length)
		{this->ChannelPut(channel, inString, length); return false;}

	virtual size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking) =0;
	size_t ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking)
		{return ChannelPut2(channel, begin, length, messageEnd, blocking);}

	virtual bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true) =0;
};

/// \brief Provides auto signaling support
/// \tparam T BufferedTransformation derived class
template <class T>
class CRYPTOPP_NO_VTABLE AutoSignaling : public T
{
public:
	/// \brief Construct an AutoSignaling
	/// \param propagation the propagation count
	AutoSignaling(int propagation=-1) : m_autoSignalPropagation(propagation) {}

	void SetAutoSignalPropagation(int propagation)
		{m_autoSignalPropagation = propagation;}
	int GetAutoSignalPropagation() const
		{return m_autoSignalPropagation;}

private:
	int m_autoSignalPropagation;
};

/// \brief Acts as a Source for pre-existing, static data
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Store : public AutoSignaling<InputRejecting<BufferedTransformation> >
{
public:
	/// \brief Construct a Store
	Store() : m_messageEnd(false) {}

	void IsolatedInitialize(const NameValuePairs &parameters)
	{
		m_messageEnd = false;
		StoreInitialize(parameters);
	}

	unsigned int NumberOfMessages() const {return m_messageEnd ? 0 : 1;}
	bool GetNextMessage();
	unsigned int CopyMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL) const;

protected:
	virtual void StoreInitialize(const NameValuePairs &parameters) =0;

	bool m_messageEnd;
};

/// \brief Implementation of BufferedTransformation's attachment interface
/// \details Sink is a cornerstone of the Pipeline trinitiy. Data flows from
///   Sources, through Filters, and then terminates in Sinks. The difference
///   between a Source and Filter is a Source \a pumps data, while a Filter does
///   not. The difference between a Filter and a Sink is a Filter allows an
///   attached transformation, while a Sink does not.
/// \details A Sink doesnot produce any retrievable output.
/// \details See the discussion of BufferedTransformation in cryptlib.h for
///   more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Sink : public BufferedTransformation
{
public:
	size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true)
		{CRYPTOPP_UNUSED(target); CRYPTOPP_UNUSED(transferBytes); CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(blocking); transferBytes = 0; return 0;}
	size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const
		{CRYPTOPP_UNUSED(target); CRYPTOPP_UNUSED(begin); CRYPTOPP_UNUSED(end); CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(blocking); return 0;}
};

/// \brief Acts as an input discarding Filter or Sink
/// \details The BitBucket discards all input and returns 0 to the caller
///   to indicate all data was processed.
class CRYPTOPP_DLL BitBucket : public Bufferless<Sink>
{
public:
	std::string AlgorithmName() const {return "BitBucket";}
	void IsolatedInitialize(const NameValuePairs &params)
		{CRYPTOPP_UNUSED(params);}
	size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
		{CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); return 0;}
};

NAMESPACE_END

#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif

#endif