File: xed25519.h

package info (click to toggle)
libcrypto++ 8.2.0-2
  • links: PTS
  • area: main
  • in suites: experimental
  • size: 22,780 kB
  • sloc: cpp: 105,015; sh: 7,353; asm: 5,120; makefile: 316
file content (807 lines) | stat: -rw-r--r-- 36,773 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
// xed25519.h - written and placed in public domain by Jeffrey Walton
//              Crypto++ specific implementation wrapped around Andrew
//              Moon's public domain curve25519-donna and ed25519-donna,
//              http://github.com/floodyberry/curve25519-donna and
//              http://github.com/floodyberry/ed25519-donna.

// Typically the key agreement classes encapsulate their data more
// than x25519 does below. They are a little more accessible
// due to crypto_box operations.

/// \file xed25519.h
/// \brief Classes for x25519 and ed25519 operations
/// \details This implementation integrates Andrew Moon's public domain code
///   for curve25519-donna and ed25519-donna.
/// \details Moving keys into and out of the library proceeds as follows.
///   If an Integer class is accepted or returned, then the data is in big
///   endian format. That is, the MSB is at byte position 0, and the LSB
///   is at byte position 31. The Integer will work as expected, just like
///   an int or a long.
/// \details If a byte array is accepted, then the byte array is in little
///   endian format. That is, the LSB is at byte position 0, and the MSB is
///   at byte position 31. This follows the implementation where byte 0 is
///   clamed with 248. That is my_arr[0] &= 248 to mask the lower 3 bits.
/// \details PKCS8 and X509 keys encoded using ASN.1 follow little endian
///   arrays. The format is specified in <A HREF=
///   "http:///tools.ietf.org/html/draft-ietf-curdle-pkix">draft-ietf-curdle-pkix</A>.
/// \details If you have a little endian array and you want to wrap it in
///   an Integer using big endian then you can perform the following:
/// <pre>Integer x(my_arr, SECRET_KEYLENGTH, UNSIGNED, LITTLE_ENDIAN_ORDER);</pre>
/// \sa Andrew Moon's x22519 GitHub <A
///   HREF="http://github.com/floodyberry/curve25519-donna">curve25519-donna</A>,
///   ed22519 GitHub <A
///   HREF="http://github.com/floodyberry/ed25519-donna">ed25519-donna</A>, and
///   <A HREF="http:///tools.ietf.org/html/draft-ietf-curdle-pkix">draft-ietf-curdle-pkix</A>
/// \since Crypto++ 8.0

#ifndef CRYPTOPP_XED25519_H
#define CRYPTOPP_XED25519_H

#include "cryptlib.h"
#include "pubkey.h"
#include "oids.h"

NAMESPACE_BEGIN(CryptoPP)

class Integer;
struct ed25519Signer;
struct ed25519Verifier;

// ******************** x25519 Agreement ************************* //

/// \brief x25519 with key validation
/// \since Crypto++ 8.0
class x25519 : public SimpleKeyAgreementDomain, public CryptoParameters, public PKCS8PrivateKey
{
public:
    /// \brief Size of the private key
    /// \details SECRET_KEYLENGTH is the size of the private key, in bytes.
    CRYPTOPP_CONSTANT(SECRET_KEYLENGTH = 32)
    /// \brief Size of the public key
    /// \details PUBLIC_KEYLENGTH is the size of the public key, in bytes.
    CRYPTOPP_CONSTANT(PUBLIC_KEYLENGTH = 32)
    /// \brief Size of the shared key
    /// \details SHARED_KEYLENGTH is the size of the shared key, in bytes.
    CRYPTOPP_CONSTANT(SHARED_KEYLENGTH = 32)

    virtual ~x25519() {}

    /// \brief Create a x25519 object
    /// \details This constructor creates an empty x25519 object. It is
    ///   intended for use in loading existing parameters, like CryptoBox
    ///   parameters. If you are perfoming key agreement you should use a
    ///    constructor that generates random parameters on construction.
    x25519() {}

    /// \brief Create a x25519 object
    /// \param y public key
    /// \param x private key
    /// \details This constructor creates a x25519 object using existing parameters.
    /// \note The public key is not validated.
    x25519(const byte y[PUBLIC_KEYLENGTH], const byte x[SECRET_KEYLENGTH]);

    /// \brief Create a x25519 object
    /// \param x private key
    /// \details This constructor creates a x25519 object using existing parameters.
    ///   The public key is calculated from the private key.
    x25519(const byte x[SECRET_KEYLENGTH]);

    /// \brief Create a x25519 object
    /// \param y public key
    /// \param x private key
    /// \details This constructor creates a x25519 object using existing parameters.
    /// \note The public key is not validated.
    x25519(const Integer &y, const Integer &x);

    /// \brief Create a x25519 object
    /// \param x private key
    /// \details This constructor creates a x25519 object using existing parameters.
    ///   The public key is calculated from the private key.
    x25519(const Integer &x);

    /// \brief Create a x25519 object
    /// \param rng RandomNumberGenerator derived class
    /// \details This constructor creates a new x25519 using the random number generator.
    x25519(RandomNumberGenerator &rng);

    /// \brief Create a x25519 object
    /// \param params public and private key
    /// \details This constructor creates a x25519 object using existing parameters.
    ///   The <tt>params</tt> can be created with <tt>Save</tt>.
    /// \note The public key is not validated.
    x25519(BufferedTransformation &params);

    /// \brief Create a x25519 object
    /// \param oid an object identifier
    /// \details This constructor creates a new x25519 using the specified OID. The public
    ///   and private points are uninitialized.
    x25519(const OID &oid);

    /// \brief Clamp a private key
    /// \param x private key
    /// \details ClampKeys() clamps a private key and then regenerates the
    ///   public key from the private key.
    void ClampKey(byte x[SECRET_KEYLENGTH]) const;

    /// \brief Determine if private key is clamped
    /// \param x private key
    bool IsClamped(const byte x[SECRET_KEYLENGTH]) const;

    /// \brief Test if a key has small order
    /// \param y public key
    bool IsSmallOrder(const byte y[PUBLIC_KEYLENGTH]) const;

    /// \brief Get the Object Identifier
    /// \returns the Object Identifier
    /// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
    ///   The default private key format is RFC 5208.
    OID GetAlgorithmID() const {
        return m_oid.Empty() ? ASN1::X25519() : m_oid;
    }

    /// \brief Set the Object Identifier
    /// \param oid the new Object Identifier
    void SetAlgorithmID(const OID& oid) {
        m_oid = oid;
    }

    // CryptoParameters
    bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
    bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
    void AssignFrom(const NameValuePairs &source);

    // CryptoParameters
    CryptoParameters & AccessCryptoParameters() {return *this;}

    /// \brief DER encode ASN.1 object
    /// \param bt BufferedTransformation object
    /// \details Save() will write the OID associated with algorithm or scheme.
    ///   In the case of public and private keys, this function writes the
    ///   subjectPubicKeyInfo parts.
    /// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
    ///   The default private key format is RFC 5208, which is the old format.
    ///   The old format provides the best interop, and keys will work
    ///   with OpenSSL.
    /// \sa <A HREF="http://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
    ///   Key Packages</A>
    void Save(BufferedTransformation &bt) const {
        DEREncode(bt, 0);
    }

    /// \brief DER encode ASN.1 object
    /// \param bt BufferedTransformation object
    /// \param v1 flag indicating v1
    /// \details Save() will write the OID associated with algorithm or scheme.
    ///   In the case of public and private keys, this function writes the
    ///   subjectPubicKeyInfo parts.
    /// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
    ///   The default private key format is RFC 5208.
    /// \details v1 means INTEGER 0 is written. INTEGER 0 means
    ///   RFC 5208 format, which is the old format. The old format provides
    ///   the best interop, and keys will work with OpenSSL. The other
    ///   option uses INTEGER 1. INTEGER 1 means RFC 5958 format,
    ///   which is the new format.
    /// \sa <A HREF="http://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
    ///   Key Packages</A>
    void Save(BufferedTransformation &bt, bool v1) const {
        DEREncode(bt, v1 ? 0 : 1);
    }

    /// \brief BER decode ASN.1 object
    /// \param bt BufferedTransformation object
    /// \sa <A HREF="http://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
    ///   Key Packages</A>
    void Load(BufferedTransformation &bt) {
        BERDecode(bt);
    }

    // PKCS8PrivateKey
    void BERDecode(BufferedTransformation &bt);
    void DEREncode(BufferedTransformation &bt) const { DEREncode(bt, 0); }
    void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
    void DEREncodePrivateKey(BufferedTransformation &bt) const;

    /// \brief DER encode ASN.1 object
    /// \param bt BufferedTransformation object
    /// \param version indicates version
    /// \details DEREncode() will write the OID associated with algorithm or
    ///   scheme. In the case of public and private keys, this function writes
    ///   the subjectPubicKeyInfo parts.
    /// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
    ///   The default private key format is RFC 5208.
    /// \details The value of version is written as the INTEGER. INTEGER 0 means
    ///   RFC 5208 format, which is the old format. The old format provides
    ///   the best interop, and keys will work with OpenSSL. The INTEGER 1
    ///   means RFC 5958 format, which is the new format.
    void DEREncode(BufferedTransformation &bt, int version) const;

    /// \brief Determine if OID is valid for this object
    /// \details BERDecodeAndCheckAlgorithmID() parses the OID from
    ///   <tt>bt</tt> and determines if it valid for this object. The
    ///   problem in practice is there are multiple OIDs available to
    ///   denote curve25519 operations. The OIDs include an old GNU
    ///   OID used by SSH, OIDs specified in draft-josefsson-pkix-newcurves,
    ///   and OIDs specified in draft-ietf-curdle-pkix.
    /// \details By default BERDecodeAndCheckAlgorithmID() accepts an
    ///   OID set by the user, <tt>ASN1::curve25519()</tt> and <tt>ASN1::X25519()</tt>.
    ///   <tt>ASN1::curve25519()</tt> is generic and says "this key is valid for
    ///   curve25519 operations". <tt>ASN1::X25519()</tt> is specific and says
    ///   "this key is valid for x25519 key exchange."
    void BERDecodeAndCheckAlgorithmID(BufferedTransformation& bt);

    // DL_PrivateKey
    void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params);

    // SimpleKeyAgreementDomain
    unsigned int AgreedValueLength() const {return SHARED_KEYLENGTH;}
    unsigned int PrivateKeyLength() const {return SECRET_KEYLENGTH;}
    unsigned int PublicKeyLength() const {return PUBLIC_KEYLENGTH;}

    // SimpleKeyAgreementDomain
    void GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const;
    void GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const;
    bool Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey=true) const;

protected:
    // Create a public key from a private key
    void SecretToPublicKey(byte y[PUBLIC_KEYLENGTH], const byte x[SECRET_KEYLENGTH]) const;

protected:
    FixedSizeSecBlock<byte, SECRET_KEYLENGTH> m_sk;
    FixedSizeSecBlock<byte, PUBLIC_KEYLENGTH> m_pk;
    OID m_oid;  // preferred OID
};

// ****************** ed25519 Signer *********************** //

/// \brief ed25519 message accumulator
/// \details ed25519 buffers the entire message, and does not
///   digest the message incrementally. You should be careful with
///   large messages like files on-disk. The behavior is by design
///   because Bernstein feels small messages should be authenticated;
///   and larger messages will be digested by the application.
/// \details The accumulator is used for signing and verification.
///   The first 64-bytes of storage is reserved for the signature.
///   During signing the signature storage is unused. During
///   verification the first 64 bytes holds the signature. The
///   signature is provided by the PK_Verifier framework and the
///   call to PK_Signer::InputSignature. Member functions data()
///   and size() refer to the accumulated message. Member function
///   signature() refers to the signature with an implicit size of
///   SIGNATURE_LENGTH bytes.
/// \details Applications which digest large messages, like an ISO
///   disk file, should take care because the design effectively
///   disgorges the format operation from the signing operation.
///   Put another way, be careful to ensure what you are signing is
///   is in fact a digest of the intended message, and not a different
///   message digest supplied by an attacker.
struct ed25519_MessageAccumulator : public PK_MessageAccumulator
{
    CRYPTOPP_CONSTANT(RESERVE_SIZE=2048+64)
    CRYPTOPP_CONSTANT(SIGNATURE_LENGTH=64)

    /// \brief Create a message accumulator
    ed25519_MessageAccumulator() {
        Restart();
    }

    /// \brief Create a message accumulator
    /// \details ed25519 does not use a RNG. You can safely use
    ///   NullRNG() because IsProbablistic returns false.
    ed25519_MessageAccumulator(RandomNumberGenerator &rng) {
        CRYPTOPP_UNUSED(rng); Restart();
    }

    /// \brief Add data to the accumulator
    /// \param msg pointer to the data to accumulate
    /// \param len the size of the data, in bytes
    void Update(const byte* msg, size_t len) {
        if (msg && len)
            m_msg.insert(m_msg.end(), msg, msg+len);
    }

    /// \brief Reset the accumulator
    void Restart() {
        m_msg.reserve(RESERVE_SIZE);
        m_msg.resize(SIGNATURE_LENGTH);
    }

    /// \brief Retrieve pointer to signature buffer
    /// \returns pointer to signature buffer
    byte* signature() {
        return &m_msg[0];
    }

    /// \brief Retrieve pointer to signature buffer
    /// \returns pointer to signature buffer
    const byte* signature() const {
        return &m_msg[0];
    }

    /// \brief Retrieve pointer to data buffer
    /// \returns pointer to data buffer
    const byte* data() const {
        return &m_msg[0]+SIGNATURE_LENGTH;
    }

    /// \brief Retrieve size of data buffer
    /// \returns size of the data buffer, in bytes
    size_t size() const {
        return m_msg.size()-SIGNATURE_LENGTH;
    }

protected:
    // TODO: Find an equivalent Crypto++ structure.
    std::vector<byte, AllocatorWithCleanup<byte> > m_msg;
};

/// \brief Ed25519 private key
/// \details ed25519PrivateKey is somewhat of a hack. It needed to
///   provide DL_PrivateKey interface to fit into the existing
///   framework, but it lacks a lot of the internals of a true
///   DL_PrivateKey. The missing pieces include GroupParameters
///   and Point, which provide the low level field operations
///   found in traditional implementations like NIST curves over
///   prime and binary fields.
/// \details ed25519PrivateKey is also unusual because the
///   class members of interest are byte arrays and not Integers.
///   In addition, the byte arrays are little-endian meaning
///   LSB is at element 0 and the MSB is at element 31.
///   If you call GetPrivateExponent() then the little-endian byte
///   array is converted to a big-endian Integer() so it can be
///   returned the way a caller expects. And calling
///   SetPrivateExponent perfoms a similar internal conversion.
/// \since Crypto++ 8.0
struct ed25519PrivateKey : public PKCS8PrivateKey
{
    /// \brief Size of the private key
    /// \details SECRET_KEYLENGTH is the size of the private key, in bytes.
    CRYPTOPP_CONSTANT(SECRET_KEYLENGTH = 32)
    /// \brief Size of the public key
    /// \details PUBLIC_KEYLENGTH is the size of the public key, in bytes.
    CRYPTOPP_CONSTANT(PUBLIC_KEYLENGTH = 32)
    /// \brief Size of the siganture
    /// \details SIGNATURE_LENGTH is the size of the signature, in bytes.
    ///   ed25519 is a DL-based signature scheme. The signature is the
    ///   concatenation of <tt>r || s</tt>.
    CRYPTOPP_CONSTANT(SIGNATURE_LENGTH = 64)

    // CryptoMaterial
    bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
    bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
    void AssignFrom(const NameValuePairs &source);

    // GroupParameters
    OID GetAlgorithmID() const {
        return m_oid.Empty() ? ASN1::Ed25519() : m_oid;
    }

    /// \brief DER encode ASN.1 object
    /// \param bt BufferedTransformation object
    /// \details Save() will write the OID associated with algorithm or scheme.
    ///   In the case of public and private keys, this function writes the
    ///   subjectPubicKeyInfo parts.
    /// \details The default OID is from RFC 8410 using <tt>id-Ed25519</tt>.
    ///   The default private key format is RFC 5208, which is the old format.
    ///   The old format provides the best interop, and keys will work
    ///   with OpenSSL.
    /// \sa <A HREF="http://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
    ///   Key Packages</A>
    void Save(BufferedTransformation &bt) const {
        DEREncode(bt, 0);
    }

    /// \brief DER encode ASN.1 object
    /// \param bt BufferedTransformation object
    /// \param v1 flag indicating v1
    /// \details Save() will write the OID associated with algorithm or scheme.
    ///   In the case of public and private keys, this function writes the
    ///   subjectPubicKeyInfo parts.
    /// \details The default OID is from RFC 8410 using <tt>id-Ed25519</tt>.
    ///   The default private key format is RFC 5208.
    /// \details v1 means INTEGER 0 is written. INTEGER 0 means
    ///   RFC 5208 format, which is the old format. The old format provides
    ///   the best interop, and keys will work with OpenSSL. The other
    ///   option uses INTEGER 1. INTEGER 1 means RFC 5958 format,
    ///   which is the new format.
    /// \sa <A HREF="http://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
    ///   Key Packages</A>
    void Save(BufferedTransformation &bt, bool v1) const {
        DEREncode(bt, v1 ? 0 : 1);
    }

    /// \brief BER decode ASN.1 object
    /// \param bt BufferedTransformation object
    /// \sa <A HREF="http://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
    ///   Key Packages</A>
    void Load(BufferedTransformation &bt) {
        BERDecode(bt);
    }

    /// \brief Initializes a public key from this key
    /// \param pub reference to a public key
    void MakePublicKey(PublicKey &pub) const;

    // PKCS8PrivateKey
    void BERDecode(BufferedTransformation &bt);
    void DEREncode(BufferedTransformation &bt) const { DEREncode(bt, 0); }
    void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
    void DEREncodePrivateKey(BufferedTransformation &bt) const;

    /// \brief DER encode ASN.1 object
    /// \param bt BufferedTransformation object
    /// \param version indicates version
    /// \details DEREncode() will write the OID associated with algorithm or
    ///   scheme. In the case of public and private keys, this function writes
    ///   the subjectPubicKeyInfo parts.
    /// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
    ///   The default private key format is RFC 5208.
    /// \details The value of version is written as the INTEGER. INTEGER 0 means
    ///   RFC 5208 format, which is the old format. The old format provides
    ///   the best interop, and keys will work with OpenSSL. The INTEGER 1
    ///   means RFC 5958 format, which is the new format.
    void DEREncode(BufferedTransformation &bt, int version) const;

    /// \brief Determine if OID is valid for this object
    /// \details BERDecodeAndCheckAlgorithmID() parses the OID from
    ///   <tt>bt</tt> and determines if it valid for this object. The
    ///   problem in practice is there are multiple OIDs available to
    ///   denote curve25519 operations. The OIDs include an old GNU
    ///   OID used by SSH, OIDs specified in draft-josefsson-pkix-newcurves,
    ///   and OIDs specified in draft-ietf-curdle-pkix.
    /// \details By default BERDecodeAndCheckAlgorithmID() accepts an
    ///   OID set by the user, <tt>ASN1::curve25519()</tt> and <tt>ASN1::Ed25519()</tt>.
    ///   <tt>ASN1::curve25519()</tt> is generic and says "this key is valid for
    ///   curve25519 operations". <tt>ASN1::Ed25519()</tt> is specific and says
    ///   "this key is valid for ed25519 signing."
    void BERDecodeAndCheckAlgorithmID(BufferedTransformation& bt);

    // PKCS8PrivateKey
    void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params);
    void SetPrivateExponent(const byte x[SECRET_KEYLENGTH]);
    void SetPrivateExponent(const Integer &x);
    const Integer& GetPrivateExponent() const;

    /// \brief Test if a key has small order
    /// \param y public key
    bool IsSmallOrder(const byte y[PUBLIC_KEYLENGTH]) const;

    /// \brief Retrieve private key byte array
    /// \returns the private key byte array
    /// \details GetPrivateKeyBytePtr() is used by signing code to call ed25519_sign.
    const byte* GetPrivateKeyBytePtr() const {
        return m_sk.begin();
    }

    /// \brief Retrieve public key byte array
    /// \returns the public key byte array
    /// \details GetPublicKeyBytePtr() is used by signing code to call ed25519_sign.
    const byte* GetPublicKeyBytePtr() const {
        return m_pk.begin();
    }

protected:
    // Create a public key from a private key
    void SecretToPublicKey(byte y[PUBLIC_KEYLENGTH], const byte x[SECRET_KEYLENGTH]) const;

protected:
    FixedSizeSecBlock<byte, SECRET_KEYLENGTH> m_sk;
    FixedSizeSecBlock<byte, PUBLIC_KEYLENGTH> m_pk;
    OID m_oid;  // preferred OID
    mutable Integer m_x;  // for DL_PrivateKey
};

/// \brief Ed25519 signature algorithm
/// \since Crypto++ 8.0
struct ed25519Signer : public PK_Signer
{
    /// \brief Size of the private key
    /// \details SECRET_KEYLENGTH is the size of the private key, in bytes.
    CRYPTOPP_CONSTANT(SECRET_KEYLENGTH = 32)
    /// \brief Size of the public key
    /// \details PUBLIC_KEYLENGTH is the size of the public key, in bytes.
    CRYPTOPP_CONSTANT(PUBLIC_KEYLENGTH = 32)
    /// \brief Size of the siganture
    /// \details SIGNATURE_LENGTH is the size of the signature, in bytes.
    ///   ed25519 is a DL-based signature scheme. The signature is the
    ///   concatenation of <tt>r || s</tt>.
    CRYPTOPP_CONSTANT(SIGNATURE_LENGTH = 64)
    typedef Integer Element;

    virtual ~ed25519Signer() {}

    /// \brief Create a ed25519Signer object
    ed25519Signer() {}

    /// \brief Create a ed25519Signer object
    /// \param y public key
    /// \param x private key
    /// \details This constructor creates a ed25519Signer object using existing parameters.
    /// \note The public key is not validated.
    ed25519Signer(const byte y[PUBLIC_KEYLENGTH], const byte x[SECRET_KEYLENGTH]);

    /// \brief Create a ed25519Signer object
    /// \param x private key
    /// \details This constructor creates a ed25519Signer object using existing parameters.
    ///   The public key is calculated from the private key.
    ed25519Signer(const byte x[SECRET_KEYLENGTH]);

    /// \brief Create a ed25519Signer object
    /// \param y public key
    /// \param x private key
    /// \details This constructor creates a ed25519Signer object using existing parameters.
    /// \note The public key is not validated.
    ed25519Signer(const Integer &y, const Integer &x);

    /// \brief Create a ed25519Signer object
    /// \param x private key
    /// \details This constructor creates a ed25519Signer object using existing parameters.
    ///   The public key is calculated from the private key.
    ed25519Signer(const Integer &x);

    /// \brief Create a ed25519Signer object
    /// \param rng RandomNumberGenerator derived class
    /// \details This constructor creates a new ed25519Signer using the random number generator.
    ed25519Signer(RandomNumberGenerator &rng);

    /// \brief Create a ed25519Signer object
    /// \param params public and private key
    /// \details This constructor creates a ed25519Signer object using existing parameters.
    ///   The <tt>params</tt> can be created with <tt>Save</tt>.
    /// \note The public key is not validated.
    ed25519Signer(BufferedTransformation &params);

    // DL_ObjectImplBase
    /// \brief Retrieves a reference to a Private Key
    /// \details AccessKey() retrieves a non-const reference to a private key.
    PrivateKey& AccessKey() { return m_key; }
    PrivateKey& AccessPrivateKey() { return m_key; }

    /// \brief Retrieves a reference to a Private Key
    /// \details AccessKey() retrieves a const reference to a private key.
    const PrivateKey& GetKey() const { return m_key; }
    const PrivateKey& GetPrivateKey() const { return m_key; }

    // DL_SignatureSchemeBase
    size_t SignatureLength() const { return SIGNATURE_LENGTH; }
    size_t MaxRecoverableLength() const { return 0; }
    size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const {
        CRYPTOPP_UNUSED(signatureLength); return 0;
    }

    bool IsProbabilistic() const { return false; }
    bool AllowNonrecoverablePart() const { return false; }
    bool RecoverablePartFirst() const { return false; }

    PK_MessageAccumulator* NewSignatureAccumulator(RandomNumberGenerator &rng) const {
        return new ed25519_MessageAccumulator(rng);
    }

    void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const {
        CRYPTOPP_UNUSED(messageAccumulator); CRYPTOPP_UNUSED(recoverableMessage);
        CRYPTOPP_UNUSED(recoverableMessageLength);
        throw NotImplemented("ed25519Signer: this object does not support recoverable messages");
    }

    size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart) const;

    /// \brief Sign a stream
    /// \param rng a RandomNumberGenerator derived class
    /// \param stream an std::istream derived class
    /// \param signature a block of bytes for the signature
    /// \return actual signature length
    /// \details SignStream() handles large streams. The Stream functions were added to
    ///  ed25519 for signing and verifying files that are too large for a memory allocation.
    ///  The functions are not present in other library signers and verifiers.
    /// \details ed25519 is a determinsitic signature scheme. <tt>IsProbabilistic()</tt>
    ///  returns false and the random number generator can be <tt>NullRNG()</tt>.
    /// \pre <tt>COUNTOF(signature) == MaxSignatureLength()</tt>
    /// \since Crypto++ 8.1
    size_t SignStream (RandomNumberGenerator &rng, std::istream& stream, byte *signature) const;

protected:
    ed25519PrivateKey m_key;
};

// ****************** ed25519 Verifier *********************** //

/// \brief Ed25519 public key
/// \details ed25519PublicKey is somewhat of a hack. It needed to
///   provide DL_PublicKey interface to fit into the existing
///   framework, but it lacks a lot of the internals of a true
///   DL_PublicKey. The missing pieces include GroupParameters
///   and Point, which provide the low level field operations
///   found in traditional implementations like NIST curves over
///   prime and binary fields.
/// \details ed25519PublicKey is also unusual because the
///   class members of interest are byte arrays and not Integers.
///   In addition, the byte arrays are little-endian meaning
///   LSB is at element 0 and the MSB is at element 31.
///   If you call GetPublicElement() then the little-endian byte
///   array is converted to a big-endian Integer() so it can be
///   returned the way a caller expects. And calling
///   SetPublicElement() perfoms a similar internal conversion.
/// \since Crypto++ 8.0
struct ed25519PublicKey : public X509PublicKey
{
    /// \brief Size of the public key
    /// \details PUBLIC_KEYLENGTH is the size of the public key, in bytes.
    CRYPTOPP_CONSTANT(PUBLIC_KEYLENGTH = 32)
    typedef Integer Element;

    OID GetAlgorithmID() const {
        return m_oid.Empty() ? ASN1::Ed25519() : m_oid;
    }

    /// \brief DER encode ASN.1 object
    /// \param bt BufferedTransformation object
    /// \details Save() will write the OID associated with algorithm or scheme.
    ///   In the case of public and private keys, this function writes the
    ///   subjectPubicKeyInfo parts.
    /// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
    ///   The default private key format is RFC 5208, which is the old format.
    ///   The old format provides the best interop, and keys will work
    ///   with OpenSSL.
    void Save(BufferedTransformation &bt) const {
        BEREncode(bt);
    }

    /// \brief BER decode ASN.1 object
    /// \param bt BufferedTransformation object
    /// \sa <A HREF="http://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
    ///   Key Packages</A>
    void Load(BufferedTransformation &bt) {
        BERDecode(bt);
    }

    // X509PublicKey
    void BERDecode(BufferedTransformation &bt);
    void DEREncode(BufferedTransformation &bt) const;
    void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
    void DEREncodePublicKey(BufferedTransformation &bt) const;

    /// \brief Determine if OID is valid for this object
    /// \details BERDecodeAndCheckAlgorithmID() parses the OID from
    ///   <tt>bt</tt> and determines if it valid for this object. The
    ///   problem in practice is there are multiple OIDs available to
    ///   denote curve25519 operations. The OIDs include an old GNU
    ///   OID used by SSH, OIDs specified in draft-josefsson-pkix-newcurves,
    ///   and OIDs specified in draft-ietf-curdle-pkix.
    /// \details By default BERDecodeAndCheckAlgorithmID() accepts an
    ///   OID set by the user, <tt>ASN1::curve25519()</tt> and <tt>ASN1::Ed25519()</tt>.
    ///   <tt>ASN1::curve25519()</tt> is generic and says "this key is valid for
    ///   curve25519 operations". <tt>ASN1::Ed25519()</tt> is specific and says
    ///   "this key is valid for ed25519 signing."
    void BERDecodeAndCheckAlgorithmID(BufferedTransformation& bt);

    bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
    bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
    void AssignFrom(const NameValuePairs &source);

    // DL_PublicKey
    void SetPublicElement(const byte y[PUBLIC_KEYLENGTH]);
    void SetPublicElement(const Element &y);
    const Element& GetPublicElement() const;

    /// \brief Retrieve public key byte array
    /// \returns the public key byte array
    /// \details GetPublicKeyBytePtr() is used by signing code to call ed25519_sign.
    const byte* GetPublicKeyBytePtr() const {
        return m_pk.begin();
    }

protected:
    FixedSizeSecBlock<byte, PUBLIC_KEYLENGTH> m_pk;
    OID m_oid;  // preferred OID
    mutable Integer m_y;  // for DL_PublicKey
};

/// \brief Ed25519 signature verification algorithm
/// \since Crypto++ 8.0
struct ed25519Verifier : public PK_Verifier
{
    CRYPTOPP_CONSTANT(PUBLIC_KEYLENGTH = 32)
    CRYPTOPP_CONSTANT(SIGNATURE_LENGTH = 64)
    typedef Integer Element;

    virtual ~ed25519Verifier() {}

    /// \brief Create a ed25519Verifier object
    ed25519Verifier() {}

    /// \brief Create a ed25519Verifier object
    /// \param y public key
    /// \details This constructor creates a ed25519Verifier object using existing parameters.
    /// \note The public key is not validated.
    ed25519Verifier(const byte y[PUBLIC_KEYLENGTH]);

    /// \brief Create a ed25519Verifier object
    /// \param y public key
    /// \details This constructor creates a ed25519Verifier object using existing parameters.
    /// \note The public key is not validated.
    ed25519Verifier(const Integer &y);

    /// \brief Create a ed25519Verifier object
    /// \param params public and private key
    /// \details This constructor creates a ed25519Verifier object using existing parameters.
    ///   The <tt>params</tt> can be created with <tt>Save</tt>.
    /// \note The public key is not validated.
    ed25519Verifier(BufferedTransformation &params);

    /// \brief Create a ed25519Verifier object
    /// \param signer ed25519 signer object
    /// \details This constructor creates a ed25519Verifier object using existing parameters.
    ///   The <tt>params</tt> can be created with <tt>Save</tt>.
    /// \note The public key is not validated.
    ed25519Verifier(const ed25519Signer& signer);

    // DL_ObjectImplBase
    /// \brief Retrieves a reference to a Public Key
    /// \details AccessKey() retrieves a non-const reference to a public key.
    PublicKey& AccessKey() { return m_key; }
    PublicKey& AccessPublicKey() { return m_key; }

    /// \brief Retrieves a reference to a Public Key
    /// \details GetKey() retrieves a const reference to a public key.
    const PublicKey& GetKey() const { return m_key; }
    const PublicKey& GetPublicKey() const { return m_key; }

    // DL_SignatureSchemeBase
    size_t SignatureLength() const { return SIGNATURE_LENGTH; }
    size_t MaxRecoverableLength() const { return 0; }
    size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const {
        CRYPTOPP_UNUSED(signatureLength); return 0;
    }

    bool IsProbabilistic() const { return false; }
    bool AllowNonrecoverablePart() const { return false; }
    bool RecoverablePartFirst() const { return false; }

    ed25519_MessageAccumulator* NewVerificationAccumulator() const {
        return new ed25519_MessageAccumulator;
    }

    void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const {
        CRYPTOPP_ASSERT(signature != NULLPTR);
        CRYPTOPP_ASSERT(signatureLength == SIGNATURE_LENGTH);
        ed25519_MessageAccumulator& accum = static_cast<ed25519_MessageAccumulator&>(messageAccumulator);
        if (signature && signatureLength)
            std::memcpy(accum.signature(), signature, STDMIN((size_t)SIGNATURE_LENGTH, signatureLength));
    }

    bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const;

    /// \brief Check whether input signature is a valid signature for input message
    /// \param stream an std::istream derived class
    /// \param signature a pointer to the signature over the message
    /// \param signatureLen the size of the signature
    /// \return true if the signature is valid, false otherwise
    /// \details VerifyStream() handles large streams. The Stream functions were added to
    ///  ed25519 for signing and verifying files that are too large for a memory allocation.
    ///  The functions are not present in other library signers and verifiers.
    /// \since Crypto++ 8.1
    bool VerifyStream(std::istream& stream, const byte *signature, size_t signatureLen) const;

    DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &messageAccumulator) const {
        CRYPTOPP_UNUSED(recoveredMessage); CRYPTOPP_UNUSED(messageAccumulator);
        throw NotImplemented("ed25519Verifier: this object does not support recoverable messages");
    }

protected:
    ed25519PublicKey m_key;
};

/// \brief Ed25519 signature scheme
/// \sa <A HREF="http://cryptopp.com/wiki/Ed25519">Ed25519</A> on the Crypto++ wiki.
/// \since Crypto++ 8.0
struct ed25519
{
    /// \brief ed25519 Signer
    typedef ed25519Signer Signer;
    /// \brief ed25519 Verifier
    typedef ed25519Verifier Verifier;
};

NAMESPACE_END  // CryptoPP

#endif  // CRYPTOPP_XED25519_H