File: gfpcrypt.cpp

package info (click to toggle)
libcrypto%2B%2B 8.4.0-1
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 23,204 kB
  • sloc: cpp: 104,596; asm: 10,488; sh: 7,343; makefile: 51
file content (334 lines) | stat: -rw-r--r-- 10,765 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
// dsa.cpp - originally written and placed in the public domain by Wei Dai

#include "pch.h"
#include "config.h"

// TODO: fix the C4589 warnings
#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4189 4589)
#endif

#ifndef CRYPTOPP_IMPORTS

#include "gfpcrypt.h"
#include "nbtheory.h"
#include "modarith.h"
#include "integer.h"
#include "asn.h"
#include "oids.h"
#include "misc.h"

NAMESPACE_BEGIN(CryptoPP)

#if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING)
void TestInstantiations_gfpcrypt()
{
	GDSA<SHA1>::Signer test;
	GDSA<SHA1>::Verifier test1;
	DSA::Signer test5(NullRNG(), 100);
	DSA::Signer test2(test5);
	NR<SHA1>::Signer test3;
	NR<SHA1>::Verifier test4;
	DLIES<>::Encryptor test6;
	DLIES<>::Decryptor test7;
}
#endif

void DL_GroupParameters_DSA::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
	Integer p, q, g;

	if (alg.GetValue("Modulus", p) && alg.GetValue("SubgroupGenerator", g))
	{
		q = alg.GetValueWithDefault("SubgroupOrder", ComputeGroupOrder(p)/2);
		Initialize(p, q, g);
	}
	else
	{
		int modulusSize = 2048, defaultSubgroupOrderSize;
		alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);

		switch (modulusSize)
		{
		case 1024:
			defaultSubgroupOrderSize = 160;
			break;
		case 2048:
			defaultSubgroupOrderSize = 224;
			break;
		case 3072:
			defaultSubgroupOrderSize = 256;
			break;
		default:
			throw InvalidArgument("DSA: not a valid prime length");
		}

		DL_GroupParameters_GFP::GenerateRandom(rng, CombinedNameValuePairs(alg, MakeParameters(Name::SubgroupOrderSize(), defaultSubgroupOrderSize, false)));
	}
}

bool DL_GroupParameters_DSA::ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const
{
	bool pass = DL_GroupParameters_GFP::ValidateGroup(rng, level);
	CRYPTOPP_ASSERT(pass);

	const int pSize = GetModulus().BitCount(), qSize = GetSubgroupOrder().BitCount();
	pass = pass && ((pSize==1024 && qSize==160) || (pSize==2048 && qSize==224) || (pSize==2048 && qSize==256) || (pSize==3072 && qSize==256));
	CRYPTOPP_ASSERT(pass);

	return pass;
}

void DL_SignatureMessageEncodingMethod_DSA::ComputeMessageRepresentative(RandomNumberGenerator &rng,
	const byte *recoverableMessage, size_t recoverableMessageLength,
	HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
	byte *representative, size_t representativeBitLength) const
{
	CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(recoverableMessage), CRYPTOPP_UNUSED(recoverableMessageLength);
	CRYPTOPP_UNUSED(messageEmpty), CRYPTOPP_UNUSED(hashIdentifier);
	CRYPTOPP_ASSERT(recoverableMessageLength == 0);
	CRYPTOPP_ASSERT(hashIdentifier.second == 0);

	const size_t representativeByteLength = BitsToBytes(representativeBitLength);
	const size_t digestSize = hash.DigestSize();
	const size_t paddingLength = SaturatingSubtract(representativeByteLength, digestSize);

	memset(representative, 0, paddingLength);
	hash.TruncatedFinal(representative+paddingLength, STDMIN(representativeByteLength, digestSize));

	if (digestSize*8 > representativeBitLength)
	{
		Integer h(representative, representativeByteLength);
		h >>= representativeByteLength*8 - representativeBitLength;
		h.Encode(representative, representativeByteLength);
	}
}

void DL_SignatureMessageEncodingMethod_NR::ComputeMessageRepresentative(RandomNumberGenerator &rng,
	const byte *recoverableMessage, size_t recoverableMessageLength,
	HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
	byte *representative, size_t representativeBitLength) const
{
	CRYPTOPP_UNUSED(rng);CRYPTOPP_UNUSED(recoverableMessage); CRYPTOPP_UNUSED(recoverableMessageLength);
	CRYPTOPP_UNUSED(hash); CRYPTOPP_UNUSED(hashIdentifier); CRYPTOPP_UNUSED(messageEmpty);
	CRYPTOPP_UNUSED(representative); CRYPTOPP_UNUSED(representativeBitLength);

	CRYPTOPP_ASSERT(recoverableMessageLength == 0);
	CRYPTOPP_ASSERT(hashIdentifier.second == 0);
	const size_t representativeByteLength = BitsToBytes(representativeBitLength);
	const size_t digestSize = hash.DigestSize();
	const size_t paddingLength = SaturatingSubtract(representativeByteLength, digestSize);

	memset(representative, 0, paddingLength);
	hash.TruncatedFinal(representative+paddingLength, STDMIN(representativeByteLength, digestSize));

	if (digestSize*8 >= representativeBitLength)
	{
		Integer h(representative, representativeByteLength);
		h >>= representativeByteLength*8 - representativeBitLength + 1;
		h.Encode(representative, representativeByteLength);
	}
}

bool DL_GroupParameters_IntegerBased::ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const
{
	const Integer &p = GetModulus(), &q = GetSubgroupOrder();
	bool pass = true;

	CRYPTOPP_ASSERT(p > Integer::One() && p.IsOdd());
	pass = pass && p > Integer::One() && p.IsOdd();

	CRYPTOPP_ASSERT(q > Integer::One() && q.IsOdd());
	pass = pass && q > Integer::One() && q.IsOdd();

	if (level >= 1)
	{
		CRYPTOPP_ASSERT(GetCofactor() > Integer::One());
		CRYPTOPP_ASSERT(GetGroupOrder() % q == Integer::Zero());

		pass = pass && GetCofactor() > Integer::One() && GetGroupOrder() % q == Integer::Zero();
	}
	if (level >= 2)
	{
		CRYPTOPP_ASSERT(VerifyPrime(rng, q, level-2));
		CRYPTOPP_ASSERT(VerifyPrime(rng, p, level-2));

		pass = pass && VerifyPrime(rng, q, level-2) && VerifyPrime(rng, p, level-2);
	}

	return pass;
}

bool DL_GroupParameters_IntegerBased::ValidateElement(unsigned int level, const Integer &g, const DL_FixedBasePrecomputation<Integer> *gpc) const
{
	const Integer &p = GetModulus(), &q = GetSubgroupOrder();
	bool pass = true;

	CRYPTOPP_ASSERT(GetFieldType() == 1 ? g.IsPositive() : g.NotNegative());
	pass = pass && GetFieldType() == 1 ? g.IsPositive() : g.NotNegative();

	CRYPTOPP_ASSERT(g < p && !IsIdentity(g));
	pass = pass && g < p && !IsIdentity(g);

	if (level >= 1)
	{
		if (gpc)
		{
			CRYPTOPP_ASSERT(gpc->Exponentiate(GetGroupPrecomputation(), Integer::One()) == g);
			pass = pass && gpc->Exponentiate(GetGroupPrecomputation(), Integer::One()) == g;
		}
	}
	if (level >= 2)
	{
		if (GetFieldType() == 2)
		{
			CRYPTOPP_ASSERT(Jacobi(g*g-4, p)==-1);
			pass = pass && Jacobi(g*g-4, p)==-1;
		}

		// verifying that Lucas((p+1)/2, w, p)==2 is omitted because it's too costly
		// and at most 1 bit is leaked if it's false
		bool fullValidate = (GetFieldType() == 2 && level >= 3) || !FastSubgroupCheckAvailable();

		if (fullValidate && pass)
		{
			Integer gp = gpc ? gpc->Exponentiate(GetGroupPrecomputation(), q) : ExponentiateElement(g, q);
			CRYPTOPP_ASSERT(IsIdentity(gp));
			pass = pass && IsIdentity(gp);
		}
		else if (GetFieldType() == 1)
		{
			CRYPTOPP_ASSERT(Jacobi(g, p) == 1);
			pass = pass && Jacobi(g, p) == 1;
		}
	}

	return pass;
}

void DL_GroupParameters_IntegerBased::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
	Integer p, q, g;

	if (alg.GetValue("Modulus", p) && alg.GetValue("SubgroupGenerator", g))
	{
		q = alg.GetValueWithDefault("SubgroupOrder", ComputeGroupOrder(p)/2);
	}
	else
	{
		int modulusSize, subgroupOrderSize;

		if (!alg.GetIntValue("ModulusSize", modulusSize))
			modulusSize = alg.GetIntValueWithDefault("KeySize", 2048);

		if (!alg.GetIntValue("SubgroupOrderSize", subgroupOrderSize))
			subgroupOrderSize = GetDefaultSubgroupOrderSize(modulusSize);

		PrimeAndGenerator pg;
		pg.Generate(GetFieldType() == 1 ? 1 : -1, rng, modulusSize, subgroupOrderSize);
		p = pg.Prime();
		q = pg.SubPrime();
		g = pg.Generator();
	}

	Initialize(p, q, g);
}

void DL_GroupParameters_IntegerBased::EncodeElement(bool reversible, const Element &element, byte *encoded) const
{
	CRYPTOPP_UNUSED(reversible);
	element.Encode(encoded, GetModulus().ByteCount());
}

unsigned int DL_GroupParameters_IntegerBased::GetEncodedElementSize(bool reversible) const
{
	CRYPTOPP_UNUSED(reversible);
	return GetModulus().ByteCount();
}

Integer DL_GroupParameters_IntegerBased::DecodeElement(const byte *encoded, bool checkForGroupMembership) const
{
	CRYPTOPP_UNUSED(checkForGroupMembership);
	Integer g(encoded, GetModulus().ByteCount());
	if (!ValidateElement(1, g, NULLPTR))
		throw DL_BadElement();
	return g;
}

void DL_GroupParameters_IntegerBased::BERDecode(BufferedTransformation &bt)
{
	BERSequenceDecoder parameters(bt);
		Integer p(parameters);
		Integer q(parameters);
		Integer g;
		if (parameters.EndReached())
		{
			g = q;
			q = ComputeGroupOrder(p) / 2;
		}
		else
			g.BERDecode(parameters);
	parameters.MessageEnd();

	SetModulusAndSubgroupGenerator(p, g);
	SetSubgroupOrder(q);
}

void DL_GroupParameters_IntegerBased::DEREncode(BufferedTransformation &bt) const
{
	DERSequenceEncoder parameters(bt);
		GetModulus().DEREncode(parameters);
		m_q.DEREncode(parameters);
		GetSubgroupGenerator().DEREncode(parameters);
	parameters.MessageEnd();
}

bool DL_GroupParameters_IntegerBased::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
	return GetValueHelper<DL_GroupParameters<Element> >(this, name, valueType, pValue)
		CRYPTOPP_GET_FUNCTION_ENTRY(Modulus);
}

void DL_GroupParameters_IntegerBased::AssignFrom(const NameValuePairs &source)
{
	AssignFromHelper(this, source)
		CRYPTOPP_SET_FUNCTION_ENTRY2(Modulus, SubgroupGenerator)
		CRYPTOPP_SET_FUNCTION_ENTRY(SubgroupOrder)
		;
}

OID DL_GroupParameters_IntegerBased::GetAlgorithmID() const
{
	return ASN1::id_dsa();
}

void DL_GroupParameters_GFP::SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
{
	ModularArithmetic ma(GetModulus());
	ma.SimultaneousExponentiate(results, base, exponents, exponentsCount);
}

DL_GroupParameters_GFP::Element DL_GroupParameters_GFP::MultiplyElements(const Element &a, const Element &b) const
{
	return a_times_b_mod_c(a, b, GetModulus());
}

DL_GroupParameters_GFP::Element DL_GroupParameters_GFP::CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const
{
	ModularArithmetic ma(GetModulus());
	return ma.CascadeExponentiate(element1, exponent1, element2, exponent2);
}

Integer DL_GroupParameters_IntegerBased::GetMaxExponent() const
{
	return STDMIN(GetSubgroupOrder()-1, Integer::Power2(2*DiscreteLogWorkFactor(GetFieldType()*GetModulus().BitCount())));
}

unsigned int DL_GroupParameters_IntegerBased::GetDefaultSubgroupOrderSize(unsigned int modulusSize) const
{
	return 2*DiscreteLogWorkFactor(GetFieldType()*modulusSize);
}

NAMESPACE_END

#endif