1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
|
/* libctl: flexible Guile-based control files for scientific software
* Copyright (C) 1998, 1999, 2000, 2001, 2002, Steven G. Johnson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Steven G. Johnson can be contacted at stevenj@alum.mit.edu.
*/
#include <math.h>
#include <ctlgeom.h>
/**************************************************************************/
/* If v is a vector in the lattice basis, normalize v so that
its cartesian length is unity. */
static void lattice_normalize(vector3 *v)
{
*v = vector3_scale(
1.0 /
sqrt(vector3_dot(*v,
matrix3x3_vector3_mult(geometry_lattice.metric,
*v))),
*v);
}
/* "Fix" the parameters of the given object to account for the
geometry_lattice basis, which may be non-orthogonal. In particular,
this means that the normalization of several unit vectors, such
as the cylinder or block axes, needs to be changed.
Unfortunately, we can't do this stuff at object-creation time
in Guile, because the geometry_lattice variable may not have
been assigned to its final value at that point. */
void geom_fix_object(geometric_object o)
{
switch(o.which_subclass) {
case CYLINDER:
lattice_normalize(&o.subclass.cylinder_data->axis);
break;
case BLOCK:
{
matrix3x3 m;
lattice_normalize(&o.subclass.block_data->e1);
lattice_normalize(&o.subclass.block_data->e2);
lattice_normalize(&o.subclass.block_data->e3);
m.c0 = o.subclass.block_data->e1;
m.c1 = o.subclass.block_data->e2;
m.c2 = o.subclass.block_data->e3;
o.subclass.block_data->projection_matrix = matrix3x3_inverse(m);
break;
}
case GEOMETRIC_OBJECT_SELF: case SPHERE:
break; /* these objects are fine */
}
}
/* fix all objects in the geometry list as described in
geom_fix_object, above */
void geom_fix_objects(void)
{
int index;
for (index = 0; index < geometry.num_items; ++index)
geom_fix_object(geometry.items[index]);
}
/**************************************************************************/
/* Return whether or not the point p (in the lattice basis) is inside
the object o.
Requires that the global input var geometry_lattice already be
initialized.
point_in_fixed_objectp additionally requires that geom_fix_object
has been called on o (if the lattice basis is non-orthogonal). */
boolean point_in_objectp(vector3 p, geometric_object o)
{
geom_fix_object(o);
return point_in_fixed_objectp(p, o);
}
boolean point_in_fixed_objectp(vector3 p, geometric_object o)
{
vector3 r = vector3_minus(p,o.center);
switch (o.which_subclass) {
case GEOMETRIC_OBJECT_SELF:
return 0;
case SPHERE:
{
number radius = o.subclass.sphere_data->radius;
return(radius > 0.0 &&
vector3_dot(r,matrix3x3_vector3_mult(geometry_lattice.metric, r))
<= radius*radius);
}
case CYLINDER:
{
vector3 rm = matrix3x3_vector3_mult(geometry_lattice.metric, r);
number proj = vector3_dot(o.subclass.cylinder_data->axis, rm);
number height = o.subclass.cylinder_data->height;
if (fabs(proj) <= 0.5 * height) {
number radius = o.subclass.cylinder_data->radius;
if (o.subclass.cylinder_data->which_subclass == CONE)
radius += (proj/height + 0.5) *
(o.subclass.cylinder_data->subclass.cone_data->radius2
- radius);
return(radius != 0.0 && vector3_dot(r,rm) - proj*proj <= radius*radius);
}
else
return 0;
}
case BLOCK:
{
vector3 proj =
matrix3x3_vector3_mult(o.subclass.block_data->projection_matrix, r);
switch (o.subclass.block_data->which_subclass) {
case BLOCK_SELF:
{
vector3 size = o.subclass.block_data->size;
return(fabs(proj.x) <= 0.5 * size.x &&
fabs(proj.y) <= 0.5 * size.y &&
fabs(proj.z) <= 0.5 * size.z);
}
case ELLIPSOID:
{
vector3 isa =
o.subclass.block_data->subclass.ellipsoid_data->inverse_semi_axes;
double
a = proj.x * isa.x,
b = proj.y * isa.y,
c = proj.z * isa.z;
return(a*a + b*b + c*c <= 1.0);
}
}
}
}
return 0;
}
/**************************************************************************/
/* Here is a useful macro to loop over different possible shifts of
the lattice vectors. body is executed for each possible shift,
where the shift is given by the value of shiftby (which should
be a vector3 variable). I would much rather make this a function,
but C's lack of lambda-like function construction or closures makes
this easier to do as a macro. (One could at least wish for
an easier way to make multi-line macros.) */
#define LOOP_PERIODIC(shiftby, body) { \
switch (dimensions) { \
case 1: \
{ \
int iii; \
shiftby.y = shiftby.z = 0; \
for (iii = -1; iii <= 1; ++iii) { \
shiftby.x = iii * geometry_lattice.size.x; \
body; \
} \
break; \
} \
case 2: \
{ \
int iii, jjj; \
shiftby.z = 0; \
for (iii = -1; iii <= 1; ++iii) { \
shiftby.x = iii * geometry_lattice.size.x; \
for (jjj = -1; jjj <= 1; ++jjj) { \
shiftby.y = jjj * geometry_lattice.size.y; \
body; \
} \
} \
break; \
} \
case 3: \
{ \
int iii, jjj, kkk; \
for (iii = -1; iii <= 1; ++iii) { \
shiftby.x = iii * geometry_lattice.size.x; \
for (jjj = -1; jjj <= 1; ++jjj) { \
shiftby.y = jjj * geometry_lattice.size.y; \
for (kkk = -1; kkk <= 1; ++kkk) { \
shiftby.z = kkk * geometry_lattice.size.z; \
body; \
} \
} \
} \
break; \
} \
} \
}
/**************************************************************************/
/* Like point_in_objectp, but also checks the object shifted
by the lattice vectors: */
boolean point_in_periodic_objectp(vector3 p, geometric_object o)
{
geom_fix_object(o);
return point_in_periodic_fixed_objectp(p, o);
}
boolean point_in_periodic_fixed_objectp(vector3 p, geometric_object o)
{
vector3 shiftby;
LOOP_PERIODIC(shiftby,
if (point_in_fixed_objectp(vector3_minus(p, shiftby), o))
return 1);
return 0;
}
/**************************************************************************/
/* Return the material type corresponding to the point p (in the lattice
basis). Returns default_material if p is not in any object.
Requires that the global input vars geometry_lattice, geometry,
dimensions, default_material and ensure_periodicity already be
initialized.
Also requires that geom_fix_objects() has been called!
material_of_point_inobject is a variant that also returns whether
or not the point was in any object. */
material_type material_of_point_inobject(vector3 p, boolean *inobject)
{
int index;
*inobject = 1;
/* loop in reverse order so that later items are given precedence: */
for (index = geometry.num_items - 1; index >= 0; --index) {
if ((ensure_periodicity
&& point_in_periodic_fixed_objectp(p, geometry.items[index]))
|| point_in_fixed_objectp(p, geometry.items[index]))
return(geometry.items[index].material);
}
*inobject = 0;
return default_material;
}
material_type material_of_point(vector3 p)
{
boolean inobject;
return material_of_point_inobject(p, &inobject);
}
/**************************************************************************/
/* Given a geometric object o, display some information about it,
indented by indentby spaces. */
void display_geometric_object_info(int indentby, geometric_object o)
{
geom_fix_object(o);
printf("%*s", indentby, "");
switch (o.which_subclass) {
case CYLINDER:
switch (o.subclass.cylinder_data->which_subclass) {
case CONE:
printf("cone");
break;
case CYLINDER_SELF:
printf("cylinder");
break;
}
break;
case SPHERE:
printf("sphere");
break;
case BLOCK:
switch (o.subclass.block_data->which_subclass) {
case ELLIPSOID:
printf("ellipsoid");
break;
case BLOCK_SELF:
printf("block");
break;
}
break;
default:
printf("geometric object");
break;
}
printf(", center = (%g,%g,%g)\n",
o.center.x, o.center.y, o.center.z);
switch (o.which_subclass) {
case CYLINDER:
printf("%*s radius %g, height %g, axis (%g, %g, %g)\n",
indentby, "", o.subclass.cylinder_data->radius,
o.subclass.cylinder_data->height,
o.subclass.cylinder_data->axis.x,
o.subclass.cylinder_data->axis.y,
o.subclass.cylinder_data->axis.z);
if (o.subclass.cylinder_data->which_subclass == CONE)
printf("%*s radius2 %g\n", indentby, "",
o.subclass.cylinder_data->subclass.cone_data->radius2);
break;
case SPHERE:
printf("%*s radius %g\n", indentby, "",
o.subclass.sphere_data->radius);
break;
case BLOCK:
printf("%*s size (%g,%g,%g)\n", indentby, "",
o.subclass.block_data->size.x,
o.subclass.block_data->size.y,
o.subclass.block_data->size.z);
printf("%*s axes (%g,%g,%g), (%g,%g,%g), (%g,%g,%g)\n",
indentby, "",
o.subclass.block_data->e1.x,
o.subclass.block_data->e1.y,
o.subclass.block_data->e1.z,
o.subclass.block_data->e2.x,
o.subclass.block_data->e2.y,
o.subclass.block_data->e2.z,
o.subclass.block_data->e3.x,
o.subclass.block_data->e3.y,
o.subclass.block_data->e3.z);
break;
default:
break;
}
}
/**************************************************************************/
/* Given a basis (matrix columns are the basis unit vectors) and the
size of the lattice (in basis vectors), returns a new "square"
basis. This corresponds to a region of the same volume, but made
rectangular, suitable for outputing to an HDF file.
Given a vector in the range (0..1, 0..1, 0..1), multiplying by
the square basis matrix will yield the coordinates of a point
in the rectangular volume, given in the lattice basis. */
matrix3x3 square_basis(matrix3x3 basis, vector3 size)
{
matrix3x3 square;
square.c0 = basis.c0;
square.c1 = vector3_minus(basis.c1, vector3_scale(vector3_dot(basis.c0,
basis.c1),
basis.c1));
square.c2 = vector3_minus(basis.c2, vector3_scale(vector3_dot(basis.c0,
basis.c2),
basis.c2));
square.c2 = vector3_minus(square.c2, vector3_scale(vector3_dot(basis.c0,
square.c2),
unit_vector3(square.c2)));
square.c0 = vector3_scale(size.x, square.c0);
square.c1 = vector3_scale(size.y, square.c1);
square.c2 = vector3_scale(size.z, square.c2);
return matrix3x3_mult(matrix3x3_inverse(basis), square);
}
/**************************************************************************/
/**************************************************************************/
/* Fast geometry routines */
/* Using the above material_of_point routine is way too slow, especially
when there are lots of objects to test. Thus, we develop the following
replacement routines.
The basic idea here is twofold. (1) Compute bounding boxes for
each geometric object, for which inclusion tests can be computed
quickly. (2) Build a tree that recursively breaks down the unit cell
in half, allowing us to perform searches in logarithmic time. */
/**************************************************************************/
/* geom_box utilities: */
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define MIN(a,b) ((a) < (b) ? (a) : (b))
static void geom_box_union(geom_box *bu, geom_box *b1, geom_box *b2)
{
bu->low.x = MIN(b1->low.x, b2->low.x);
bu->low.y = MIN(b1->low.y, b2->low.y);
bu->low.z = MIN(b1->low.z, b2->low.z);
bu->high.x = MAX(b1->high.x, b2->high.x);
bu->high.y = MAX(b1->high.y, b2->high.y);
bu->high.z = MAX(b1->high.z, b2->high.z);
}
static void geom_box_add_pt(geom_box *b, vector3 p)
{
b->low.x = MIN(b->low.x, p.x);
b->low.y = MIN(b->low.y, p.y);
b->low.z = MIN(b->low.z, p.z);
b->high.x = MAX(b->high.x, p.x);
b->high.y = MAX(b->high.y, p.y);
b->high.z = MAX(b->high.z, p.z);
}
#define BETWEEN(x, low, high) ((x) >= (low) && (x) <= (high))
static int geom_box_contains_point(const geom_box *b, vector3 p)
{
return (BETWEEN(p.x, b->low.x, b->high.x) &&
BETWEEN(p.y, b->low.y, b->high.y) &&
BETWEEN(p.z, b->low.z, b->high.z));
}
/* return whether or not the given two boxes intersect */
static int geom_boxes_intersect(const geom_box *b1, const geom_box *b2)
{
/* true if the x, y, and z ranges all intersect. */
return ((BETWEEN(b1->low.x, b2->low.x, b2->high.x) ||
BETWEEN(b1->high.x, b2->low.x, b2->high.x) ||
BETWEEN(b2->low.x, b1->low.x, b1->high.x)) &&
(BETWEEN(b1->low.y, b2->low.y, b2->high.y) ||
BETWEEN(b1->high.y, b2->low.y, b2->high.y) ||
BETWEEN(b2->low.y, b1->low.y, b1->high.y)) &&
(BETWEEN(b1->low.z, b2->low.z, b2->high.z) ||
BETWEEN(b1->high.z, b2->low.z, b2->high.z) ||
BETWEEN(b2->low.z, b1->low.z, b1->high.z)));
}
static void geom_box_shift(geom_box *b, vector3 shiftby)
{
b->low = vector3_plus(b->low, shiftby);
b->high = vector3_plus(b->high, shiftby);
}
/**************************************************************************/
/* Computing a bounding box for a geometric object: */
/* compute | (b x c) / (a * (b x c)) |, for use below */
static number compute_dot_cross(vector3 a, vector3 b, vector3 c)
{
vector3 bxc = vector3_cross(b, c);
return fabs(vector3_norm(bxc) / vector3_dot(a, bxc));
}
/* Compute a bounding box for the object o, preferably the smallest
bounding box. The box is a parallelepiped with axes given by
the geometry lattice vectors, and its corners are given in the
lattice basis.
Requires that geometry_lattice global has been initialized,
etcetera. */
static void get_bounding_box(geometric_object o, geom_box *box)
{
geom_fix_object(o);
/* initialize to empty box at the center of the object: */
box->low = box->high = o.center;
switch (o.which_subclass) {
case GEOMETRIC_OBJECT_SELF:
break;
case SPHERE:
{
/* Find the parallelepiped that the sphere inscribes.
The math comes out surpisingly simple--try it! */
number radius = o.subclass.sphere_data->radius;
/* actually, we could achieve the same effect here
by inverting the geometry_lattice.basis matrix... */
number r1 = compute_dot_cross(geometry_lattice.b1,
geometry_lattice.b2,
geometry_lattice.b3) * radius;
number r2 = compute_dot_cross(geometry_lattice.b2,
geometry_lattice.b3,
geometry_lattice.b1) * radius;
number r3 = compute_dot_cross(geometry_lattice.b3,
geometry_lattice.b1,
geometry_lattice.b2) * radius;
box->low.x -= r1;
box->low.y -= r2;
box->low.z -= r3;
box->high.x += r1;
box->high.y += r2;
box->high.z += r3;
break;
}
case CYLINDER:
{
/* Find the bounding boxes of the two (circular) ends of
the cylinder, then take the union. Again, the math
for finding the bounding parallelepiped of a circle
comes out suprisingly simple in the end. Proof left
as an exercise for the reader. */
number radius = o.subclass.cylinder_data->radius;
number h = o.subclass.cylinder_data->height * 0.5;
vector3 axis = /* cylinder axis in cartesian coords */
matrix3x3_vector3_mult(geometry_lattice.basis,
o.subclass.cylinder_data->axis);
vector3 e12 = vector3_cross(geometry_lattice.basis1,
geometry_lattice.basis2);
vector3 e23 = vector3_cross(geometry_lattice.basis2,
geometry_lattice.basis3);
vector3 e31 = vector3_cross(geometry_lattice.basis3,
geometry_lattice.basis1);
number elen2, eproj;
number r1, r2, r3;
geom_box tmp_box;
/* Find bounding box dimensions, in lattice coords,
for the circular ends of the cylinder: */
elen2 = vector3_dot(e23, e23);
eproj = vector3_dot(e23, axis);
r1 = fabs(sqrt(fabs(elen2 - eproj*eproj)) /
vector3_dot(e23, geometry_lattice.b1));
elen2 = vector3_dot(e31, e31);
eproj = vector3_dot(e31, axis);
r2 = fabs(sqrt(fabs(elen2 - eproj*eproj)) /
vector3_dot(e31, geometry_lattice.b2));
elen2 = vector3_dot(e12, e12);
eproj = vector3_dot(e12, axis);
r3 = fabs(sqrt(fabs(elen2 - eproj*eproj)) /
vector3_dot(e12, geometry_lattice.b3));
/* Get axis in lattice coords: */
axis = o.subclass.cylinder_data->axis;
tmp_box = *box; /* set tmp_box to center of object */
/* bounding box for -h*axis cylinder end: */
box->low.x -= h * axis.x + r1*radius;
box->low.y -= h * axis.y + r2*radius;
box->low.z -= h * axis.z + r3*radius;
box->high.x -= h * axis.x - r1*radius;
box->high.y -= h * axis.y - r2*radius;
box->high.z -= h * axis.z - r3*radius;
if (o.subclass.cylinder_data->which_subclass == CONE)
radius =
fabs(o.subclass.cylinder_data->subclass.cone_data->radius2);
/* bounding box for +h*axis cylinder end: */
tmp_box.low.x += h * axis.x - r1*radius;
tmp_box.low.y += h * axis.y - r2*radius;
tmp_box.low.z += h * axis.z - r3*radius;
tmp_box.high.x += h * axis.x + r1*radius;
tmp_box.high.y += h * axis.y + r2*radius;
tmp_box.high.z += h * axis.z + r3*radius;
geom_box_union(box, box, &tmp_box);
break;
}
case BLOCK:
{
/* blocks are easy: just enlarge the box to be big enough to
contain all 8 corners of the block. */
vector3 s1 = vector3_scale(o.subclass.block_data->size.x,
o.subclass.block_data->e1);
vector3 s2 = vector3_scale(o.subclass.block_data->size.y,
o.subclass.block_data->e2);
vector3 s3 = vector3_scale(o.subclass.block_data->size.z,
o.subclass.block_data->e3);
vector3 corner =
vector3_plus(o.center,
vector3_scale(-0.5,
vector3_plus(s1, vector3_plus(s2, s3))));
geom_box_add_pt(box, corner);
geom_box_add_pt(box, vector3_plus(corner, s1));
geom_box_add_pt(box, vector3_plus(corner, s2));
geom_box_add_pt(box, vector3_plus(corner, s3));
geom_box_add_pt(box, vector3_plus(corner, vector3_plus(s1, s2)));
geom_box_add_pt(box, vector3_plus(corner, vector3_plus(s1, s3)));
geom_box_add_pt(box, vector3_plus(corner, vector3_plus(s3, s2)));
geom_box_add_pt(box,
vector3_plus(corner, vector3_plus(s1, vector3_plus(s2, s3))));
}
}
}
/**************************************************************************/
/* geom_box_tree: a tree of boxes and the objects contained within
them. The tree recursively partitions the unit cell, allowing us
to perform binary searches for the object containing a given point. */
void destroy_geom_box_tree(geom_box_tree t)
{
if (t) {
destroy_geom_box_tree(t->t1);
destroy_geom_box_tree(t->t2);
if (t->nobjects && t->objects)
free(t->objects);
free(t);
}
}
/* return whether the object o, shifted by the vector shiftby,
possibly intersects b. Upon return, obj_b is the bounding
box for o. */
static int object_in_box(geometric_object o, vector3 shiftby,
geom_box *obj_b, const geom_box *b)
{
get_bounding_box(o, obj_b);
geom_box_shift(obj_b, shiftby);
return geom_boxes_intersect(obj_b, b);
}
#define CHECK(cond, s) if (!(cond)){fprintf(stderr,s "\n");exit(EXIT_FAILURE);}
static geom_box_tree new_geom_box_tree(void)
{
geom_box_tree t;
t = (geom_box_tree) malloc(sizeof(struct geom_box_tree_struct));
CHECK(t, "out of memory");
t->t1 = t->t2 = NULL;
t->nobjects = 0;
t->objects = NULL;
return t;
}
/* Divide b into b1 and b2, cutting b in two along the axis
divide_axis (0 = x, 1 = y, 2 = z) at divide_point. */
static void divide_geom_box(const geom_box *b,
int divide_axis, number divide_point,
geom_box *b1, geom_box *b2)
{
*b1 = *b2 = *b;
switch (divide_axis) {
case 0:
b1->high.x = b2->low.x = divide_point;
break;
case 1:
b1->high.y = b2->low.y = divide_point;
break;
case 2:
b1->high.z = b2->low.z = divide_point;
break;
}
}
#define VEC_I(v,i) ((i) == 0 ? (v).x : ((i) == 1 ? (v).y : (v).z))
#define SMALL 1.0e-7
/* Find the best place (best_partition) to "cut" along the axis
divide_axis in order to maximally divide the objects between
the partitions. Upon return, n1 and n2 are the number of objects
below and above the partition, respectively. */
static void find_best_partition(int nobjects, const geom_box_object *objects,
int divide_axis,
number *best_partition, int *n1, int *n2)
{
number cur_partition;
int i, j, cur_n1, cur_n2;
*n1 = *n2 = nobjects + 1;
*best_partition = 0;
/* Search for the best partition, by checking all possible partitions
either just above the high end of an object or just below the
low end of an object. */
for (i = 0; i < nobjects; ++i) {
cur_partition = VEC_I(objects[i].box.high, divide_axis) + SMALL;
cur_n1 = cur_n2 = 0;
for (j = 0; j < nobjects; ++j) {
if (VEC_I(objects[j].box.low, divide_axis) <= cur_partition)
++cur_n1;
if (VEC_I(objects[j].box.high, divide_axis) >= cur_partition)
++cur_n2;
}
CHECK(cur_n1 + cur_n2 >= nobjects, "bug 1 in find_best_partition");
if (MAX(cur_n1, cur_n2) < MAX(*n1, *n2)) {
*best_partition = cur_partition;
*n1 = cur_n1;
*n2 = cur_n2;
}
}
for (i = 0; i < nobjects; ++i) {
cur_partition = VEC_I(objects[i].box.low, divide_axis) - SMALL;
cur_n1 = cur_n2 = 0;
for (j = 0; j < nobjects; ++j) {
if (VEC_I(objects[j].box.low, divide_axis) <= cur_partition)
++cur_n1;
if (VEC_I(objects[j].box.high, divide_axis) >= cur_partition)
++cur_n2;
}
CHECK(cur_n1 + cur_n2 >= nobjects, "bug 2 in find_best_partition");
if (MAX(cur_n1, cur_n2) < MAX(*n1, *n2)) {
*best_partition = cur_partition;
*n1 = cur_n1;
*n2 = cur_n2;
}
}
}
/* divide_geom_box_tree: recursively divide t in two, each time
dividing along the axis that maximally partitions the boxes,
and only stop partitioning when partitioning doesn't help any
more. Upon return, t points to the partitioned tree. */
static void divide_geom_box_tree(geom_box_tree t)
{
int division_nobjects[3][2] = {{0,0},{0,0},{0,0}};
number division_point[3];
int best = 0;
int i, j, n1, n2;
if (!t)
return;
if (t->t1 || t->t2) { /* this node has already been divided */
divide_geom_box_tree(t->t1);
divide_geom_box_tree(t->t2);
return;
}
if (t->nobjects <= 2)
return; /* no point in partitioning */
/* Try partitioning along each dimension, counting the
number of objects in the partitioned boxes and finding
the best partition. */
for (i = 0; i < dimensions; ++i) {
find_best_partition(t->nobjects, t->objects, i, &division_point[i],
&division_nobjects[i][0],
&division_nobjects[i][1]);
if (MAX(division_nobjects[i][0], division_nobjects[i][1]) <
MAX(division_nobjects[best][0], division_nobjects[best][1]))
best = i;
}
/* don't do anything if division makes the worst case worse or if
it fails to improve the best case: */
if (MAX(division_nobjects[best][0], division_nobjects[best][1]) + 1 >
t->nobjects ||
MIN(division_nobjects[best][0], division_nobjects[best][1]) + 1 >=
t->nobjects)
return; /* division didn't help us */
divide_geom_box(&t->b, best, division_point[best], &t->b1, &t->b2);
t->t1 = new_geom_box_tree();
t->t2 = new_geom_box_tree();
t->t1->b = t->b1;
t->t2->b = t->b2;
t->t1->nobjects = division_nobjects[best][0];
t->t1->objects = (geom_box_object *) malloc(t->t1->nobjects *
sizeof(geom_box_object));
CHECK(t->t1->objects, "out of memory");
t->t2->nobjects = division_nobjects[best][1];
t->t2->objects = (geom_box_object *) malloc(t->t2->nobjects *
sizeof(geom_box_object));
CHECK(t->t2->objects, "out of memory");
for (j = n1 = n2 = 0; j < t->nobjects; ++j) {
if (geom_boxes_intersect(&t->b1, &t->objects[j].box)) {
CHECK(n1 < t->t1->nobjects, "BUG in divide_geom_box_tree");
t->t1->objects[n1++] = t->objects[j];
}
if (geom_boxes_intersect(&t->b2, &t->objects[j].box)) {
CHECK(n2 < t->t2->nobjects, "BUG in divide_geom_box_tree");
t->t2->objects[n2++] = t->objects[j];
}
}
CHECK(j == t->nobjects && n1 == t->t1->nobjects && n2 == t->t2->nobjects,
"BUG in divide_geom_box_tree: wrong nobjects");
t->nobjects = 0;
free(t->objects);
t->objects = NULL;
divide_geom_box_tree(t->t1);
divide_geom_box_tree(t->t2);
}
geom_box_tree create_geom_box_tree(void)
{
geom_box b;
geom_box_tree t = new_geom_box_tree();
int i, index;
t->b.low = vector3_scale(-0.5, geometry_lattice.size);
t->b.high = vector3_scale(0.5, geometry_lattice.size);
for (i = geometry.num_items - 1; i >= 0; --i) {
vector3 shiftby = {0,0,0};
if (ensure_periodicity) {
LOOP_PERIODIC(shiftby,
if (object_in_box(geometry.items[i], shiftby,
&b, &t->b)) ++t->nobjects);
}
else if (object_in_box(geometry.items[i], shiftby, &b, &t->b))
++t->nobjects;
}
t->objects = (geom_box_object *) malloc(t->nobjects *
sizeof(geom_box_object));
CHECK(t->objects || t->nobjects == 0, "out of memory");
for (i = geometry.num_items - 1, index = 0; i >= 0; --i) {
vector3 shiftby = {0,0,0};
if (ensure_periodicity) {
LOOP_PERIODIC(shiftby,
if (object_in_box(geometry.items[i], shiftby,
&b, &t->b)) {
t->objects[index].box = b;
t->objects[index].o = &geometry.items[i];
t->objects[index].shiftby = shiftby;
index++;
});
}
else if (object_in_box(geometry.items[i], shiftby, &b, &t->b)) {
t->objects[index].box = b;
t->objects[index].o = &geometry.items[i];
t->objects[index].shiftby = shiftby;
index++;
}
}
divide_geom_box_tree(t);
return t;
}
/**************************************************************************/
/* recursively search the tree for the given point. */
static geom_box_object *find_box_object(vector3 p, geom_box_tree t)
{
int i;
geom_box_object *gbo;
if (!t || !geom_box_contains_point(&t->b, p))
return NULL;
for (i = 0; i < t->nobjects; ++i)
if (geom_box_contains_point(&t->objects[i].box, p) &&
point_in_fixed_objectp(vector3_minus(p, t->objects[i].shiftby),
*t->objects[i].o))
return(&t->objects[i]);
gbo = find_box_object(p, t->t1);
if (!gbo)
gbo = find_box_object(p, t->t2);
return gbo;
}
/* shift p to be within the unit cell of the lattice (centered on the
origin); p is required to be no more than one lattice constant
away from the unit cell in any direction. */
static void shift_to_unit_cell(vector3 *p)
{
if (p->x >= 0.5 * geometry_lattice.size.x)
p->x -= geometry_lattice.size.x;
else if (p->x < -0.5 * geometry_lattice.size.x)
p->x += geometry_lattice.size.x;
if (p->y >= 0.5 * geometry_lattice.size.y)
p->y -= geometry_lattice.size.y;
else if (p->y < -0.5 * geometry_lattice.size.y)
p->y += geometry_lattice.size.y;
if (p->z >= 0.5 * geometry_lattice.size.z)
p->z -= geometry_lattice.size.z;
else if (p->z < -0.5 * geometry_lattice.size.z)
p->z += geometry_lattice.size.z;
}
material_type material_of_point_in_tree_inobject(vector3 p, geom_box_tree t,
boolean *inobject)
{
geom_box_object *gbo;
shift_to_unit_cell(&p);
gbo = find_box_object(p, t);
if (gbo) {
*inobject = 1;
return (gbo->o->material);
}
else {
*inobject = 0;
return default_material;
}
}
material_type material_of_point_in_tree(vector3 p, geom_box_tree t)
{
boolean inobject;
return material_of_point_in_tree_inobject(p, t, &inobject);
}
/**************************************************************************/
void display_geom_box_tree(int indentby, geom_box_tree t)
{
int i;
if (!t)
return;
printf("%*sbox (%g..%g, %g..%g, %g..%g)\n", indentby, "",
t->b.low.x, t->b.high.x,
t->b.low.y, t->b.high.y,
t->b.low.z, t->b.high.z);
for (i = 0; i < t->nobjects; ++i) {
printf("%*sbounding box (%g..%g, %g..%g, %g..%g)\n", indentby+5, "",
t->objects[i].box.low.x, t->objects[i].box.high.x,
t->objects[i].box.low.y, t->objects[i].box.high.y,
t->objects[i].box.low.z, t->objects[i].box.high.z);
printf("%*sshift object by (%g, %g, %g)\n", indentby+5, "",
t->objects[i].shiftby.x, t->objects[i].shiftby.y,
t->objects[i].shiftby.z);
display_geometric_object_info(indentby + 5, *t->objects[i].o);
}
display_geom_box_tree(indentby + 5, t->t1);
display_geom_box_tree(indentby + 5, t->t2);
}
/**************************************************************************/
/* Computing tree statistics (depth and number of nodes): */
/* helper function for geom_box_tree_stats */
static void get_tree_stats(geom_box_tree t, int *depth, int *nobjects)
{
if (t) {
int d1, d2;
*nobjects += t->nobjects;
d1 = d2 = *depth + 1;
get_tree_stats(t->t1, &d1, nobjects);
get_tree_stats(t->t2, &d2, nobjects);
*depth = MAX(d1, d2);
}
}
void geom_box_tree_stats(geom_box_tree t, int *depth, int *nobjects)
{
*depth = *nobjects = 0;
get_tree_stats(t, depth, nobjects);
}
/**************************************************************************/
vector3 get_grid_size(void)
{
return ctl_convert_vector3_to_c(gh_call0(gh_lookup("get-grid-size")));
}
void get_grid_size_n(int *nx, int *ny, int *nz)
{
vector3 grid_size;
grid_size = get_grid_size();
*nx = grid_size.x;
*ny = grid_size.y;
*nz = grid_size.z;
}
/**************************************************************************/
|