1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <ctlgeom.h>
/************************************************************************/
/* return a random number in [0,1]: */
static double mydrand(void)
{
double d = rand();
return (d / (double) RAND_MAX);
}
/* return a uniform random number in [a,b] */
static double myurand(double a, double b)
{
return ((b - a) * mydrand() + a);
}
#define K_PI 3.141592653589793238462643383279502884197
/* return a random unit vector, uniformly distributed over a sphere */
vector3 random_unit_vector3(void)
{
double z, t, r;
vector3 v;
z = 2*mydrand() - 1;
t = 2*K_PI*mydrand();
r = sqrt(1 - z*z);
v.x = r * cos(t);
v.y = r * sin(t);
v.z = z;
return v;
}
double find_edge(geometric_object o, vector3 dir, double max, double tol)
{
double min = 0;
if (!(point_in_fixed_objectp(vector3_scale(min, dir), o) &&
!point_in_fixed_objectp(vector3_scale(max, dir), o))) {
fprintf(stderr, "object out of bounds in find_edge");
exit(1);
}
do {
double d = (min + max) / 2;
if (point_in_fixed_objectp(vector3_scale(d, dir), o))
min = d;
else
max = d;
} while (max - min > tol);
return (min + max) / 2;
}
static vector3 make_vector3(double x, double y, double z)
{
vector3 v;
v.x = x; v.y = y; v.z = z;
return v;
}
/* return a random geometric object, centered at the origin, with
diameter roughly 1 */
geometric_object random_object(void)
{
material_type m = { 0 };
vector3 c = { 0, 0, 0 };
geometric_object o;
switch (rand() % 5) {
case 0:
o = make_sphere(m, c, myurand(0.5,1.5));
break;
case 1:
o = make_cylinder(m, c, myurand(0.5,1.5), myurand(0.5,1.5),
random_unit_vector3());
break;
case 2:
o = make_cone(m, c, myurand(0.5,1.5), myurand(0.5,1.5),
random_unit_vector3(), myurand(0.5,1.5));
break;
case 3:
o = make_block(m, c,
#if 1
random_unit_vector3(),
random_unit_vector3(),
random_unit_vector3(),
#else
make_vector3(1,0,0),
make_vector3(0,1,0),
make_vector3(0,0,1),
#endif
make_vector3(myurand(0.5,1.5),
myurand(0.5,1.5),
myurand(0.5,1.5)));
break;
case 4:
o = make_ellipsoid(m, c,
random_unit_vector3(),
random_unit_vector3(),
random_unit_vector3(),
make_vector3(myurand(0.5,1.5),
myurand(0.5,1.5),
myurand(0.5,1.5)));
break;
}
return o;
}
/************************************************************************/
static double simple_overlap(geom_box b, geometric_object o, double tol)
{
double d1,d2,d3, x1,x2,x3, olap0 = 0;
double itol = 1.0 / ((int) (1/tol + 0.5));
d1 = (b.high.x - b.low.x) * itol;
d2 = (b.high.y - b.low.y) * itol;
d3 = (b.high.z - b.low.z) * itol;
for (x1 = b.low.x + d1*0.5; x1 <= b.high.x; x1 += d1)
for (x2 = b.low.y + d2*0.5; x2 <= b.high.y; x2 += d2)
for (x3 = b.low.z + d3*0.5; x3 <= b.high.z; x3 += d3) {
vector3 v;
v.x = x1; v.y = x2; v.z = x3;
olap0 += d1*d2*d3 * point_in_fixed_objectp(v, o);
}
olap0 /= (b.high.x-b.low.x) * (b.high.y-b.low.y) * (b.high.z-b.low.z);
return olap0;
}
static void test_overlap(double tol)
{
geometric_object o = random_object();
vector3 dir = random_unit_vector3();
geom_box b;
double d, olap, olap0;
#if 1
geometry_lattice.basis1 = random_unit_vector3();
geometry_lattice.basis2 = random_unit_vector3();
geometry_lattice.basis3 = random_unit_vector3();
geom_fix_lattice();
geom_fix_object(o);
#endif
b.low = make_vector3(myurand(-1,0), myurand(-1,0), myurand(-1,0));
b.high = make_vector3(myurand(0,1), myurand(0,1), myurand(0,1));
d = find_edge(o, dir, 10, tol);
b.low = vector3_plus(b.low, vector3_scale(d, dir));
b.high = vector3_plus(b.high, vector3_scale(d, dir));
olap = box_overlap_with_object(b, o, tol, 100/tol);
olap0 = simple_overlap(b, o, tol);
if (fabs(olap0 - olap) > 2 * tol * fabs(olap)) {
fprintf(stderr, "Large error %e in overlap (%g vs. %g) for:\n"
" lattice = (%g,%g,%g), (%g,%g,%g), (%g,%g,%g)\n"
" box = (%g,%g,%g) - (%g,%g,%g)\n",
fabs(olap0 - olap) / fabs(olap),
olap, olap0,
geometry_lattice.basis1.x,
geometry_lattice.basis1.y,
geometry_lattice.basis1.z,
geometry_lattice.basis2.x,
geometry_lattice.basis2.y,
geometry_lattice.basis2.z,
geometry_lattice.basis3.x,
geometry_lattice.basis3.y,
geometry_lattice.basis3.z,
b.low.x, b.low.y, b.low.z,
b.high.x, b.high.y, b.high.z);
display_geometric_object_info(2, o);
#if 1
while (1) {
tol /= sqrt(2.0);
fprintf(stderr, "olap = %g, olap0 = %g (with tol = %e)\n",
box_overlap_with_object(b, o, tol, 100/tol),
simple_overlap(b, o, tol), tol);
}
#endif
exit(1);
}
else
printf("Got overlap %g vs. %g with tol = %e\n", olap,olap0,tol);
geometric_object_destroy(o);
}
/************************************************************************/
int main(void)
{
const int ntest = 100;
const double tol = 1e-2;
int i;
srand(time(NULL));
for (i = 0; i < ntest; ++i) test_overlap(tol);
return 0;
}
|