1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
|
/* libctl: flexible Guile-based control files for scientific software
* Copyright (C) 1998-2020 Massachusetts Institute of Technology and Steven G. Johnson
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Steven G. Johnson can be contacted at stevenj@alum.mit.edu.
*/
/************************************************************************/
/* test-prism.c: unit test for prisms in libctlgeom */
/* homer reid 5/2018 */
/************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
#include "ctlgeom.h"
vector3 normal_to_plane(vector3 o, vector3 v1, vector3 v2, vector3 p, double *min_distance);
double min_distance_to_line_segment(vector3 p, vector3 v1, vector3 v2);
boolean point_in_or_on_prism(prism *prsm, vector3 xc, boolean include_boundaries);
#define K_PI 3.141592653589793238462643383279502884197
// routine from geom.c that rotates the coordinate of a point
// from the prism coordinate system to the cartesian coordinate system
vector3 prism_coordinate_p2c(prism *prsm, vector3 vp);
vector3 prism_coordinate_c2p(prism *prsm, vector3 vc);
vector3 prism_vector_p2c(prism *prsm, vector3 vp);
vector3 prism_vector_c2p(prism *prsm, vector3 vc);
/***************************************************************/
/* utility routines for writing points, lines, quadrilaterals */
/* to text files for viewing in e.g. gnuplot */
/***************************************************************/
void GPPoint(FILE *f, vector3 v, prism *prsm) {
if (prsm) v = prism_coordinate_p2c(prsm, v);
fprintf(f, "%e %e %e \n\n\n", v.x, v.y, v.z);
}
void GPLine(FILE *f, vector3 v, vector3 l, prism *prsm) {
if (prsm) {
v = prism_coordinate_p2c(prsm, v);
l = prism_vector_p2c(prsm, l);
}
fprintf(f, "%e %e %e \n", v.x, v.y, v.z);
fprintf(f, "%e %e %e \n\n\n", v.x + l.x, v.y + l.y, v.z + l.z);
}
void GPQuad(FILE *f, vector3 v, vector3 l1, vector3 l2, prism *prsm) {
if (prsm) {
v = prism_coordinate_p2c(prsm, v);
l1 = prism_vector_p2c(prsm, l1);
l2 = prism_vector_p2c(prsm, l2);
}
fprintf(f, "%e %e %e \n", v.x, v.y, v.z);
fprintf(f, "%e %e %e \n", v.x + l1.x, v.y + l1.y, v.z + l1.z);
fprintf(f, "%e %e %e \n", v.x + l1.x + l2.x, v.y + l1.y + l2.y, v.z + l1.z + l2.z);
fprintf(f, "%e %e %e \n", v.x + l2.x, v.y + l2.y, v.z + l2.z);
fprintf(f, "%e %e %e \n\n\n", v.x, v.y, v.z);
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
void my_get_prism_bounding_box(prism *prsm, geom_box *box) {
vector3 *vertices = prsm->vertices_p.items;
int num_vertices = prsm->vertices_p.num_items;
double height = prsm->height;
box->low = box->high = prism_coordinate_p2c(prsm, vertices[0]);
int nv, fc;
for (nv = 0; nv < num_vertices; nv++)
for (fc = 0; fc < 2; fc++) // 'floor,ceiling'
{
vector3 vp = vertices[nv];
if (fc == 1) vp.z = height;
vector3 vc = prism_coordinate_p2c(prsm, vp);
box->low.x = fmin(box->low.x, vc.x);
box->low.y = fmin(box->low.y, vc.y);
box->low.z = fmin(box->low.z, vc.z);
box->high.x = fmax(box->high.x, vc.x);
box->high.y = fmax(box->high.y, vc.y);
box->high.z = fmax(box->high.z, vc.z);
}
}
static vector3 make_vector3(double x, double y, double z) {
vector3 v;
v.x = x;
v.y = y;
v.z = z;
return v;
}
/************************************************************************/
/* return a uniform random number in [a,b] */
/************************************************************************/
static double urand(double a, double b) { return a + (b - a) * (rand() / ((double)RAND_MAX)); }
static double drand() { return urand(0.0, 1.0); }
/************************************************************************/
/* random point uniformly distributed over a parallelepiped */
/************************************************************************/
vector3 random_point_in_box(vector3 min_corner, vector3 max_corner) {
return make_vector3(urand(min_corner.x, max_corner.x), urand(min_corner.y, max_corner.y),
urand(min_corner.z, max_corner.z));
}
/************************************************************************/
/* random point uniformly distributed over a planar polygon */
/* (all z coordinates are 0) */
/************************************************************************/
vector3 random_point_in_polygon(prism *prsm) {
// randomly choose a vertex and generate random point within the triangle
// formed by that vertex, the next vertex, and the centroid
vector3 *vertices = prsm->vertices.items;
int num_vertices = prsm->vertices.num_items;
int which_vertex = rand() % num_vertices;
vector3 v0 = {0, 0, 0};
vector3 v1 = vertices[which_vertex];
vector3 v2 = vertices[(which_vertex + 1) % num_vertices];
double xi = urand(0.0, 1.0), eta = urand(0.0, 1.0 - xi);
return vector3_plus(vector3_scale(xi, vector3_minus(v1, v0)),
vector3_scale(eta, vector3_minus(v2, v0)));
}
/************************************************************************/
/* random point uniformly distributed over the surface of a prism */
/************************************************************************/
vector3 random_point_on_prism(geometric_object o) {
prism *prsm = o.subclass.prism_data;
vector3 *vertices = prsm->vertices_p.items;
int num_vertices = prsm->vertices_p.num_items;
double height = prsm->height;
// choose a face
int num_faces = num_vertices + 2;
int which_face = rand() % num_faces;
if (which_face < num_vertices) // side face
{
vector3 min_corner = vertices[which_face];
vector3 max_corner = vertices[(which_face + 1) % num_vertices];
max_corner.z = height;
return random_point_in_box(prism_coordinate_p2c(prsm, min_corner),
prism_coordinate_p2c(prsm, max_corner));
}
else // floor or ceiling
{
vector3 p = random_point_in_polygon(prsm);
if (which_face == num_faces - 1) p.z = height;
return prism_coordinate_p2c(prsm, p);
}
}
/************************************************************************/
/* random unit vector with direction uniformly distributed over unit sphere*/
/************************************************************************/
vector3 random_unit_vector3() {
double cos_theta = urand(0.0, 1.0), sin_theta = sqrt(1.0 - cos_theta * cos_theta);
double phi = urand(0.0, 2.0 * K_PI);
return make_vector3(sin_theta * cos(phi), sin_theta * sin(phi), cos_theta);
}
/***************************************************************/
/* write prism vertices and edges to text file. */
/* after running this routine to produce a file named MyFile, */
/* the prism may be plotted in gnuplot like this: */
/* gnuplot> splot 'MyFile' u 1:2:3 w lp pt 7 ps 1 */
/***************************************************************/
void prism2gnuplot(prism *prsm, char *filename) {
int num_vertices = prsm->vertices_p.num_items;
double height = prsm->height;
vector3_list vertices;
vertices.num_items = num_vertices;
vertices.items = (vector3 *)malloc(num_vertices * sizeof(vector3));
memcpy(vertices.items, prsm->vertices_p.items, num_vertices * sizeof(vector3));
vector3_list vertices_top;
vertices_top.num_items = num_vertices;
vertices_top.items = (vector3 *)malloc(num_vertices * sizeof(vector3));
int nv;
for (nv = 0; nv < num_vertices; nv++) {
vertices_top.items[nv] = vector3_plus(prsm->vertices_p.items[nv], prsm->top_polygon_diff_vectors_p.items[nv]);
}
FILE *f = fopen(filename, "w");
for (nv = 0; nv < num_vertices; nv++) {
vector3 vap = vertices.items[nv];
vap.z = 0.0;
vector3 vbp = vertices_top.items[nv];
vbp.z = height;
vector3 vcp = vertices_top.items[(nv + 1) % num_vertices];
vcp.z = height;
vector3 vdp = vertices.items[(nv + 1) % num_vertices];
vdp.z = 0.0;
vector3 vac = prism_coordinate_p2c(prsm, vap);
vector3 vbc = prism_coordinate_p2c(prsm, vbp);
vector3 vcc = prism_coordinate_p2c(prsm, vcp);
vector3 vdc = prism_coordinate_p2c(prsm, vdp);
fprintf(f, "%0.16e %0.16e %0.16e \n", vac.x, vac.y, vac.z);
fprintf(f, "%0.16e %0.16e %0.16e \n", vbc.x, vbc.y, vbc.z);
fprintf(f, "%0.16e %0.16e %0.16e \n", vcc.x, vcc.y, vcc.z);
fprintf(f, "%0.16e %0.16e %0.16e \n", vdc.x, vdc.y, vdc.z);
fprintf(f, "%0.16e %0.16e %0.16e \n", vac.x, vac.y, vac.z);
fprintf(f, "\n\n");
}
fclose(f);
}
/***************************************************************/
/* write prism vertices and edges to GMSH geometry (.geo) file */
/***************************************************************/
void prism2gmsh(prism *prsm, char *filename) {
vector3 *vertices = prsm->vertices_p.items;
int num_vertices = prsm->vertices_p.num_items;
double height = prsm->height;
vector3 zhat = prsm->m_p2c.c2;
vector3 axis = vector3_scale(height, zhat);
FILE *f = fopen(filename, "w");
int nv;
for (nv = 0; nv < num_vertices; nv++) {
vector3 vp = vertices[nv];
vector3 vc = prism_coordinate_p2c(prsm, vp);
fprintf(f, "Point(%i)={%e, %e, %e};\n", nv, vc.x, vc.y, vc.z);
}
for (nv = 0; nv < num_vertices; nv++)
fprintf(f, "Line(%i)={%i, %i};\n", nv, nv, (nv + 1) % num_vertices);
fprintf(f, "Line Loop(0)={0");
for (nv = 1; nv < num_vertices; nv++)
fprintf(f, ",%i", nv);
fprintf(f, "};\n");
fprintf(f, "Plane Surface(0)={0};\n");
fprintf(f, "Extrude { %e,%e,%e } { Surface{0}; }\n", height * zhat.x, height * zhat.y,
height * zhat.z);
fclose(f);
}
/* "standardize" a vector for vector comparisons up to normalization and sign flip */
double sgn(double x) { return x >= 0.0 ? 1.0 : -1.0; }
vector3 standardize(vector3 v) {
vector3 sv = unit_vector3(v);
double sign = (sv.z != 0.0 ? sgn(sv.z) : sv.y != 0.0 ? sgn(sv.y) : sgn(sv.x));
return vector3_scale(sign, sv);
}
/************************************************************************/
/* 1st unit test: check inclusion of randomly-generated points */
/************************************************************************/
int test_point_inclusion(geometric_object the_block, geometric_object the_prism, int num_tests,
int write_log) {
vector3 size = the_block.subclass.block_data->size;
vector3 min_corner = vector3_scale(-1.0, size);
vector3 max_corner = vector3_scale(+1.0, size);
FILE *f = write_log ? fopen("/tmp/test-prism.points", "w") : 0;
int num_failed = 0, num_adjusted = 0, n;
for (n = 0; n < num_tests; n++) {
vector3 p = random_point_in_box(min_corner, max_corner);
boolean in_block = point_in_objectp(p, the_block);
boolean in_prism = point_in_objectp(p, the_prism);
if (in_block != in_prism) {
// retry with boundary exclusion/inclusion reversed
boolean libctl_include_boundaries = 1;
char *s = getenv("LIBCTL_EXCLUDE_BOUNDARIES");
if (s && s[0] == '1') libctl_include_boundaries = 0;
in_prism =
point_in_or_on_prism(the_prism.subclass.prism_data, p, 1 - libctl_include_boundaries);
if (in_block == in_prism) num_adjusted++;
}
if (in_block != in_prism) num_failed++;
if (f) fprintf(f, "%i %i %e %e %e \n", in_block, in_prism, p.x, p.y, p.z);
}
if (f) fclose(f);
printf("point inclusion: %i/%i points failed (%i adjusted)\n", num_failed, num_tests,
num_adjusted);
return num_failed;
}
/************************************************************************/
/* 2nd unit test: check calculation of normals to objects */
/************************************************************************/
#define PFACE 0.1
int test_normal_to_object(geometric_object the_block, geometric_object the_prism, int num_tests,
int write_log) {
vector3 size = the_block.subclass.block_data->size;
vector3 min_corner = vector3_scale(-1.0, size);
vector3 max_corner = vector3_scale(+1.0, size);
FILE *f = write_log ? fopen("/tmp/test-prism.normals", "w") : 0;
int num_failed = 0;
double tolerance = 1.0e-6;
int n;
for (n = 0; n < num_tests; n++) {
// with probability PFACE, generate random base point lying on one
// of the 6 faces of the prism.
// with probability 1-PFACE, generate random base point lying in the
// extended volume (2x volume of block)
vector3 p = (urand(0.0, 1.0) < PFACE) ? random_point_on_prism(the_prism)
: random_point_in_box(min_corner, max_corner);
vector3 nhat_block = standardize(normal_to_object(p, the_block));
vector3 nhat_prism = standardize(normal_to_object(p, the_prism));
if (!vector3_nearly_equal(nhat_block, nhat_prism, tolerance)) num_failed++;
if (f)
fprintf(f, "%e %e %e %e %e %e %e %e %e %i\n\n\n", p.x, p.y, p.z, nhat_block.x, nhat_block.y,
nhat_block.z, nhat_prism.x, nhat_prism.y, nhat_prism.z,
vector3_nearly_equal(nhat_block, nhat_prism, tolerance));
}
if (f) fclose(f);
printf("%i/%i normals failed\n", num_failed, num_tests);
return num_failed;
}
/************************************************************************/
/* 3rd unit test: check-line segment intersections */
/************************************************************************/
int test_line_segment_intersection(geometric_object the_block, geometric_object the_prism,
int num_tests, int write_log) {
vector3 size = the_block.subclass.block_data->size;
vector3 min_corner = vector3_scale(-1.0, size);
vector3 max_corner = vector3_scale(+1.0, size);
FILE *f = write_log ? fopen("/tmp/test-prism.segments", "w") : 0;
int num_failed = 0;
int n;
for (n = 0; n < num_tests; n++) {
// randomly generated base point within enlarged bounding box
vector3 p = random_point_in_box(min_corner, max_corner);
vector3 d = random_unit_vector3();
double a = urand(0.0, 1.0);
double b = urand(0.0, 1.0);
double sblock = intersect_line_segment_with_object(p, d, the_block, a, b);
double sprism = intersect_line_segment_with_object(p, d, the_prism, a, b);
if (fabs(sblock - sprism) > 1.0e-6 * fmax(fabs(sblock), fabs(sprism))) num_failed++;
if (f) {
int success = fabs(sblock - sprism) <= 1.0e-6 * fmax(fabs(sblock), fabs(sprism));
fprintf(f, " %e %e %s\n", sblock, sprism, success ? "success" : "fail");
if (success == 0) {
fprintf(f, "#%e %e %e %e %e %e %e %e\n", p.x, p.y, p.z, d.x, d.y, d.z, a, b);
fprintf(f, "%e %e %e\n%e %e %e\n%e %e %e\n", p.x, p.y, p.z, p.x + a * d.x, p.y + a * d.y,
p.z + a * d.z, p.x + b * d.x, p.y + b * d.y, p.z + b * d.z);
}
fprintf(f, "\n");
}
}
if (f) fclose(f);
printf("%i/%i segments failed\n", num_failed, num_tests);
return num_failed;
}
/************************************************************************/
/* 4th unit test: check of point in polygon test with slanted H */
/************************************************************************/
int test_point_in_polygon(int write_log) {
// make array of test points that should always pass
vector3 pass[5];
pass[0] = make_vector3(0.3, 0.5, 0.0);
pass[1] = make_vector3(0.4, 0.4, 0.0);
pass[2] = make_vector3(0.5, 0.7, 0.0);
pass[3] = make_vector3(0.5, 0.5, 0.0);
pass[4] = make_vector3(0.5, 0.3, 0.0);
// make array of test points that should always pass
vector3 fail[5];
fail[0] = make_vector3(0.2, 0.2, 0.0);
fail[1] = make_vector3(0.3, 0.3, 0.0);
fail[2] = make_vector3(0.4, 0.6, 0.0);
fail[3] = make_vector3(0.6, 0.4, 0.0);
fail[4] = make_vector3(0.7, 0.7, 0.0);
// make array of nodes for the test polygon (an H slanted by 45 degrees)
int num_nodes = 12;
vector3 nodes[num_nodes];
nodes[0] = make_vector3(0.5, 0.2, 0.0);
nodes[1] = make_vector3(0.6, 0.3, 0.0);
nodes[2] = make_vector3(0.5, 0.4, 0.0);
nodes[3] = make_vector3(0.6, 0.5, 0.0);
nodes[4] = make_vector3(0.7, 0.4, 0.0);
nodes[5] = make_vector3(0.8, 0.5, 0.0);
nodes[6] = make_vector3(0.5, 0.8, 0.0);
nodes[7] = make_vector3(0.4, 0.7, 0.0);
nodes[8] = make_vector3(0.5, 0.6, 0.0);
nodes[9] = make_vector3(0.4, 0.5, 0.0);
nodes[10] = make_vector3(0.3, 0.6, 0.0);
nodes[11] = make_vector3(0.2, 0.5, 0.0);
FILE *f = write_log ? fopen("/tmp/test-prism.point-in-polygon", "w") : 0;
boolean all_points_success = 1;
boolean include_boundaries = 1;
int i;
for (i = 0; i < 5; i++) {
boolean local_success = node_in_or_on_polygon(pass[i], nodes, num_nodes, include_boundaries);
if (!local_success) {
all_points_success = 0;
}
if (f) {
fprintf(f, "%f %f %i\n", pass[i].x, pass[i].y, local_success);
}
}
for (i = 0; i < 5; i++) {
boolean local_success = !node_in_or_on_polygon(fail[i], nodes, num_nodes, include_boundaries);
if (!local_success) {
all_points_success = 0;
}
if (f) {
fprintf(f, "%f %f %i\n", pass[i].x, pass[i].y, local_success);
}
}
if (f) {
if (all_points_success) {
printf("all test points for slanted H pass\n");
}
else {
printf("one or more test points for slanted H fail\n");
}
fclose(f);
}
int num_failed;
if (all_points_success) {
num_failed = 0;
printf("all test points for slanted H pass\n");
}
else {
num_failed = 1;
printf("one or more test points for slanted H fail\n");
}
return num_failed;
}
/************************************************************************/
/* 5th unit test: saves a prism with a square base with a normal */
/* sidewall angle and a prism with the same base polygon with non- */
/* normal sidewall angle to separate GNU plot files. */
/************************************************************************/
int test_square_base_sidewall_prisms_to_gnuplot() {
void *m = NULL;
int num_nodes_square = 4;
vector3 nodes_square[num_nodes_square];
nodes_square[0] = make_vector3(-10.0, -10.0, 0.0);
nodes_square[1] = make_vector3(-10.0, 10.0, 0.0);
nodes_square[2] = make_vector3(10.0, 10.0, 0.0);
nodes_square[3] = make_vector3(10.0, -10.0, 0.0);
double height_square = 100;
vector3 zhat = make_vector3(0, 0, 1);
double normal_sidewall = 0;
geometric_object square_normal_sidewall_geom_object = make_prism(m, nodes_square, num_nodes_square, height_square, zhat);
prism *square_normal_sidewall_prism = square_normal_sidewall_geom_object.subclass.prism_data;
double one_degree_sidewall = 1.0 * 2 * K_PI / 360.0;
geometric_object square_one_degree_sidewall_geom_object = make_slanted_prism(m, nodes_square, num_nodes_square, height_square, zhat, one_degree_sidewall);
prism *square_one_degree_sidewall_prism = square_one_degree_sidewall_geom_object.subclass.prism_data;
prism2gnuplot(square_normal_sidewall_prism, "square_normal_sidewall_gnu_plot.dat");
prism2gnuplot(square_one_degree_sidewall_prism, "square_one_degree_sidewall_gnu_plot.dat");
return 0;
}
/************************************************************************/
/* 6th unit test: saves a prism with a concave octagonal c-shaped */
/* base with a normal sidewall angle and a prism with the same base */
/* polygon with non-normal sidewall angle to separate GNU plot files. */
/************************************************************************/
int test_octagon_c_base_sidewall_prisms_to_gnuplot() {
void *m = NULL;
int num_nodes_octagon_c = 16;
vector3 nodes_octagon_c[num_nodes_octagon_c];
nodes_octagon_c[0] = make_vector3(114.905, 88.7434, 0.0);
nodes_octagon_c[1] = make_vector3(88.7434, 114.905, 0.0);
nodes_octagon_c[2] = make_vector3(51.7447, 114.905, 0.0);
nodes_octagon_c[3] = make_vector3(25.5827, 88.7434, 0.0);
nodes_octagon_c[4] = make_vector3(25.5827, 51.7447, 0.0);
nodes_octagon_c[5] = make_vector3(51.7447, 25.5827, 0.0);
nodes_octagon_c[6] = make_vector3(88.7434, 25.5827, 0.0);
nodes_octagon_c[7] = make_vector3(114.905, 51.7447, 0.0);
nodes_octagon_c[8] = make_vector3(140.488, 41.1477, 0.0);
nodes_octagon_c[9] = make_vector3(99.3401, 0.0, 0.0);
nodes_octagon_c[10] = make_vector3(41.1477, 0.0, 0.0);
nodes_octagon_c[11] = make_vector3(0.0, 41.1477, 0.0);
nodes_octagon_c[12] = make_vector3(0.0, 99.3401, 0.0);
nodes_octagon_c[13] = make_vector3(41.1477, 140.488, 0.0);
nodes_octagon_c[14] = make_vector3(99.3401, 140.488, 0.0);
nodes_octagon_c[15] = make_vector3(140.488, 99.3401, 0.0);
double height_octagon_c = 127;
vector3 zhat = make_vector3(0, 0, 1);
double normal_sidewall = 0;
geometric_object octagon_c_normal_sidewall_geom_object = make_prism(m, nodes_octagon_c, num_nodes_octagon_c, height_octagon_c, zhat);
prism *octagon_c_normal_sidewall_prism = octagon_c_normal_sidewall_geom_object.subclass.prism_data;
double two_half_degree_sidewall = 2.5 * 2 * K_PI / 360.0;
geometric_object octagon_c_two_half_degree_sidewall_geom_object = make_slanted_prism(m, nodes_octagon_c, num_nodes_octagon_c, height_octagon_c, zhat, two_half_degree_sidewall);
prism *octagon_c_two_half_degree_sidewall_prism = octagon_c_two_half_degree_sidewall_geom_object.subclass.prism_data;
prism2gnuplot(octagon_c_normal_sidewall_prism, "octagon_c_normal_sidewall_gnu_plot.dat");
prism2gnuplot(octagon_c_two_half_degree_sidewall_prism, "octagon_c_two_half_degree_sidewall_gnu_plot.dat");
return 0;
}
/************************************************************************/
/* 7th unit test: test all of geom.c's prism helper functions on a */
/* prism with a concave octagonal c-shaped base with both a normal */
/* sidewall angle a 2.5-degree sidewall angle. */
/************************************************************************/
double relative_error(double actual, double expected) {
return fabs((actual-expected)/actual);
}
int test_helper_functions_on_octagonal_c_prism() {
int i;
double tolerance = 5.0e-5;
void *m = NULL;
int num_nodes_octagon_c = 16;
vector3 nodes_octagon_c[num_nodes_octagon_c];
nodes_octagon_c[0] = make_vector3(114.905, 88.7434, 0.0);
nodes_octagon_c[1] = make_vector3(88.7434, 114.905, 0.0);
nodes_octagon_c[2] = make_vector3(51.7447, 114.905, 0.0);
nodes_octagon_c[3] = make_vector3(25.5827, 88.7434, 0.0);
nodes_octagon_c[4] = make_vector3(25.5827, 51.7447, 0.0);
nodes_octagon_c[5] = make_vector3(51.7447, 25.5827, 0.0);
nodes_octagon_c[6] = make_vector3(88.7434, 25.5827, 0.0);
nodes_octagon_c[7] = make_vector3(114.905, 51.7447, 0.0);
nodes_octagon_c[8] = make_vector3(140.488, 41.1477, 0.0);
nodes_octagon_c[9] = make_vector3(99.3401, 0.0, 0.0);
nodes_octagon_c[10] = make_vector3(41.1477, 0.0, 0.0);
nodes_octagon_c[11] = make_vector3(0.0, 41.1477, 0.0);
nodes_octagon_c[12] = make_vector3(0.0, 99.3401, 0.0);
nodes_octagon_c[13] = make_vector3(41.1477, 140.488, 0.0);
nodes_octagon_c[14] = make_vector3(99.3401, 140.488, 0.0);
nodes_octagon_c[15] = make_vector3(140.488, 99.3401, 0.0);
double height_octagon_c = 127;
vector3 zhat = make_vector3(0, 0, 1);
double normal_sidewall = 0;
geometric_object octagon_c_normal_sidewall_geom_object = make_prism(m, nodes_octagon_c, num_nodes_octagon_c, height_octagon_c, zhat);
prism *octagon_c_normal_sidewall_prism = octagon_c_normal_sidewall_geom_object.subclass.prism_data;
double two_half_degree_sidewall = 2.5 * 2 * K_PI / 360.0;
geometric_object octagon_c_two_half_degree_sidewall_geom_object = make_slanted_prism(m, nodes_octagon_c, num_nodes_octagon_c, height_octagon_c, zhat, two_half_degree_sidewall);
prism *octagon_c_two_half_degree_sidewall_prism = octagon_c_two_half_degree_sidewall_geom_object.subclass.prism_data;
int num_tests_normal = 0;
int num_failed_normal = 0;
int num_tests_tapered = 0;
int num_failed_tapered = 0;
printf("prism helper function testing:\n");
// test geom_object_volume
double volume_normal_sidewall_freecad = 1082462.27453587;
double volume_normal_sidewall_calculated = geom_object_volume(octagon_c_normal_sidewall_geom_object);
num_tests_normal++;
if (relative_error(volume_normal_sidewall_calculated, volume_normal_sidewall_freecad) > tolerance) {
num_failed_normal++;
}
double volume_tapered_sidewall_freecad = 833978.754046812;
double volume_tapered_sidewall_calculated = geom_object_volume(octagon_c_two_half_degree_sidewall_geom_object);
num_tests_tapered++;
if (relative_error(volume_tapered_sidewall_calculated, volume_tapered_sidewall_freecad) > tolerance) {
num_failed_tapered++;
}
// test point_in_prism
vector3_list point_in_prism_test_points_normal_sidewall;
point_in_prism_test_points_normal_sidewall.num_items = 25;
point_in_prism_test_points_normal_sidewall.items = (vector3 *)malloc(point_in_prism_test_points_normal_sidewall.num_items * sizeof(vector3));
point_in_prism_test_points_normal_sidewall.items[0] = make_vector3(46.4462, 12.7914, 63.5000); // interior point
point_in_prism_test_points_normal_sidewall.items[1] = make_vector3(127.697, 46.4462, 95.2500); // interior point
point_in_prism_test_points_normal_sidewall.items[2] = make_vector3(70.2439, 0.00000, 31.7500); // point on external side face
point_in_prism_test_points_normal_sidewall.items[3] = make_vector3(101.824, 38.6637, 95.2500); // point on internal side face
point_in_prism_test_points_normal_sidewall.items[4] = make_vector3(19.1870, 49.0955, 127.000); // point on top face
point_in_prism_test_points_normal_sidewall.items[5] = make_vector3(134.092, 96.6909, 0.00000); // point on bottom face
point_in_prism_test_points_normal_sidewall.items[6] = make_vector3(127.6965, 94.04175, 127.0); // edge on top
point_in_prism_test_points_normal_sidewall.items[7] = make_vector3(70.24405, 114.905, 0.0000); // edge on bottom
point_in_prism_test_points_normal_sidewall.items[8] = make_vector3(41.1477, 0.00000, 100.000); // edge on side
point_in_prism_test_points_normal_sidewall.items[9] = make_vector3(140.488, 99.3401, 127.000); // vertex -> corner on top at edge of c
point_in_prism_test_points_normal_sidewall.items[10] = make_vector3(140.488, 99.3401, 129.000); // continuation of edge from vertex
point_in_prism_test_points_normal_sidewall.items[11] = make_vector3(141.902, 97.9259, 127.000); // continuation of edge from vertex
point_in_prism_test_points_normal_sidewall.items[12] = make_vector3(142.336, 100.105, 127.000); // continuation of edge from vertex
point_in_prism_test_points_normal_sidewall.items[13] = make_vector3(137.226, 99.9890, 125.000); // continuation of edge from vertex
point_in_prism_test_points_normal_sidewall.items[14] = make_vector3(25.5827, 88.7434, 127.000); // vertex -> corner on top inside c
point_in_prism_test_points_normal_sidewall.items[15] = make_vector3(25.5827, 88.7434, 129.000); // continuation of edge from vertex
point_in_prism_test_points_normal_sidewall.items[16] = make_vector3(24.1685, 87.3292, 127.000); // continuation of edge from vertex
point_in_prism_test_points_normal_sidewall.items[17] = make_vector3(25.5827, 90.7434, 127.000); // continuation of edge from vertex
point_in_prism_test_points_normal_sidewall.items[18] = make_vector3(26.9969, 88.1576, 125.000); // continuation of edge from vertex
point_in_prism_test_points_normal_sidewall.items[19] = make_vector3(41.1477, 0.00000, 127.000); // vertex -> corner on top outside c
point_in_prism_test_points_normal_sidewall.items[20] = make_vector3(114.905, 51.7447, 0.00000); // vertex -> corner on bottom at edge of c
point_in_prism_test_points_normal_sidewall.items[21] = make_vector3(51.7447, 114.905, 0.00000); // vertex -> corner on bottom inside c
point_in_prism_test_points_normal_sidewall.items[22] = make_vector3(0.00000, 99.3401, 0.00000); // vertex -> corner on bottom outside c
point_in_prism_test_points_normal_sidewall.items[23] = make_vector3(0.00000, 0.00000, 0.00000); // origin
point_in_prism_test_points_normal_sidewall.items[24] = make_vector3(70.2440, 70.2440, 63.5000); // center of the c
int point_in_prism_expected_normal_sidewall[point_in_prism_test_points_normal_sidewall.num_items];
point_in_prism_expected_normal_sidewall[0] = 1; // interior point
point_in_prism_expected_normal_sidewall[1] = 1; // interior point
point_in_prism_expected_normal_sidewall[2] = 1; // point on external side face
point_in_prism_expected_normal_sidewall[3] = 1; // point on internal side face
point_in_prism_expected_normal_sidewall[4] = 1; // point on top face
point_in_prism_expected_normal_sidewall[5] = 1; // point on bottom face
point_in_prism_expected_normal_sidewall[6] = 1; // edge on top
point_in_prism_expected_normal_sidewall[7] = 1; // edge on bottom
point_in_prism_expected_normal_sidewall[8] = 1; // edge on side
point_in_prism_expected_normal_sidewall[9] = 1; // vertex -> corner on top at edge of c
point_in_prism_expected_normal_sidewall[10] = 0; // continuation of edge from vertex
point_in_prism_expected_normal_sidewall[11] = 0; // continuation of edge from vertex
point_in_prism_expected_normal_sidewall[12] = 0; // continuation of edge from vertex
point_in_prism_expected_normal_sidewall[13] = 1; // continuation of edge from vertex
point_in_prism_expected_normal_sidewall[14] = 1; // vertex -> corner on top inside c
point_in_prism_expected_normal_sidewall[15] = 0; // continuation of edge from vertex
point_in_prism_expected_normal_sidewall[16] = 1; // continuation of edge from vertex
point_in_prism_expected_normal_sidewall[17] = 1; // continuation of edge from vertex
point_in_prism_expected_normal_sidewall[18] = 0; // continuation of edge from vertex
point_in_prism_expected_normal_sidewall[19] = 1; // vertex -> corner on top outside c
point_in_prism_expected_normal_sidewall[20] = 1; // vertex -> corner on bottom at edge of c
point_in_prism_expected_normal_sidewall[21] = 1; // vertex -> corner on bottom inside c
point_in_prism_expected_normal_sidewall[22] = 1; // vertex -> corner on bottom outside c
point_in_prism_expected_normal_sidewall[23] = 0; // origin
point_in_prism_expected_normal_sidewall[24] = 0; // center of the c
int point_in_prism_actual_normal_sidewall[point_in_prism_test_points_normal_sidewall.num_items];
for (i = 0; i < point_in_prism_test_points_normal_sidewall.num_items; i++) {
num_tests_normal++;
point_in_prism_actual_normal_sidewall[i] = point_in_fixed_pobjectp(point_in_prism_test_points_normal_sidewall.items[i], &octagon_c_normal_sidewall_geom_object);
}
for (i = 0; i < point_in_prism_test_points_normal_sidewall.num_items; i++) {
if (point_in_prism_actual_normal_sidewall[i] != point_in_prism_expected_normal_sidewall[i]) {
ctl_printf("\tAt (%f, %f, %f) we expected point_in_fixed_pobjectp on the normal sidewall prism to return %i, but instead it returned %i\n", point_in_prism_test_points_normal_sidewall.items[i].x, point_in_prism_test_points_normal_sidewall.items[i].y, point_in_prism_test_points_normal_sidewall.items[i].z, point_in_prism_expected_normal_sidewall[i], point_in_prism_actual_normal_sidewall[i]);
num_failed_normal++;
}
}
vector3_list point_in_prism_test_points_tapered_sidewall;
point_in_prism_test_points_tapered_sidewall.num_items = 25;
point_in_prism_test_points_tapered_sidewall.items = (vector3 *)malloc(point_in_prism_test_points_tapered_sidewall.num_items * sizeof(vector3));
point_in_prism_test_points_tapered_sidewall.items[0] = make_vector3(46.446200000000005, 12.791350000000001, 63.500000000000000); // interior point
point_in_prism_test_points_tapered_sidewall.items[1] = make_vector3(123.45257948434455, 98.285670515655440, 63.500000000000000); // interior point
point_in_prism_test_points_tapered_sidewall.items[2] = make_vector3(102.72366312425248, 35.642282404302410, 63.500000000000000); // point on external side face
point_in_prism_test_points_tapered_sidewall.items[3] = make_vector3(21.423995187964220, 70.244056207821420, 95.250000000000000); // point on internal side face
point_in_prism_test_points_tapered_sidewall.items[4] = make_vector3(29.618783181268217, 110.86913318128589, 127.00000000000000); // point on top face
point_in_prism_test_points_tapered_sidewall.items[5] = make_vector3(134.09200000000000, 96.690900000000000, 0.0000000000000000); // point on bottom face
point_in_prism_test_points_tapered_sidewall.items[6] = make_vector3(20.037760250618970, 70.244062415642820, 127.00000000000000); // edge on top
point_in_prism_test_points_tapered_sidewall.items[7] = make_vector3(70.244050000000000, 114.90500000000000, 0.0000000000000000); // edge on bottom
point_in_prism_test_points_tapered_sidewall.items[8] = make_vector3(50.596305376632360, 22.810230125309488, 63.500000000000000); // edge on side
point_in_prism_test_points_tapered_sidewall.items[9] = make_vector3(130.69912049055401, 101.28725051332967, 127.00000000000000); // vertex -> corner on top at edge of c // failing
point_in_prism_test_points_tapered_sidewall.items[10] = make_vector3(130.62227962053330, 101.30253528002449, 127.99692620419043); // continuation of edge from vertex
point_in_prism_test_points_tapered_sidewall.items[11] = make_vector3(131.40622727174056, 100.58014373214311, 127.00000000000000); // continuation of edge from vertex
point_in_prism_test_points_tapered_sidewall.items[12] = make_vector3(131.62300162627434, 101.66993007518276, 127.00000000000000); // continuation of edge from vertex
point_in_prism_test_points_tapered_sidewall.items[13] = make_vector3(129.14497344366782, 101.59639296596830, 126.00307379580957); // continuation of edge from vertex
point_in_prism_test_points_tapered_sidewall.items[14] = make_vector3(20.037760250618966, 91.040214078020940, 127.00000000000000); // vertex -> corner on top inside c
point_in_prism_test_points_tapered_sidewall.items[15] = make_vector3(19.994147981293120, 91.058279066765540, 127.99888519167415); // continuation of edge from vertex
point_in_prism_test_points_tapered_sidewall.items[16] = make_vector3(19.330648063809882, 90.333112702498250, 127.00000000000000); // continuation of edge from vertex
point_in_prism_test_points_tapered_sidewall.items[17] = make_vector3(20.037760250618966, 92.040214078020940, 127.00000000000000); // continuation of edge from vertex
point_in_prism_test_points_tapered_sidewall.items[18] = make_vector3(20.788484706753895, 90.729250464799020, 126.00111480832585); // continuation of edge from vertex
point_in_prism_test_points_tapered_sidewall.items[19] = make_vector3(43.444489246735300, 5.5449397493810295, 127.00000000000000); // vertex -> corner on top outside c
point_in_prism_test_points_tapered_sidewall.items[20] = make_vector3(114.90500000000000, 51.744700000000000, 0.0000000000000000); // vertex -> corner on bottom at edge of c
point_in_prism_test_points_tapered_sidewall.items[21] = make_vector3(51.744700000000000, 114.90500000000000, 0.0000000000000000); // vertex -> corner on bottom inside c
point_in_prism_test_points_tapered_sidewall.items[22] = make_vector3(0.0000000000000000, 99.340100000000000, 0.0000000000000000); // vertex -> corner on bottom outside c
point_in_prism_test_points_tapered_sidewall.items[23] = make_vector3(0.0000000000000000, 0.0000000000000000, 0.0000000000000000); // origin
point_in_prism_test_points_tapered_sidewall.items[24] = make_vector3(70.244000000000000, 70.244000000000000, 63.500000000000000); // center of the c
int point_in_prism_expected_tapered_sidewall[point_in_prism_test_points_tapered_sidewall.num_items];
point_in_prism_expected_tapered_sidewall[0] = 1; // interior point
point_in_prism_expected_tapered_sidewall[1] = 1; // interior point
point_in_prism_expected_tapered_sidewall[2] = 1; // point on external side face
point_in_prism_expected_tapered_sidewall[3] = 1; // point on internal side face
point_in_prism_expected_tapered_sidewall[4] = 1; // point on top face
point_in_prism_expected_tapered_sidewall[5] = 1; // point on bottom face
point_in_prism_expected_tapered_sidewall[6] = 1; // edge on top
point_in_prism_expected_tapered_sidewall[7] = 1; // edge on bottom
point_in_prism_expected_tapered_sidewall[8] = 1; // edge on side
point_in_prism_expected_tapered_sidewall[9] = 1; // vertex -> corner on top at edge of c
point_in_prism_expected_tapered_sidewall[10] = 0; // continuation of edge from vertex
point_in_prism_expected_tapered_sidewall[11] = 0; // continuation of edge from vertex
point_in_prism_expected_tapered_sidewall[12] = 0; // continuation of edge from vertex
point_in_prism_expected_tapered_sidewall[13] = 1; // continuation of edge from vertex
point_in_prism_expected_tapered_sidewall[14] = 1; // vertex -> corner on top inside c
point_in_prism_expected_tapered_sidewall[15] = 0; // continuation of edge from vertex
point_in_prism_expected_tapered_sidewall[16] = 1; // continuation of edge from vertex
point_in_prism_expected_tapered_sidewall[17] = 1; // continuation of edge from vertex
point_in_prism_expected_tapered_sidewall[18] = 0; // continuation of edge from vertex
point_in_prism_expected_tapered_sidewall[19] = 1; // vertex -> corner on top outside c
point_in_prism_expected_tapered_sidewall[20] = 1; // vertex -> corner on bottom at edge of c
point_in_prism_expected_tapered_sidewall[21] = 1; // vertex -> corner on bottom inside c
point_in_prism_expected_tapered_sidewall[22] = 1; // vertex -> corner on bottom outside c
point_in_prism_expected_tapered_sidewall[23] = 0; // origin
point_in_prism_expected_tapered_sidewall[24] = 0; // center of the c
int point_in_prism_actual_tapered_sidewall[point_in_prism_test_points_tapered_sidewall.num_items];
for (i = 0; i < point_in_prism_test_points_tapered_sidewall.num_items; i++) {
num_tests_tapered++;
point_in_prism_actual_tapered_sidewall[i] = point_in_fixed_pobjectp(point_in_prism_test_points_tapered_sidewall.items[i], &octagon_c_two_half_degree_sidewall_geom_object);
}
for (i = 0; i < point_in_prism_test_points_tapered_sidewall.num_items; i++) {
if (point_in_prism_actual_tapered_sidewall[i] != point_in_prism_expected_tapered_sidewall[i]) {
ctl_printf("\tAt (%f, %f, %f) we expected point_in_fixed_pobjectp on the tapered sidewall prism to return %i, but instead it returned %i\n", point_in_prism_test_points_tapered_sidewall.items[i].x, point_in_prism_test_points_tapered_sidewall.items[i].y, point_in_prism_test_points_tapered_sidewall.items[i].z, point_in_prism_expected_tapered_sidewall[i], point_in_prism_actual_tapered_sidewall[i]);
num_failed_tapered++;
}
}
// test normal_to_prism
vector3_list normal_to_prism_test_points_normal_sidewall;
normal_to_prism_test_points_normal_sidewall.num_items = 30;
normal_to_prism_test_points_normal_sidewall.items = (vector3 *)malloc(normal_to_prism_test_points_normal_sidewall.num_items * sizeof(vector3));
normal_to_prism_test_points_normal_sidewall.items[0] = make_vector3(98.2887, 98.2887, 63.5000); // points around sidewalls
normal_to_prism_test_points_normal_sidewall.items[1] = make_vector3(70.2441, 109.905, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[2] = make_vector3(42.1992, 98.2886, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[3] = make_vector3(30.5827, 70.2441, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[4] = make_vector3(42.1992, 42.1992, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[5] = make_vector3(70.2441, 30.5827, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[6] = make_vector3(98.2886, 42.1992, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[7] = make_vector3(129.610, 51.0656, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[8] = make_vector3(123.450, 17.0383, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[9] = make_vector3(70.2439, -5.0000, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[10] = make_vector3(17.0383, 17.0383, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[11] = make_vector3(-5.0000, 70.2439, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[12] = make_vector3(17.0383, 123.450, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[13] = make_vector3(70.2439, 145.488, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[14] = make_vector3(123.450, 123.450, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[15] = make_vector3(129.610, 89.4223, 63.5000);
normal_to_prism_test_points_normal_sidewall.items[16] = make_vector3(110.869, 110.869, -5.0000); // points off bottom face
normal_to_prism_test_points_normal_sidewall.items[17] = make_vector3(70.2440, 127.697, -5.0000);
normal_to_prism_test_points_normal_sidewall.items[18] = make_vector3(29.6188, 110.869, -5.0000);
normal_to_prism_test_points_normal_sidewall.items[19] = make_vector3(12.7914, 70.2440, -5.0000);
normal_to_prism_test_points_normal_sidewall.items[20] = make_vector3(29.6188, 29.6188, -5.0000);
normal_to_prism_test_points_normal_sidewall.items[21] = make_vector3(70.2440, 12.7914, -5.0000);
normal_to_prism_test_points_normal_sidewall.items[22] = make_vector3(110.869, 29.6188, -5.0000);
normal_to_prism_test_points_normal_sidewall.items[23] = make_vector3(108.747, 112.991, 132.000); // points off top face
normal_to_prism_test_points_normal_sidewall.items[24] = make_vector3(70.2440, 127.697, 132.000);
normal_to_prism_test_points_normal_sidewall.items[25] = make_vector3(29.6188, 110.869, 132.000);
normal_to_prism_test_points_normal_sidewall.items[26] = make_vector3(12.7914, 70.2440, 132.000);
normal_to_prism_test_points_normal_sidewall.items[27] = make_vector3(29.6188, 29.6188, 132.000);
normal_to_prism_test_points_normal_sidewall.items[28] = make_vector3(70.2440, 12.7914, 132.000);
normal_to_prism_test_points_normal_sidewall.items[29] = make_vector3(108.747, 27.4968, 132.000);
vector3 normal_to_prism_expected_normal_sidewall[normal_to_prism_test_points_normal_sidewall.num_items];
normal_to_prism_expected_normal_sidewall[0] = make_vector3(-0.707107, -0.707107, 0.0000000); // points around sidewalls
normal_to_prism_expected_normal_sidewall[1] = make_vector3(0.0000000, -1.000000, 0.0000000);
normal_to_prism_expected_normal_sidewall[2] = make_vector3(0.7071010, -0.707112, 0.0000000);
normal_to_prism_expected_normal_sidewall[3] = make_vector3(1.0000000, 0.0000000, 0.0000000);
normal_to_prism_expected_normal_sidewall[4] = make_vector3(0.7071070, 0.7071070, 0.0000000);
normal_to_prism_expected_normal_sidewall[5] = make_vector3(0.0000000, 1.0000000, 0.0000000);
normal_to_prism_expected_normal_sidewall[6] = make_vector3(-0.707112, 0.7071010, 0.0000000);
normal_to_prism_expected_normal_sidewall[7] = make_vector3(0.3826890, 0.9238770, 0.0000000);
normal_to_prism_expected_normal_sidewall[8] = make_vector3(0.7071050, -0.707108, 0.0000000);
normal_to_prism_expected_normal_sidewall[9] = make_vector3(0.0000000, -1.000000, 0.0000000);
normal_to_prism_expected_normal_sidewall[10] = make_vector3(-0.707107, -0.707107, 0.0000000);
normal_to_prism_expected_normal_sidewall[11] = make_vector3(-1.000000, 0.0000000, 0.0000000);
normal_to_prism_expected_normal_sidewall[12] = make_vector3(-0.707108, 0.7071050, 0.0000000);
normal_to_prism_expected_normal_sidewall[13] = make_vector3(0.0000000, 1.0000000, 0.0000000);
normal_to_prism_expected_normal_sidewall[14] = make_vector3(0.7071070, 0.7071070, 0.0000000);
normal_to_prism_expected_normal_sidewall[15] = make_vector3(0.3826800, -0.923881, 0.0000000);
normal_to_prism_expected_normal_sidewall[16] = make_vector3(0.0000000, 0.0000000, -1.000000); // points off bottom face
normal_to_prism_expected_normal_sidewall[17] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_normal_sidewall[18] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_normal_sidewall[19] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_normal_sidewall[20] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_normal_sidewall[21] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_normal_sidewall[22] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_normal_sidewall[23] = make_vector3(0.0000000, 0.0000000, 1.0000000); // points off top face
normal_to_prism_expected_normal_sidewall[24] = make_vector3(0.0000000, 0.0000000, 1.0000000);
normal_to_prism_expected_normal_sidewall[25] = make_vector3(0.0000000, 0.0000000, 1.0000000);
normal_to_prism_expected_normal_sidewall[26] = make_vector3(0.0000000, 0.0000000, 1.0000000);
normal_to_prism_expected_normal_sidewall[27] = make_vector3(0.0000000, 0.0000000, 1.0000000);
normal_to_prism_expected_normal_sidewall[28] = make_vector3(0.0000000, 0.0000000, 1.0000000);
normal_to_prism_expected_normal_sidewall[29] = make_vector3(0.0000000, 0.0000000, 1.0000000);
vector3 normal_to_prism_actual_normal_sidewall[normal_to_prism_test_points_normal_sidewall.num_items];
for (i = 0; i < normal_to_prism_test_points_normal_sidewall.num_items; i++) {
num_tests_normal++;
normal_to_prism_actual_normal_sidewall[i] = unit_vector3(normal_to_object(normal_to_prism_test_points_normal_sidewall.items[i], octagon_c_normal_sidewall_geom_object));
}
for (i = 0; i < normal_to_prism_test_points_normal_sidewall.num_items; i++) {
if (!vector3_nearly_equal(normal_to_prism_expected_normal_sidewall[i], normal_to_prism_actual_normal_sidewall[i], tolerance)
&& !vector3_nearly_equal(normal_to_prism_expected_normal_sidewall[i], vector3_scale(-1, normal_to_prism_actual_normal_sidewall[i]), tolerance)) {
num_failed_normal++;
vector3 test_point = normal_to_prism_test_points_normal_sidewall.items[i];
vector3 expected = normal_to_prism_expected_normal_sidewall[i];
vector3 actual = normal_to_prism_actual_normal_sidewall[i];
ctl_printf("\tAt (%f, %f, %f) the expected normal vector was (%f, %f, %f), but the actual\n\t\tnormal vector was (%f, %f, %f\n", test_point.x, test_point.y, test_point.z, expected.x, expected.y, expected.z, actual.x, actual.y, actual.z);
}
}
vector3_list normal_to_prism_test_points_tapered_sidewall;
normal_to_prism_test_points_tapered_sidewall.num_items = 30;
normal_to_prism_test_points_tapered_sidewall.items = (vector3 *)malloc(normal_to_prism_test_points_tapered_sidewall.num_items * sizeof(vector3));
normal_to_prism_test_points_tapered_sidewall.items[0] = make_vector3(106.256, 108.378, 63.2819); // points around sidewalls
normal_to_prism_test_points_tapered_sidewall.items[1] = make_vector3(70.2441, 122.673, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[2] = make_vector3(33.1711, 107.317, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[3] = make_vector3(17.8150, 70.2441, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[4] = make_vector3(33.1711, 33.1711, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[5] = make_vector3(70.2441, 17.8150, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[6] = make_vector3(106.256, 32.1101, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[7] = make_vector3(123.663, 39.7093, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[8] = make_vector3(113.360, 25.0055, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[9] = make_vector3(70.2439, 7.76771, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[10] = make_vector3(26.0665, 26.0665, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[11] = make_vector3(7.76771, 70.2439, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[12] = make_vector3(26.0665, 114.421, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[13] = make_vector3(70.2439, 132.720, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[14] = make_vector3(113.360, 115.482, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[15] = make_vector3(123.663, 100.779, 63.2819);
normal_to_prism_test_points_tapered_sidewall.items[16] = make_vector3(110.869, 110.869, -5.0000); // points off bottom face
normal_to_prism_test_points_tapered_sidewall.items[17] = make_vector3(70.2440, 127.697, -5.0000);
normal_to_prism_test_points_tapered_sidewall.items[18] = make_vector3(29.6188, 110.869, -5.0000);
normal_to_prism_test_points_tapered_sidewall.items[19] = make_vector3(12.7914, 70.2440, -5.0000);
normal_to_prism_test_points_tapered_sidewall.items[20] = make_vector3(29.6188, 29.6188, -5.0000);
normal_to_prism_test_points_tapered_sidewall.items[21] = make_vector3(70.2440, 12.7914, -5.0000);
normal_to_prism_test_points_tapered_sidewall.items[22] = make_vector3(110.869, 29.6188, -5.0000);
normal_to_prism_test_points_tapered_sidewall.items[23] = make_vector3(108.747, 112.991, 132.000); // points off top face
normal_to_prism_test_points_tapered_sidewall.items[24] = make_vector3(70.2440, 127.697, 132.000);
normal_to_prism_test_points_tapered_sidewall.items[25] = make_vector3(29.6188, 110.869, 132.000);
normal_to_prism_test_points_tapered_sidewall.items[26] = make_vector3(12.7914, 70.2440, 132.000);
normal_to_prism_test_points_tapered_sidewall.items[27] = make_vector3(29.6188, 29.6188, 132.000);
normal_to_prism_test_points_tapered_sidewall.items[28] = make_vector3(70.2440, 12.7914, 132.000);
normal_to_prism_test_points_tapered_sidewall.items[29] = make_vector3(108.747, 27.4968, 132.000);
vector3 normal_to_prism_expected_tapered_sidewall[normal_to_prism_test_points_tapered_sidewall.num_items];
normal_to_prism_expected_tapered_sidewall[0] = make_vector3(0.7064340, 0.7064340, -0.0436194); // points off top face
normal_to_prism_expected_tapered_sidewall[1] = make_vector3(0.0000000, 0.9990480, -0.0436194);
normal_to_prism_expected_tapered_sidewall[2] = make_vector3(-0.706428, 0.7064390, -0.0436194);
normal_to_prism_expected_tapered_sidewall[3] = make_vector3(-0.999048, 0.0000000, -0.0436194);
normal_to_prism_expected_tapered_sidewall[4] = make_vector3(-0.706434, -0.706434, -0.0436194);
normal_to_prism_expected_tapered_sidewall[5] = make_vector3(0.0000000, -0.999048, -0.0436194);
normal_to_prism_expected_tapered_sidewall[6] = make_vector3(0.7064390, -0.706428, -0.0436194);
normal_to_prism_expected_tapered_sidewall[7] = make_vector3(-0.382325, -0.922998, -0.0436194);
normal_to_prism_expected_tapered_sidewall[8] = make_vector3(-0.706432, 0.7064350, -0.0436194);
normal_to_prism_expected_tapered_sidewall[9] = make_vector3(0.0000000, 0.9990480, -0.0436194);
normal_to_prism_expected_tapered_sidewall[10] = make_vector3(0.7064340, 0.7064340, -0.0436194);
normal_to_prism_expected_tapered_sidewall[11] = make_vector3(0.9990480, 0.0000000, -0.0436194);
normal_to_prism_expected_tapered_sidewall[12] = make_vector3(0.7064350, -0.706432, -0.0436194);
normal_to_prism_expected_tapered_sidewall[13] = make_vector3(0.0000000, -0.999048, -0.0436194);
normal_to_prism_expected_tapered_sidewall[14] = make_vector3(-0.706434, -0.706434, -0.0436194);
normal_to_prism_expected_tapered_sidewall[15] = make_vector3(-0.382315, 0.9230020, -0.0436194);
normal_to_prism_expected_tapered_sidewall[16] = make_vector3(0.0000000, 0.0000000, -1.000000); // points off bottom face
normal_to_prism_expected_tapered_sidewall[17] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_tapered_sidewall[18] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_tapered_sidewall[19] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_tapered_sidewall[20] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_tapered_sidewall[21] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_tapered_sidewall[22] = make_vector3(0.0000000, 0.0000000, -1.000000);
normal_to_prism_expected_tapered_sidewall[23] = make_vector3(0.0000000, 0.0000000, 1.0000000); // points off top face
normal_to_prism_expected_tapered_sidewall[24] = make_vector3(0.0000000, 0.0000000, 1.0000000);
normal_to_prism_expected_tapered_sidewall[25] = make_vector3(0.0000000, 0.0000000, 1.0000000);
normal_to_prism_expected_tapered_sidewall[26] = make_vector3(0.0000000, 0.0000000, 1.0000000);
normal_to_prism_expected_tapered_sidewall[27] = make_vector3(0.0000000, 0.0000000, 1.0000000);
normal_to_prism_expected_tapered_sidewall[28] = make_vector3(0.0000000, 0.0000000, 1.0000000);
normal_to_prism_expected_tapered_sidewall[29] = make_vector3(0.0000000, 0.0000000, 1.0000000);
vector3 normal_to_prism_actual_tapered_sidewall[normal_to_prism_test_points_tapered_sidewall.num_items];
for (i = 0; i < normal_to_prism_test_points_tapered_sidewall.num_items; i++) {
num_tests_tapered++;
normal_to_prism_actual_tapered_sidewall[i] = unit_vector3(normal_to_object(normal_to_prism_test_points_tapered_sidewall.items[i], octagon_c_two_half_degree_sidewall_geom_object));
}
for (i = 0; i < normal_to_prism_test_points_tapered_sidewall.num_items; i++) {
if (!vector3_nearly_equal(normal_to_prism_expected_tapered_sidewall[i], normal_to_prism_actual_tapered_sidewall[i], tolerance)
&& !vector3_nearly_equal(normal_to_prism_expected_tapered_sidewall[i], vector3_scale(-1, normal_to_prism_actual_tapered_sidewall[i]), tolerance)) {
num_failed_tapered++;
vector3 test_point = normal_to_prism_test_points_tapered_sidewall.items[i];
vector3 expected = normal_to_prism_expected_tapered_sidewall[i];
vector3 actual = normal_to_prism_actual_tapered_sidewall[i];
ctl_printf("\tAt (%f, %f, %f) the expected normal vector was (%f, %f, %f), but the actual\n\t\tnormal vector was (%f, %f, %f\n", test_point.x, test_point.y, test_point.z, expected.x, expected.y, expected.z, actual.x, actual.y, actual.z);
}
}
// test intersect_line_segment_with_prism
vector3_list intersect_line_with_prism_test_points_normal_sidewall;
intersect_line_with_prism_test_points_normal_sidewall.num_items = 9;
intersect_line_with_prism_test_points_normal_sidewall.items = (vector3 *)malloc(intersect_line_with_prism_test_points_normal_sidewall.num_items * sizeof(vector3));
intersect_line_with_prism_test_points_normal_sidewall.items[0] = make_vector3(100.809, 144.033, 130.205); // line crossing top[15] to bottom[11]
intersect_line_with_prism_test_points_normal_sidewall.items[1] = make_vector3(17.0383, 123.450, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_points_normal_sidewall.items[2] = make_vector3(17.0383, 123.450, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_points_normal_sidewall.items[3] = make_vector3(17.0383, 123.450, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_points_normal_sidewall.items[4] = make_vector3(12.7914, 70.2440, 63.5000); // interior point between 4, 5, 12, 13 in positive xhat
intersect_line_with_prism_test_points_normal_sidewall.items[5] = make_vector3(12.7914, 70.2440, 63.5000); // interior point between 4, 5, 12, 13 in negative xhat
intersect_line_with_prism_test_points_normal_sidewall.items[6] = make_vector3(40.1648, 142.861, 131.290); // between top point 14 and center of c on bottom
intersect_line_with_prism_test_points_normal_sidewall.items[7] = make_vector3(41.1477, 0.00000, 127.000); // between top point 11 and origin
intersect_line_with_prism_test_points_normal_sidewall.items[8] = make_vector3(51.7447, 114.905, 127.000); // between top point 3 and center of c on bottom
vector3 intersect_line_with_prism_test_vectors_normal_sidewall[intersect_line_with_prism_test_points_normal_sidewall.num_items];
intersect_line_with_prism_test_vectors_normal_sidewall[0] = make_vector3(-0.29372, -0.709099, -0.64102); // line crossing top[15] to bottom[11]
intersect_line_with_prism_test_vectors_normal_sidewall[1] = make_vector3(0.707107, -0.707107, 0.000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_vectors_normal_sidewall[2] = make_vector3(0.707107, -0.707107, 0.000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_vectors_normal_sidewall[3] = make_vector3(0.707107, -0.707107, 0.000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_vectors_normal_sidewall[4] = make_vector3(1.000000, 0.0000000, 0.000000); // interior point between 4, 5, 12, 13 in positive xhat
intersect_line_with_prism_test_vectors_normal_sidewall[5] = make_vector3(-1.00000, 0.0000000, 0.000000); // interior point between 4, 5, 12, 13 in negative xhat
intersect_line_with_prism_test_vectors_normal_sidewall[6] = make_vector3(0.196571, -0.474559,-0.857994); // between top point 14 and center of c on bottom
intersect_line_with_prism_test_vectors_normal_sidewall[7] = make_vector3(-0.308223, 0.000000,-0.951314); // between top point 11 and origin
intersect_line_with_prism_test_vectors_normal_sidewall[8] = make_vector3(0.136135, -0.328658,-0.934586); // between top point 3 and center of c on bottom
double intersect_line_with_prism_expected_normal_sidewall[intersect_line_with_prism_test_points_normal_sidewall.num_items];
intersect_line_with_prism_expected_normal_sidewall[0] = 36.07816398; // line crossing top[15] to bottom[11]
intersect_line_with_prism_expected_normal_sidewall[1] = 25.58291121; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_expected_normal_sidewall[2] = 25.58291120; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_expected_normal_sidewall[3] = 51.16582241; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_expected_normal_sidewall[4] = 12.79135000; // interior point between 4, 5, 12, 13 in positive xhat
intersect_line_with_prism_expected_normal_sidewall[5] = 12.79135000; // interior point between 4, 5, 12, 13 in negative xhat
intersect_line_with_prism_expected_normal_sidewall[6] = 53.90914485; // between top point 14 and center of c on bottom
intersect_line_with_prism_expected_normal_sidewall[7] = 0.000000000; // between top point 11 and origin
intersect_line_with_prism_expected_normal_sidewall[8] = 0.000000000; // between top point 3 and center of c on bottom
double intersect_line_with_prism_a_normal_sidewall[intersect_line_with_prism_test_points_normal_sidewall.num_items];
intersect_line_with_prism_a_normal_sidewall[0] = 0; // line crossing top[15] to bottom[11]
intersect_line_with_prism_a_normal_sidewall[1] = 0; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_a_normal_sidewall[2] = 100; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_a_normal_sidewall[3] = 0; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_a_normal_sidewall[4] = 0; // interior point between 4, 5, 12, 13 in positive xhat
intersect_line_with_prism_a_normal_sidewall[5] = 0; // interior point between 4, 5, 12, 13 in negative xhat
intersect_line_with_prism_a_normal_sidewall[6] = 0; // between top point 14 and center of c on bottom
intersect_line_with_prism_a_normal_sidewall[7] = 0; // between top point 11 and origin
intersect_line_with_prism_a_normal_sidewall[8] = 0; // between top point 3 and center of c on bottom
double intersect_line_with_prism_b_normal_sidewall[intersect_line_with_prism_test_points_normal_sidewall.num_items];
intersect_line_with_prism_b_normal_sidewall[0] = 150; // line crossing top[15] to bottom[11]
intersect_line_with_prism_b_normal_sidewall[1] = 100; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_b_normal_sidewall[2] = 150; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_b_normal_sidewall[3] = 150; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_b_normal_sidewall[4] = 300; // interior point between 4, 5, 12, 13 in positive xhat
intersect_line_with_prism_b_normal_sidewall[5] = 300; // interior point between 4, 5, 12, 13 in negative xhat
intersect_line_with_prism_b_normal_sidewall[6] = 300; // between top point 14 and center of c on bottom
intersect_line_with_prism_b_normal_sidewall[7] = 300; // between top point 11 and origin
intersect_line_with_prism_b_normal_sidewall[8] = 300; // between top point 3 and center of c on bottom
double intersect_line_with_prism_actual_normal_sidewall[intersect_line_with_prism_test_points_normal_sidewall.num_items];
for (i = 0; i < intersect_line_with_prism_test_points_normal_sidewall.num_items; i++) {
num_tests_normal++;
vector3 p = intersect_line_with_prism_test_points_normal_sidewall.items[i];
vector3 d = intersect_line_with_prism_test_vectors_normal_sidewall[i];
geometric_object o = octagon_c_normal_sidewall_geom_object;
double a = intersect_line_with_prism_a_normal_sidewall[i];
double b = intersect_line_with_prism_b_normal_sidewall[i];
intersect_line_with_prism_actual_normal_sidewall[i] = intersect_line_segment_with_object(p, d, o, a, b);
}
for (i = 0; i < intersect_line_with_prism_test_points_normal_sidewall.num_items; i++) {
double actual = intersect_line_with_prism_actual_normal_sidewall[i];
double expected = intersect_line_with_prism_expected_normal_sidewall[i];
if (fabs(fabs(actual)-fabs(expected)) > tolerance * fmax(fabs(actual), fabs(expected))) {
double px = intersect_line_with_prism_test_points_normal_sidewall.items[i].x;
double py = intersect_line_with_prism_test_points_normal_sidewall.items[i].y;
double pz = intersect_line_with_prism_test_points_normal_sidewall.items[i].z;
double dx = intersect_line_with_prism_test_vectors_normal_sidewall[i].x;
double dy = intersect_line_with_prism_test_vectors_normal_sidewall[i].y;
double dz = intersect_line_with_prism_test_vectors_normal_sidewall[i].z;
ctl_printf(
"\tThe line segment emanating from (%f, %f, %f) along s*d,\n\t\twith 0 <= s <= 300, d = (%f, %f, %f), was expected\n\t\tto have intersection length %f but instead had %f.\n",
px, py, pz, dx, dy, dz, expected, actual);
num_failed_normal++;
}
}
vector3_list intersect_line_with_prism_test_points_tapered_sidewall;
intersect_line_with_prism_test_points_tapered_sidewall.num_items = 9;
intersect_line_with_prism_test_points_tapered_sidewall.items = (vector3 *)malloc(intersect_line_with_prism_test_points_tapered_sidewall.num_items * sizeof(vector3));
intersect_line_with_prism_test_points_tapered_sidewall.items[0] = make_vector3(98.4872, 138.429, 130.281); // line crossing top[15] to bottom[11]
intersect_line_with_prism_test_points_tapered_sidewall.items[1] = make_vector3(19.0383, 121.528, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_points_tapered_sidewall.items[2] = make_vector3(19.0383, 121.528, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_points_tapered_sidewall.items[3] = make_vector3(19.0383, 121.528, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_points_tapered_sidewall.items[4] = make_vector3(12.7914, 70.2440, 63.5000); // interior point between 4, 5, 12, 13 in positive xhat
intersect_line_with_prism_test_points_tapered_sidewall.items[5] = make_vector3(12.7914, 70.2440, 63.5000); // interior point between 4, 5, 12, 13 in negative xhat
intersect_line_with_prism_test_points_tapered_sidewall.items[6] = make_vector3(43.4445, 134.943, 127.000); // between top point 14 and center of c on bottom
intersect_line_with_prism_test_points_tapered_sidewall.items[7] = make_vector3(43.4445, 5.54494, 127.000); // between top point 11 and origin
intersect_line_with_prism_test_points_tapered_sidewall.items[8] = make_vector3(34.7428, 105.745, 127.000); // between top point 3 and center of c on bottom
vector3 intersect_line_with_prism_test_vectors_tapered_sidewall[intersect_line_with_prism_test_points_tapered_sidewall.num_items];
intersect_line_with_prism_test_vectors_tapered_sidewall[0] = make_vector3(-0.288786, -0.697187, -0.656149); // line crossing top[15] to bottom[11]
intersect_line_with_prism_test_vectors_tapered_sidewall[1] = make_vector3(0.6992010, -0.714925, 0.0000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_vectors_tapered_sidewall[2] = make_vector3(0.6992010, -0.714925, 0.0000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_vectors_tapered_sidewall[3] = make_vector3(0.6992010, -0.714925, 0.0000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_test_vectors_tapered_sidewall[4] = make_vector3(1.0000000, 0.0000000, 0.0000000); // interior point between 4, 5, 12, 13 in positive xhat
intersect_line_with_prism_test_vectors_tapered_sidewall[5] = make_vector3(-1.000000, 0.0000000, 0.0000000); // interior point between 4, 5, 12, 13 in negative xhat
intersect_line_with_prism_test_vectors_tapered_sidewall[6] = make_vector3(0.1847880,-0.4461140, -0.875692); // between top point 14 and center of c on bottom
intersect_line_with_prism_test_vectors_tapered_sidewall[7] = make_vector3(-0.323393,-0.0412755, -0.945364); // between top point 11 and origin
intersect_line_with_prism_test_vectors_tapered_sidewall[8] = make_vector3(0.2599600,-0.2599600, -0.929969); // between top point 3 and center of c on bottom
double intersect_line_with_prism_expected_tapered_sidewall[intersect_line_with_prism_test_points_tapered_sidewall.num_items];
intersect_line_with_prism_expected_tapered_sidewall[0] = 21.67860775; // line crossing top[15] to bottom[11]
intersect_line_with_prism_expected_tapered_sidewall[1] = 20.03920840; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_expected_tapered_sidewall[2] = 20.03919670; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_expected_tapered_sidewall[3] = 40.07840510; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_expected_tapered_sidewall[4] = 10.01888013; // interior point between 4, 5, 12, 13 in positive xhat
intersect_line_with_prism_expected_tapered_sidewall[5] = 10.01888013; // interior point between 4, 5, 12, 13 in negative xhat
intersect_line_with_prism_expected_tapered_sidewall[6] = 35.53300107; // between top point 14 and center of c on bottom
intersect_line_with_prism_expected_tapered_sidewall[7] = 0.000000000; // between top point 11 and origin
intersect_line_with_prism_expected_tapered_sidewall[8] = 0.000000000; // between top point 3 and center of c on bottom
double intersect_line_with_prism_a_tapered_sidewall[intersect_line_with_prism_test_points_tapered_sidewall.num_items];
intersect_line_with_prism_a_tapered_sidewall[0] = 0; // line crossing top[15] to bottom[11]
intersect_line_with_prism_a_tapered_sidewall[1] = 0; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_a_tapered_sidewall[2] = 50; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_a_tapered_sidewall[3] = 0; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_a_tapered_sidewall[4] = 0; // interior point between 4, 5, 12, 13 in positive xhat
intersect_line_with_prism_a_tapered_sidewall[5] = 0; // interior point between 4, 5, 12, 13 in negative xhat
intersect_line_with_prism_a_tapered_sidewall[6] = 0; // between top point 14 and center of c on bottom
intersect_line_with_prism_a_tapered_sidewall[7] = 0; // between top point 11 and origin
intersect_line_with_prism_a_tapered_sidewall[8] = 0; // between top point 3 and center of c on bottom
double intersect_line_with_prism_b_tapered_sidewall[intersect_line_with_prism_test_points_tapered_sidewall.num_items];
intersect_line_with_prism_b_tapered_sidewall[0] = 150; // line crossing top[15] to bottom[11]
intersect_line_with_prism_b_tapered_sidewall[1] = 50; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_b_tapered_sidewall[2] = 150; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_b_tapered_sidewall[3] = 150; // line crossing midpoint 13-14 face to midpoint 9-10 face
intersect_line_with_prism_b_tapered_sidewall[4] = 300; // interior point between 4, 5, 12, 13 in positive xhat
intersect_line_with_prism_b_tapered_sidewall[5] = 300; // interior point between 4, 5, 12, 13 in negative xhat
intersect_line_with_prism_b_tapered_sidewall[6] = 300; // between top point 14 and center of c on bottom
intersect_line_with_prism_b_tapered_sidewall[7] = 300; // between top point 11 and origin
intersect_line_with_prism_b_tapered_sidewall[8] = 300; // between top point 3 and center of c on bottom
double intersect_line_with_prism_actual_tapered_sidewall[intersect_line_with_prism_test_points_tapered_sidewall.num_items];
for (i = 0; i < intersect_line_with_prism_test_points_tapered_sidewall.num_items; i++) {
num_tests_tapered++;
vector3 p = intersect_line_with_prism_test_points_tapered_sidewall.items[i];
vector3 d = intersect_line_with_prism_test_vectors_tapered_sidewall[i];
geometric_object o = octagon_c_two_half_degree_sidewall_geom_object;
double a = intersect_line_with_prism_a_tapered_sidewall[i];
double b = intersect_line_with_prism_b_tapered_sidewall[i];
intersect_line_with_prism_actual_tapered_sidewall[i] = intersect_line_segment_with_object(p, d, o, a, b);
}
for (i = 0; i < intersect_line_with_prism_test_points_tapered_sidewall.num_items; i++) {
double actual = intersect_line_with_prism_actual_tapered_sidewall[i];
double expected = intersect_line_with_prism_expected_tapered_sidewall[i];
if (fabs(fabs(actual)-fabs(expected)) > tolerance * fmax(fabs(actual), fabs(expected))) {
double px = intersect_line_with_prism_test_points_tapered_sidewall.items[i].x;
double py = intersect_line_with_prism_test_points_tapered_sidewall.items[i].y;
double pz = intersect_line_with_prism_test_points_tapered_sidewall.items[i].z;
double dx = intersect_line_with_prism_test_vectors_tapered_sidewall[i].x;
double dy = intersect_line_with_prism_test_vectors_tapered_sidewall[i].y;
double dz = intersect_line_with_prism_test_vectors_tapered_sidewall[i].z;
ctl_printf(
"\tThe line segment emanating from (%f, %f, %f) along s*d,\n\t\twith 0 <= s <= 300, d = (%f, %f, %f), was expected\n\t\tto have intersection length %f but instead had %f.\n",
px, py, pz, dx, dy, dz, expected, actual);
num_failed_tapered++;
}
}
printf("\tprism helper function testing summary: \n\t\t%i/%i tests failed with normal sidewall\n\t\t%i/%i tests failed with tapered sidewall\n", num_failed_normal, num_tests_normal, num_failed_tapered, num_tests_tapered);
return num_failed_normal + num_failed_tapered;
}
/***************************************************************/
/* unit tests: create the same parallelepiped two ways (as a */
/* block and as a prism) and verify that geometric primitives */
/* give identical results */
/***************************************************************/
#define NUMPTS 10000
#define NUMLINES 1000
#define LX 0.5
#define LY 1.0
#define LZ 1.5
int run_unit_tests() {
void *m = NULL;
vector3 c = {0, 0, 0};
vector3 xhat = make_vector3(1, 0, 0);
vector3 yhat = make_vector3(0, 1, 0);
vector3 zhat = make_vector3(0, 0, 1);
vector3 size = make_vector3(LX, LY, LZ);
vector3 v[4];
v[0].x = -0.5 * LX;
v[0].y = -0.5 * LY;
v[0].z = -0.5 * LZ;
v[1].x = +0.5 * LX;
v[1].y = -0.5 * LY;
v[1].z = -0.5 * LZ;
v[2].x = +0.5 * LX;
v[2].y = +0.5 * LY;
v[2].z = -0.5 * LZ;
v[3].x = -0.5 * LX;
v[3].y = +0.5 * LY;
v[3].z = -0.5 * LZ;
geometric_object the_block = make_block(m, c, xhat, yhat, zhat, size);
geometric_object the_prism = make_prism(m, v, 4, LZ, zhat);
/***************************************************************/
/* with probability P_SHIFT, shift the centers of both block */
/* and prism by a random displacement vector */
/***************************************************************/
#define P_SHIFT 0.75
if (urand(0.0, 1.0) < P_SHIFT) {
vector3 shift = vector3_scale(urand(0.0, 1.0), random_unit_vector3());
the_block.center = vector3_plus(the_block.center, shift);
the_prism.center = vector3_plus(the_prism.center, shift);
}
char *s = getenv("LIBCTL_TEST_PRISM_LOG");
int write_log = (s && s[0] == '1') ? 1 : 0;
if (write_log) prism2gnuplot(the_prism.subclass.prism_data, "/tmp/test-prism.prism");
int num_failed_1 = test_point_inclusion(the_block, the_prism, NUMPTS, write_log);
// 20180712 disabling this test because the new implementation of normal_to_object
// for prisms is actually more accurate than the implementation for blocks,
// although the distinction is only significant in cases where it is irrelevant
// int num_failed_2 = test_normal_to_object(the_block, the_prism, NUMLINES, write_log);
int num_failed_3 = test_line_segment_intersection(the_block, the_prism, NUMLINES, write_log);
int num_failed_4 = test_point_in_polygon(write_log);
int num_failed_5 = test_square_base_sidewall_prisms_to_gnuplot();
int num_failed_6 = test_octagon_c_base_sidewall_prisms_to_gnuplot();
int num_failed_7 = test_helper_functions_on_octagonal_c_prism();
return num_failed_1 + num_failed_3 + num_failed_4 + num_failed_5 + num_failed_6 + num_failed_7;
}
/***************************************************************/
/***************************************************************/
/***************************************************************/
void print_usage(char *msg, int print_usage) {
if (!msg) fprintf(stderr, "%s\n", msg);
if (print_usage) {
printf("usage: \n");
printf(" --vertexfile MyVertices\n");
printf(" --height height\n");
printf(" --axis x y z\n");
printf("\n");
printf(" --point x y z\n");
printf(" --dir x y z\n");
printf(" --a a\n");
printf(" --b b\n");
}
exit(1);
}
void quit(char *msg) { print_usage(msg, 0); }
void usage(char *msg) { print_usage(msg, 1); }
/************************************************************************/
/************************************************************************/
/************************************************************************/
int main(int argc, char *argv[]) {
srand(time(NULL));
geom_initialize();
if (argc <= 1) // if no arguments, run unit tests
return run_unit_tests();
/***************************************************************/
/* process arguments *******************************************/
/***************************************************************/
char *vertexfile = 0;
vector3 axis = {0, 0, 1};
double height = 1.5;
vector3 test_point = {0, 0, 0};
vector3 test_dir = {0, 0, 1};
double a = 0.2, b = 0.3;
int narg;
for (narg = 1; narg < argc - 1; narg++) {
if (!strcmp(argv[narg], "--vertexfile"))
vertexfile = argv[++narg];
else if (!strcmp(argv[narg], "--axis")) {
if (narg + 3 >= argc) usage("too few arguments to --axis");
sscanf(argv[narg + 1], "%le", &(axis.x));
sscanf(argv[narg + 2], "%le", &(axis.y));
sscanf(argv[narg + 3], "%le", &(axis.z));
narg += 3;
}
else if (!strcmp(argv[narg], "--point")) {
if (narg + 3 >= argc) usage("too few arguments to --point");
sscanf(argv[narg + 1], "%le", &(test_point.x));
sscanf(argv[narg + 2], "%le", &(test_point.y));
sscanf(argv[narg + 3], "%le", &(test_point.z));
narg += 3;
}
else if (!strcmp(argv[narg], "--line")) {
if (narg + 6 >= argc) usage("too few arguments to --line");
vector3 v1, v2;
sscanf(argv[narg + 1], "%le", &(v1.x));
sscanf(argv[narg + 2], "%le", &(v1.y));
sscanf(argv[narg + 3], "%le", &(v1.z));
sscanf(argv[narg + 4], "%le", &(v2.x));
sscanf(argv[narg + 5], "%le", &(v2.y));
sscanf(argv[narg + 6], "%le", &(v2.z));
printf("Min distance=%e\n", min_distance_to_line_segment(test_point, v1, v2));
narg += 6;
}
else if (!strcmp(argv[narg], "--dir")) {
if (narg + 3 >= argc) usage("too few arguments to --lineseg");
sscanf(argv[narg + 1], "%le", &(test_dir.x));
sscanf(argv[narg + 2], "%le", &(test_dir.y));
sscanf(argv[narg + 3], "%le", &(test_dir.z));
narg += 3;
}
else if (!strcmp(argv[narg], "--height"))
sscanf(argv[++narg], "%le", &height);
else if (!strcmp(argv[narg], "--a"))
sscanf(argv[++narg], "%le", &a);
else if (!strcmp(argv[narg], "--b"))
sscanf(argv[++narg], "%le", &b);
else
usage("unknown argument");
}
if (!vertexfile) usage("no --vertexfile specified");
/***************************************************************/
/* read vertices from vertex file and create prism *************/
/***************************************************************/
vector3 *vertices = 0;
int num_vertices = 0;
FILE *f = fopen(vertexfile, "r");
if (!f) usage("could not open vertexfile");
char Line[100];
int LineNum = 0;
while (fgets(Line, 100, f)) {
if (Line[0] == '\n' || Line[0] == '#') continue;
num_vertices++;
vector3 v;
if (3 != sscanf(Line, "%le %le %le\n", &(v.x), &(v.y), &(v.z))) {
fprintf(stderr, "bad vertex on line %i of %s", num_vertices, vertexfile);
exit(1);
}
vertices = (vector3 *)realloc(vertices, num_vertices * sizeof(vector3));
vertices[num_vertices - 1] = v;
}
fclose(f);
geometric_object the_prism = make_prism(NULL, vertices, num_vertices, height, axis);
prism *prsm = the_prism.subclass.prism_data;
prism2gmsh(prsm, "test-prism.pp");
prism2gnuplot(prsm, "test-prism.gp");
f = fopen("test-point.gp", "w");
fprintf(f, "%e %e %e\n", test_point.x, test_point.y, test_point.z);
fclose(f);
printf("Wrote prism description to GNUPLOT file test-prism.gp.\n");
printf("Wrote prism description to GMSH file test-prism.geo.\n");
geom_box prism_box;
my_get_prism_bounding_box(prsm, &prism_box);
f = fopen("test-prism-bb.gp", "w");
fprintf(f, "%e %e %e\n", prism_box.low.x, prism_box.low.y, prism_box.low.z);
fprintf(f, "%e %e %e\n", prism_box.high.x, prism_box.low.y, prism_box.low.z);
fprintf(f, "%e %e %e\n", prism_box.high.x, prism_box.high.y, prism_box.low.z);
fprintf(f, "%e %e %e\n", prism_box.low.x, prism_box.high.y, prism_box.low.z);
fprintf(f, "%e %e %e\n\n\n", prism_box.low.x, prism_box.low.y, prism_box.low.z);
fprintf(f, "%e %e %e\n", prism_box.low.x, prism_box.low.y, prism_box.high.z);
fprintf(f, "%e %e %e\n", prism_box.high.x, prism_box.low.y, prism_box.high.z);
fprintf(f, "%e %e %e\n", prism_box.high.x, prism_box.high.y, prism_box.high.z);
fprintf(f, "%e %e %e\n", prism_box.low.x, prism_box.high.y, prism_box.high.z);
fprintf(f, "%e %e %e\n\n\n", prism_box.low.x, prism_box.low.y, prism_box.high.z);
printf("Wrote bounding box to GNUPLOT file test-prism-bb.gp.\n");
/***************************************************************/
/* test point inclusion, normal to object, and line-segment */
/* intersection with specified data */
/***************************************************************/
boolean in_prism = point_in_objectp(test_point, the_prism);
vector3 nhat = normal_to_object(test_point, the_prism);
double s = intersect_line_segment_with_object(test_point, test_dir, the_prism, a, b);
printf("point {%e,%e,%e}: \n", test_point.x, test_point.y, test_point.z);
printf(" %s prism\n", in_prism ? "in" : "not in");
printf(" normal to prism: {%e,%e,%e}\n", nhat.x, nhat.y, nhat.z);
printf(" intersection with line segment {%e,%e,%e} + (%e,%e)*{%e,%e,%e}: %e\n", test_point.x,
test_point.y, test_point.z, a, b, test_dir.x, test_dir.y, test_dir.z, s);
}
|