File: test-prism.c

package info (click to toggle)
libctl 4.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 964 kB
  • sloc: ansic: 6,926; lisp: 2,343; makefile: 153; sh: 150
file content (1305 lines) | stat: -rw-r--r-- 81,712 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
/* libctl: flexible Guile-based control files for scientific software
 * Copyright (C) 1998-2020 Massachusetts Institute of Technology and Steven G. Johnson
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA  02111-1307, USA.
 *
 * Steven G. Johnson can be contacted at stevenj@alum.mit.edu.
 */

/************************************************************************/
/* test-prism.c: unit test for prisms in libctlgeom                     */
/* homer reid 5/2018                                                    */
/************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>

#include "ctlgeom.h"

vector3 normal_to_plane(vector3 o, vector3 v1, vector3 v2, vector3 p, double *min_distance);
double min_distance_to_line_segment(vector3 p, vector3 v1, vector3 v2);
boolean point_in_or_on_prism(prism *prsm, vector3 xc, boolean include_boundaries);

#define K_PI 3.141592653589793238462643383279502884197

// routine from geom.c that rotates the coordinate of a point
// from the prism coordinate system to the cartesian coordinate system
vector3 prism_coordinate_p2c(prism *prsm, vector3 vp);
vector3 prism_coordinate_c2p(prism *prsm, vector3 vc);
vector3 prism_vector_p2c(prism *prsm, vector3 vp);
vector3 prism_vector_c2p(prism *prsm, vector3 vc);

/***************************************************************/
/* utility routines for writing points, lines, quadrilaterals  */
/*  to text files for viewing in e.g. gnuplot                  */
/***************************************************************/
void GPPoint(FILE *f, vector3 v, prism *prsm) {
  if (prsm) v = prism_coordinate_p2c(prsm, v);
  fprintf(f, "%e %e %e \n\n\n", v.x, v.y, v.z);
}

void GPLine(FILE *f, vector3 v, vector3 l, prism *prsm) {
  if (prsm) {
    v = prism_coordinate_p2c(prsm, v);
    l = prism_vector_p2c(prsm, l);
  }
  fprintf(f, "%e %e %e \n", v.x, v.y, v.z);
  fprintf(f, "%e %e %e \n\n\n", v.x + l.x, v.y + l.y, v.z + l.z);
}

void GPQuad(FILE *f, vector3 v, vector3 l1, vector3 l2, prism *prsm) {
  if (prsm) {
    v = prism_coordinate_p2c(prsm, v);
    l1 = prism_vector_p2c(prsm, l1);
    l2 = prism_vector_p2c(prsm, l2);
  }
  fprintf(f, "%e %e %e \n", v.x, v.y, v.z);
  fprintf(f, "%e %e %e \n", v.x + l1.x, v.y + l1.y, v.z + l1.z);
  fprintf(f, "%e %e %e \n", v.x + l1.x + l2.x, v.y + l1.y + l2.y, v.z + l1.z + l2.z);
  fprintf(f, "%e %e %e \n", v.x + l2.x, v.y + l2.y, v.z + l2.z);
  fprintf(f, "%e %e %e \n\n\n", v.x, v.y, v.z);
}

/***************************************************************/
/***************************************************************/
/***************************************************************/
void my_get_prism_bounding_box(prism *prsm, geom_box *box) {
  vector3 *vertices = prsm->vertices_p.items;
  int num_vertices = prsm->vertices_p.num_items;
  double height = prsm->height;

  box->low = box->high = prism_coordinate_p2c(prsm, vertices[0]);
  int nv, fc;
  for (nv = 0; nv < num_vertices; nv++)
    for (fc = 0; fc < 2; fc++) // 'floor,ceiling'
    {
      vector3 vp = vertices[nv];
      if (fc == 1) vp.z = height;
      vector3 vc = prism_coordinate_p2c(prsm, vp);

      box->low.x = fmin(box->low.x, vc.x);
      box->low.y = fmin(box->low.y, vc.y);
      box->low.z = fmin(box->low.z, vc.z);

      box->high.x = fmax(box->high.x, vc.x);
      box->high.y = fmax(box->high.y, vc.y);
      box->high.z = fmax(box->high.z, vc.z);
    }
}

static vector3 make_vector3(double x, double y, double z) {
  vector3 v;
  v.x = x;
  v.y = y;
  v.z = z;
  return v;
}

/************************************************************************/
/* return a uniform random number in [a,b] */
/************************************************************************/
static double urand(double a, double b) { return a + (b - a) * (rand() / ((double)RAND_MAX)); }

static double drand() { return urand(0.0, 1.0); }

/************************************************************************/
/* random point uniformly distributed over a parallelepiped             */
/************************************************************************/
vector3 random_point_in_box(vector3 min_corner, vector3 max_corner) {
  return make_vector3(urand(min_corner.x, max_corner.x), urand(min_corner.y, max_corner.y),
                      urand(min_corner.z, max_corner.z));
}

/************************************************************************/
/* random point uniformly distributed over a planar polygon             */
/*  (all z coordinates are 0)                                           */
/************************************************************************/
vector3 random_point_in_polygon(prism *prsm) {
  // randomly choose a vertex and generate random point within the triangle
  // formed by that vertex, the next vertex, and the centroid
  vector3 *vertices = prsm->vertices.items;
  int num_vertices = prsm->vertices.num_items;
  int which_vertex = rand() % num_vertices;
  vector3 v0 = {0, 0, 0};
  vector3 v1 = vertices[which_vertex];
  vector3 v2 = vertices[(which_vertex + 1) % num_vertices];
  double xi = urand(0.0, 1.0), eta = urand(0.0, 1.0 - xi);
  return vector3_plus(vector3_scale(xi, vector3_minus(v1, v0)),
                      vector3_scale(eta, vector3_minus(v2, v0)));
}

/************************************************************************/
/* random point uniformly distributed over the surface of a prism       */
/************************************************************************/
vector3 random_point_on_prism(geometric_object o) {
  prism *prsm = o.subclass.prism_data;
  vector3 *vertices = prsm->vertices_p.items;
  int num_vertices = prsm->vertices_p.num_items;
  double height = prsm->height;

  // choose a face
  int num_faces = num_vertices + 2;
  int which_face = rand() % num_faces;
  if (which_face < num_vertices) // side face
  {
    vector3 min_corner = vertices[which_face];
    vector3 max_corner = vertices[(which_face + 1) % num_vertices];
    max_corner.z = height;
    return random_point_in_box(prism_coordinate_p2c(prsm, min_corner),
                               prism_coordinate_p2c(prsm, max_corner));
  }
  else // floor or ceiling
  {
    vector3 p = random_point_in_polygon(prsm);
    if (which_face == num_faces - 1) p.z = height;
    return prism_coordinate_p2c(prsm, p);
  }
}

/************************************************************************/
/* random unit vector with direction uniformly distributed over unit sphere*/
/************************************************************************/
vector3 random_unit_vector3() {
  double cos_theta = urand(0.0, 1.0), sin_theta = sqrt(1.0 - cos_theta * cos_theta);
  double phi = urand(0.0, 2.0 * K_PI);
  return make_vector3(sin_theta * cos(phi), sin_theta * sin(phi), cos_theta);
}

/***************************************************************/
/* write prism vertices and edges to text file.                */
/* after running this routine to produce a file named MyFile,  */
/* the prism may be plotted in gnuplot like this:              */
/* gnuplot> splot 'MyFile' u 1:2:3 w lp pt 7 ps 1              */
/***************************************************************/
void prism2gnuplot(prism *prsm, char *filename) {
  int num_vertices = prsm->vertices_p.num_items;
  double height = prsm->height;
  vector3_list vertices;
  vertices.num_items = num_vertices;
  vertices.items = (vector3 *)malloc(num_vertices * sizeof(vector3));
  memcpy(vertices.items, prsm->vertices_p.items, num_vertices * sizeof(vector3));
  vector3_list vertices_top;
  vertices_top.num_items = num_vertices;
  vertices_top.items = (vector3 *)malloc(num_vertices * sizeof(vector3));
  int nv;
  for (nv = 0; nv < num_vertices; nv++) {
    vertices_top.items[nv] = vector3_plus(prsm->vertices_p.items[nv], prsm->top_polygon_diff_vectors_p.items[nv]);
  }

  FILE *f = fopen(filename, "w");
  for (nv = 0; nv < num_vertices; nv++) {
    vector3 vap = vertices.items[nv];
    vap.z = 0.0;
    vector3 vbp = vertices_top.items[nv];
    vbp.z = height;
    vector3 vcp = vertices_top.items[(nv + 1) % num_vertices];
    vcp.z = height;
    vector3 vdp = vertices.items[(nv + 1) % num_vertices];
    vdp.z = 0.0;
    vector3 vac = prism_coordinate_p2c(prsm, vap);
    vector3 vbc = prism_coordinate_p2c(prsm, vbp);
    vector3 vcc = prism_coordinate_p2c(prsm, vcp);
    vector3 vdc = prism_coordinate_p2c(prsm, vdp);

    fprintf(f, "%0.16e %0.16e %0.16e \n", vac.x, vac.y, vac.z);
    fprintf(f, "%0.16e %0.16e %0.16e \n", vbc.x, vbc.y, vbc.z);
    fprintf(f, "%0.16e %0.16e %0.16e \n", vcc.x, vcc.y, vcc.z);
    fprintf(f, "%0.16e %0.16e %0.16e \n", vdc.x, vdc.y, vdc.z);
    fprintf(f, "%0.16e %0.16e %0.16e \n", vac.x, vac.y, vac.z);
    fprintf(f, "\n\n");
  }
  fclose(f);
}

/***************************************************************/
/* write prism vertices and edges to GMSH geometry (.geo) file */
/***************************************************************/
void prism2gmsh(prism *prsm, char *filename) {
  vector3 *vertices = prsm->vertices_p.items;
  int num_vertices = prsm->vertices_p.num_items;
  double height = prsm->height;
  vector3 zhat = prsm->m_p2c.c2;
  vector3 axis = vector3_scale(height, zhat);

  FILE *f = fopen(filename, "w");
  int nv;
  for (nv = 0; nv < num_vertices; nv++) {
    vector3 vp = vertices[nv];
    vector3 vc = prism_coordinate_p2c(prsm, vp);
    fprintf(f, "Point(%i)={%e, %e, %e};\n", nv, vc.x, vc.y, vc.z);
  }
  for (nv = 0; nv < num_vertices; nv++)
    fprintf(f, "Line(%i)={%i, %i};\n", nv, nv, (nv + 1) % num_vertices);
  fprintf(f, "Line Loop(0)={0");
  for (nv = 1; nv < num_vertices; nv++)
    fprintf(f, ",%i", nv);
  fprintf(f, "};\n");
  fprintf(f, "Plane Surface(0)={0};\n");
  fprintf(f, "Extrude { %e,%e,%e } { Surface{0}; }\n", height * zhat.x, height * zhat.y,
          height * zhat.z);
  fclose(f);
}

/* "standardize" a vector for vector comparisons up to normalization and sign flip */
double sgn(double x) { return x >= 0.0 ? 1.0 : -1.0; }

vector3 standardize(vector3 v) {
  vector3 sv = unit_vector3(v);
  double sign = (sv.z != 0.0 ? sgn(sv.z) : sv.y != 0.0 ? sgn(sv.y) : sgn(sv.x));
  return vector3_scale(sign, sv);
}

/************************************************************************/
/* 1st unit test: check inclusion of randomly-generated points          */
/************************************************************************/
int test_point_inclusion(geometric_object the_block, geometric_object the_prism, int num_tests,
                         int write_log) {
  vector3 size = the_block.subclass.block_data->size;
  vector3 min_corner = vector3_scale(-1.0, size);
  vector3 max_corner = vector3_scale(+1.0, size);
  FILE *f = write_log ? fopen("/tmp/test-prism.points", "w") : 0;
  int num_failed = 0, num_adjusted = 0, n;
  for (n = 0; n < num_tests; n++) {
    vector3 p = random_point_in_box(min_corner, max_corner);
    boolean in_block = point_in_objectp(p, the_block);
    boolean in_prism = point_in_objectp(p, the_prism);

    if (in_block != in_prism) {
      // retry with boundary exclusion/inclusion reversed
      boolean libctl_include_boundaries = 1;
      char *s = getenv("LIBCTL_EXCLUDE_BOUNDARIES");
      if (s && s[0] == '1') libctl_include_boundaries = 0;
      in_prism =
          point_in_or_on_prism(the_prism.subclass.prism_data, p, 1 - libctl_include_boundaries);
      if (in_block == in_prism) num_adjusted++;
    }

    if (in_block != in_prism) num_failed++;
    if (f) fprintf(f, "%i %i %e %e %e \n", in_block, in_prism, p.x, p.y, p.z);
  }
  if (f) fclose(f);

  printf("point inclusion: %i/%i points failed (%i adjusted)\n", num_failed, num_tests,
         num_adjusted);
  return num_failed;
}

/************************************************************************/
/* 2nd unit test: check calculation of normals to objects               */
/************************************************************************/
#define PFACE 0.1
int test_normal_to_object(geometric_object the_block, geometric_object the_prism, int num_tests,
                          int write_log) {
  vector3 size = the_block.subclass.block_data->size;
  vector3 min_corner = vector3_scale(-1.0, size);
  vector3 max_corner = vector3_scale(+1.0, size);
  FILE *f = write_log ? fopen("/tmp/test-prism.normals", "w") : 0;

  int num_failed = 0;
  double tolerance = 1.0e-6;

  int n;
  for (n = 0; n < num_tests; n++) {
    // with probability PFACE, generate random base point lying on one
    //  of the 6 faces of the prism.
    // with probability 1-PFACE, generate random base point lying in the
    //  extended volume (2x volume of block)
    vector3 p = (urand(0.0, 1.0) < PFACE) ? random_point_on_prism(the_prism)
                                          : random_point_in_box(min_corner, max_corner);

    vector3 nhat_block = standardize(normal_to_object(p, the_block));
    vector3 nhat_prism = standardize(normal_to_object(p, the_prism));
    if (!vector3_nearly_equal(nhat_block, nhat_prism, tolerance)) num_failed++;

    if (f)
      fprintf(f, "%e %e %e %e %e %e %e %e %e %i\n\n\n", p.x, p.y, p.z, nhat_block.x, nhat_block.y,
              nhat_block.z, nhat_prism.x, nhat_prism.y, nhat_prism.z,
              vector3_nearly_equal(nhat_block, nhat_prism, tolerance));
  }
  if (f) fclose(f);

  printf("%i/%i normals failed\n", num_failed, num_tests);
  return num_failed;
}

/************************************************************************/
/* 3rd unit test: check-line segment intersections                      */
/************************************************************************/
int test_line_segment_intersection(geometric_object the_block, geometric_object the_prism,
                                   int num_tests, int write_log) {
  vector3 size = the_block.subclass.block_data->size;
  vector3 min_corner = vector3_scale(-1.0, size);
  vector3 max_corner = vector3_scale(+1.0, size);
  FILE *f = write_log ? fopen("/tmp/test-prism.segments", "w") : 0;

  int num_failed = 0;
  int n;
  for (n = 0; n < num_tests; n++) {
    // randomly generated base point within enlarged bounding box
    vector3 p = random_point_in_box(min_corner, max_corner);
    vector3 d = random_unit_vector3();
    double a = urand(0.0, 1.0);
    double b = urand(0.0, 1.0);

    double sblock = intersect_line_segment_with_object(p, d, the_block, a, b);
    double sprism = intersect_line_segment_with_object(p, d, the_prism, a, b);
    if (fabs(sblock - sprism) > 1.0e-6 * fmax(fabs(sblock), fabs(sprism))) num_failed++;

    if (f) {
      int success = fabs(sblock - sprism) <= 1.0e-6 * fmax(fabs(sblock), fabs(sprism));
      fprintf(f, " %e %e %s\n", sblock, sprism, success ? "success" : "fail");
      if (success == 0) {
        fprintf(f, "#%e %e %e %e %e %e %e %e\n", p.x, p.y, p.z, d.x, d.y, d.z, a, b);
        fprintf(f, "%e %e %e\n%e %e %e\n%e %e %e\n", p.x, p.y, p.z, p.x + a * d.x, p.y + a * d.y,
                p.z + a * d.z, p.x + b * d.x, p.y + b * d.y, p.z + b * d.z);
      }
      fprintf(f, "\n");
    }
  }
  if (f) fclose(f);

  printf("%i/%i segments failed\n", num_failed, num_tests);
  return num_failed;
}

/************************************************************************/
/* 4th unit test: check of point in polygon test with slanted H         */
/************************************************************************/
int test_point_in_polygon(int write_log) {
  // make array of test points that should always pass
  vector3 pass[5];
  pass[0] = make_vector3(0.3, 0.5, 0.0);
  pass[1] = make_vector3(0.4, 0.4, 0.0);
  pass[2] = make_vector3(0.5, 0.7, 0.0);
  pass[3] = make_vector3(0.5, 0.5, 0.0);
  pass[4] = make_vector3(0.5, 0.3, 0.0);

  // make array of test points that should always pass
  vector3 fail[5];
  fail[0] = make_vector3(0.2, 0.2, 0.0);
  fail[1] = make_vector3(0.3, 0.3, 0.0);
  fail[2] = make_vector3(0.4, 0.6, 0.0);
  fail[3] = make_vector3(0.6, 0.4, 0.0);
  fail[4] = make_vector3(0.7, 0.7, 0.0);

  // make array of nodes for the test polygon (an H slanted by 45 degrees)
  int num_nodes = 12;
  vector3 nodes[num_nodes];
  nodes[0] = make_vector3(0.5, 0.2, 0.0);
  nodes[1] = make_vector3(0.6, 0.3, 0.0);
  nodes[2] = make_vector3(0.5, 0.4, 0.0);
  nodes[3] = make_vector3(0.6, 0.5, 0.0);
  nodes[4] = make_vector3(0.7, 0.4, 0.0);
  nodes[5] = make_vector3(0.8, 0.5, 0.0);
  nodes[6] = make_vector3(0.5, 0.8, 0.0);
  nodes[7] = make_vector3(0.4, 0.7, 0.0);
  nodes[8] = make_vector3(0.5, 0.6, 0.0);
  nodes[9] = make_vector3(0.4, 0.5, 0.0);
  nodes[10] = make_vector3(0.3, 0.6, 0.0);
  nodes[11] = make_vector3(0.2, 0.5, 0.0);

  FILE *f = write_log ? fopen("/tmp/test-prism.point-in-polygon", "w") : 0;

  boolean all_points_success = 1;
  boolean include_boundaries = 1;
  int i;
  for (i = 0; i < 5; i++) {
    boolean local_success = node_in_or_on_polygon(pass[i], nodes, num_nodes, include_boundaries);
    if (!local_success) {
    	all_points_success = 0;
    }
    if (f) {
      fprintf(f, "%f %f %i\n", pass[i].x, pass[i].y, local_success);
    }
  }
  for (i = 0; i < 5; i++) {
    boolean local_success = !node_in_or_on_polygon(fail[i], nodes, num_nodes, include_boundaries);
    if (!local_success) {
      all_points_success = 0;
    }
    if (f) {
      fprintf(f, "%f %f %i\n", pass[i].x, pass[i].y, local_success);
    }
  }

  if (f) {
    if (all_points_success) {
      printf("all test points for slanted H pass\n");
    }
    else {
	  printf("one or more test points for slanted H fail\n");
    }
    fclose(f);
  }

  int num_failed;
  if (all_points_success) {
	num_failed = 0;
    printf("all test points for slanted H pass\n");
  }
  else {
	num_failed = 1;
	printf("one or more test points for slanted H fail\n");
  }

  return num_failed;
}

/************************************************************************/
/* 5th unit test: saves a prism with a square base with a normal        */
/* sidewall angle and a prism with the same base polygon with non-      */
/* normal sidewall angle to separate GNU plot files.                    */
/************************************************************************/
int test_square_base_sidewall_prisms_to_gnuplot() {
  void *m = NULL;

  int num_nodes_square = 4;
  vector3 nodes_square[num_nodes_square];
  nodes_square[0] = make_vector3(-10.0, -10.0, 0.0);
  nodes_square[1] = make_vector3(-10.0, 10.0, 0.0);
  nodes_square[2] = make_vector3(10.0, 10.0, 0.0);
  nodes_square[3] = make_vector3(10.0, -10.0, 0.0);

  double height_square = 100;
  vector3 zhat = make_vector3(0, 0, 1);

  double normal_sidewall = 0;
  geometric_object square_normal_sidewall_geom_object = make_prism(m, nodes_square, num_nodes_square, height_square, zhat);
  prism *square_normal_sidewall_prism = square_normal_sidewall_geom_object.subclass.prism_data;

  double one_degree_sidewall = 1.0 * 2 * K_PI / 360.0;
  geometric_object square_one_degree_sidewall_geom_object = make_slanted_prism(m, nodes_square, num_nodes_square, height_square, zhat, one_degree_sidewall);
  prism *square_one_degree_sidewall_prism = square_one_degree_sidewall_geom_object.subclass.prism_data;

  prism2gnuplot(square_normal_sidewall_prism, "square_normal_sidewall_gnu_plot.dat");
  prism2gnuplot(square_one_degree_sidewall_prism, "square_one_degree_sidewall_gnu_plot.dat");

  return 0;
}

/************************************************************************/
/* 6th unit test: saves a prism with a concave octagonal c-shaped       */
/* base with a normal sidewall angle and a prism with the same base     */
/* polygon with non-normal sidewall angle to separate GNU plot files.   */
/************************************************************************/
int test_octagon_c_base_sidewall_prisms_to_gnuplot() {
  void *m = NULL;

  int num_nodes_octagon_c = 16;
  vector3 nodes_octagon_c[num_nodes_octagon_c];
  nodes_octagon_c[0]  = make_vector3(114.905, 88.7434, 0.0);
  nodes_octagon_c[1]  = make_vector3(88.7434, 114.905, 0.0);
  nodes_octagon_c[2]  = make_vector3(51.7447, 114.905, 0.0);
  nodes_octagon_c[3]  = make_vector3(25.5827, 88.7434, 0.0);
  nodes_octagon_c[4]  = make_vector3(25.5827, 51.7447, 0.0);
  nodes_octagon_c[5]  = make_vector3(51.7447, 25.5827, 0.0);
  nodes_octagon_c[6]  = make_vector3(88.7434, 25.5827, 0.0);
  nodes_octagon_c[7]  = make_vector3(114.905, 51.7447, 0.0);
  nodes_octagon_c[8]  = make_vector3(140.488, 41.1477, 0.0);
  nodes_octagon_c[9]  = make_vector3(99.3401, 0.0, 0.0);
  nodes_octagon_c[10] = make_vector3(41.1477, 0.0, 0.0);
  nodes_octagon_c[11] = make_vector3(0.0, 41.1477, 0.0);
  nodes_octagon_c[12] = make_vector3(0.0, 99.3401, 0.0);
  nodes_octagon_c[13] = make_vector3(41.1477, 140.488, 0.0);
  nodes_octagon_c[14] = make_vector3(99.3401, 140.488, 0.0);
  nodes_octagon_c[15] = make_vector3(140.488, 99.3401, 0.0);

  double height_octagon_c = 127;
  vector3 zhat = make_vector3(0, 0, 1);

  double normal_sidewall = 0;
  geometric_object octagon_c_normal_sidewall_geom_object = make_prism(m, nodes_octagon_c, num_nodes_octagon_c, height_octagon_c, zhat);
  prism *octagon_c_normal_sidewall_prism = octagon_c_normal_sidewall_geom_object.subclass.prism_data;

  double two_half_degree_sidewall = 2.5 * 2 * K_PI / 360.0;
  geometric_object octagon_c_two_half_degree_sidewall_geom_object = make_slanted_prism(m, nodes_octagon_c, num_nodes_octagon_c, height_octagon_c, zhat, two_half_degree_sidewall);
  prism *octagon_c_two_half_degree_sidewall_prism = octagon_c_two_half_degree_sidewall_geom_object.subclass.prism_data;

  prism2gnuplot(octagon_c_normal_sidewall_prism, "octagon_c_normal_sidewall_gnu_plot.dat");
  prism2gnuplot(octagon_c_two_half_degree_sidewall_prism, "octagon_c_two_half_degree_sidewall_gnu_plot.dat");

  return 0;
}

/************************************************************************/
/* 7th unit test: test all of geom.c's prism helper functions on a      */
/* prism with a concave octagonal c-shaped base with both a normal      */
/* sidewall angle a 2.5-degree sidewall angle.                          */
/************************************************************************/
double relative_error(double actual, double expected) {
  return fabs((actual-expected)/actual);
}

int test_helper_functions_on_octagonal_c_prism() {
  int i;
  double tolerance = 5.0e-5;

  void *m = NULL;

  int num_nodes_octagon_c = 16;
  vector3 nodes_octagon_c[num_nodes_octagon_c];
  nodes_octagon_c[0]  = make_vector3(114.905, 88.7434, 0.0);
  nodes_octagon_c[1]  = make_vector3(88.7434, 114.905, 0.0);
  nodes_octagon_c[2]  = make_vector3(51.7447, 114.905, 0.0);
  nodes_octagon_c[3]  = make_vector3(25.5827, 88.7434, 0.0);
  nodes_octagon_c[4]  = make_vector3(25.5827, 51.7447, 0.0);
  nodes_octagon_c[5]  = make_vector3(51.7447, 25.5827, 0.0);
  nodes_octagon_c[6]  = make_vector3(88.7434, 25.5827, 0.0);
  nodes_octagon_c[7]  = make_vector3(114.905, 51.7447, 0.0);
  nodes_octagon_c[8]  = make_vector3(140.488, 41.1477, 0.0);
  nodes_octagon_c[9]  = make_vector3(99.3401, 0.0, 0.0);
  nodes_octagon_c[10] = make_vector3(41.1477, 0.0, 0.0);
  nodes_octagon_c[11] = make_vector3(0.0, 41.1477, 0.0);
  nodes_octagon_c[12] = make_vector3(0.0, 99.3401, 0.0);
  nodes_octagon_c[13] = make_vector3(41.1477, 140.488, 0.0);
  nodes_octagon_c[14] = make_vector3(99.3401, 140.488, 0.0);
  nodes_octagon_c[15] = make_vector3(140.488, 99.3401, 0.0);

  double height_octagon_c = 127;
  vector3 zhat = make_vector3(0, 0, 1);

  double normal_sidewall = 0;
  geometric_object octagon_c_normal_sidewall_geom_object = make_prism(m, nodes_octagon_c, num_nodes_octagon_c, height_octagon_c, zhat);
  prism *octagon_c_normal_sidewall_prism = octagon_c_normal_sidewall_geom_object.subclass.prism_data;

  double two_half_degree_sidewall = 2.5 * 2 * K_PI / 360.0;
  geometric_object octagon_c_two_half_degree_sidewall_geom_object = make_slanted_prism(m, nodes_octagon_c, num_nodes_octagon_c, height_octagon_c, zhat, two_half_degree_sidewall);
  prism *octagon_c_two_half_degree_sidewall_prism = octagon_c_two_half_degree_sidewall_geom_object.subclass.prism_data;

  int num_tests_normal = 0;
  int num_failed_normal = 0;
  int num_tests_tapered = 0;
  int num_failed_tapered = 0;

  printf("prism helper function testing:\n");

  // test geom_object_volume
  double volume_normal_sidewall_freecad = 1082462.27453587;
  double volume_normal_sidewall_calculated = geom_object_volume(octagon_c_normal_sidewall_geom_object);
  num_tests_normal++;
  if (relative_error(volume_normal_sidewall_calculated, volume_normal_sidewall_freecad) > tolerance) {
    num_failed_normal++;
  }

  double volume_tapered_sidewall_freecad = 833978.754046812;
  double volume_tapered_sidewall_calculated = geom_object_volume(octagon_c_two_half_degree_sidewall_geom_object);
  num_tests_tapered++;
  if (relative_error(volume_tapered_sidewall_calculated, volume_tapered_sidewall_freecad) > tolerance) {
    num_failed_tapered++;
  }

  // test point_in_prism
  vector3_list point_in_prism_test_points_normal_sidewall;
  point_in_prism_test_points_normal_sidewall.num_items = 25;
  point_in_prism_test_points_normal_sidewall.items = (vector3 *)malloc(point_in_prism_test_points_normal_sidewall.num_items * sizeof(vector3));
  point_in_prism_test_points_normal_sidewall.items[0]  = make_vector3(46.4462, 12.7914, 63.5000); // interior point
  point_in_prism_test_points_normal_sidewall.items[1]  = make_vector3(127.697, 46.4462, 95.2500); // interior point
  point_in_prism_test_points_normal_sidewall.items[2]  = make_vector3(70.2439, 0.00000, 31.7500); // point on external side face
  point_in_prism_test_points_normal_sidewall.items[3]  = make_vector3(101.824, 38.6637, 95.2500); // point on internal side face
  point_in_prism_test_points_normal_sidewall.items[4]  = make_vector3(19.1870, 49.0955, 127.000); // point on top face
  point_in_prism_test_points_normal_sidewall.items[5]  = make_vector3(134.092, 96.6909, 0.00000); // point on bottom face
  point_in_prism_test_points_normal_sidewall.items[6]  = make_vector3(127.6965, 94.04175, 127.0); // edge on top
  point_in_prism_test_points_normal_sidewall.items[7]  = make_vector3(70.24405, 114.905, 0.0000); // edge on bottom
  point_in_prism_test_points_normal_sidewall.items[8]  = make_vector3(41.1477, 0.00000, 100.000); // edge on side
  point_in_prism_test_points_normal_sidewall.items[9]  = make_vector3(140.488, 99.3401, 127.000); // vertex -> corner on top at edge of c
  point_in_prism_test_points_normal_sidewall.items[10] = make_vector3(140.488, 99.3401, 129.000); // continuation of edge from vertex
  point_in_prism_test_points_normal_sidewall.items[11] = make_vector3(141.902, 97.9259, 127.000); // continuation of edge from vertex
  point_in_prism_test_points_normal_sidewall.items[12] = make_vector3(142.336, 100.105, 127.000); // continuation of edge from vertex
  point_in_prism_test_points_normal_sidewall.items[13] = make_vector3(137.226, 99.9890, 125.000); // continuation of edge from vertex
  point_in_prism_test_points_normal_sidewall.items[14] = make_vector3(25.5827, 88.7434, 127.000); // vertex -> corner on top inside c
  point_in_prism_test_points_normal_sidewall.items[15] = make_vector3(25.5827, 88.7434, 129.000); // continuation of edge from vertex
  point_in_prism_test_points_normal_sidewall.items[16] = make_vector3(24.1685, 87.3292, 127.000); // continuation of edge from vertex
  point_in_prism_test_points_normal_sidewall.items[17] = make_vector3(25.5827, 90.7434, 127.000); // continuation of edge from vertex
  point_in_prism_test_points_normal_sidewall.items[18] = make_vector3(26.9969, 88.1576, 125.000); // continuation of edge from vertex
  point_in_prism_test_points_normal_sidewall.items[19] = make_vector3(41.1477, 0.00000, 127.000); // vertex -> corner on top outside c
  point_in_prism_test_points_normal_sidewall.items[20] = make_vector3(114.905, 51.7447, 0.00000); // vertex -> corner on bottom at edge of c
  point_in_prism_test_points_normal_sidewall.items[21] = make_vector3(51.7447, 114.905, 0.00000); // vertex -> corner on bottom inside c
  point_in_prism_test_points_normal_sidewall.items[22] = make_vector3(0.00000, 99.3401, 0.00000); // vertex -> corner on bottom outside c
  point_in_prism_test_points_normal_sidewall.items[23] = make_vector3(0.00000, 0.00000, 0.00000); // origin
  point_in_prism_test_points_normal_sidewall.items[24] = make_vector3(70.2440, 70.2440, 63.5000); // center of the c

  int point_in_prism_expected_normal_sidewall[point_in_prism_test_points_normal_sidewall.num_items];
  point_in_prism_expected_normal_sidewall[0]  = 1; // interior point
  point_in_prism_expected_normal_sidewall[1]  = 1; // interior point
  point_in_prism_expected_normal_sidewall[2]  = 1; // point on external side face
  point_in_prism_expected_normal_sidewall[3]  = 1; // point on internal side face
  point_in_prism_expected_normal_sidewall[4]  = 1; // point on top face
  point_in_prism_expected_normal_sidewall[5]  = 1; // point on bottom face
  point_in_prism_expected_normal_sidewall[6]  = 1; // edge on top
  point_in_prism_expected_normal_sidewall[7]  = 1; // edge on bottom
  point_in_prism_expected_normal_sidewall[8]  = 1; // edge on side
  point_in_prism_expected_normal_sidewall[9]  = 1; // vertex -> corner on top at edge of c
  point_in_prism_expected_normal_sidewall[10] = 0; // continuation of edge from vertex
  point_in_prism_expected_normal_sidewall[11] = 0; // continuation of edge from vertex
  point_in_prism_expected_normal_sidewall[12] = 0; // continuation of edge from vertex
  point_in_prism_expected_normal_sidewall[13] = 1; // continuation of edge from vertex
  point_in_prism_expected_normal_sidewall[14] = 1; // vertex -> corner on top inside c
  point_in_prism_expected_normal_sidewall[15] = 0; // continuation of edge from vertex
  point_in_prism_expected_normal_sidewall[16] = 1; // continuation of edge from vertex
  point_in_prism_expected_normal_sidewall[17] = 1; // continuation of edge from vertex
  point_in_prism_expected_normal_sidewall[18] = 0; // continuation of edge from vertex
  point_in_prism_expected_normal_sidewall[19] = 1; // vertex -> corner on top outside c
  point_in_prism_expected_normal_sidewall[20] = 1; // vertex -> corner on bottom at edge of c
  point_in_prism_expected_normal_sidewall[21] = 1; // vertex -> corner on bottom inside c
  point_in_prism_expected_normal_sidewall[22] = 1; // vertex -> corner on bottom outside c
  point_in_prism_expected_normal_sidewall[23] = 0; // origin
  point_in_prism_expected_normal_sidewall[24] = 0; // center of the c

  int point_in_prism_actual_normal_sidewall[point_in_prism_test_points_normal_sidewall.num_items];
  for (i = 0; i < point_in_prism_test_points_normal_sidewall.num_items; i++) {
    num_tests_normal++;
    point_in_prism_actual_normal_sidewall[i] = point_in_fixed_pobjectp(point_in_prism_test_points_normal_sidewall.items[i], &octagon_c_normal_sidewall_geom_object);
  }

  for (i = 0; i < point_in_prism_test_points_normal_sidewall.num_items; i++) {
    if (point_in_prism_actual_normal_sidewall[i] != point_in_prism_expected_normal_sidewall[i]) {
      ctl_printf("\tAt (%f, %f, %f) we expected point_in_fixed_pobjectp on the normal sidewall prism to return %i, but instead it returned %i\n", point_in_prism_test_points_normal_sidewall.items[i].x, point_in_prism_test_points_normal_sidewall.items[i].y, point_in_prism_test_points_normal_sidewall.items[i].z, point_in_prism_expected_normal_sidewall[i], point_in_prism_actual_normal_sidewall[i]);
      num_failed_normal++;
    }
  }

  vector3_list point_in_prism_test_points_tapered_sidewall;
  point_in_prism_test_points_tapered_sidewall.num_items = 25;
  point_in_prism_test_points_tapered_sidewall.items = (vector3 *)malloc(point_in_prism_test_points_tapered_sidewall.num_items * sizeof(vector3));
  point_in_prism_test_points_tapered_sidewall.items[0]  = make_vector3(46.446200000000005, 12.791350000000001, 63.500000000000000); // interior point
  point_in_prism_test_points_tapered_sidewall.items[1]  = make_vector3(123.45257948434455, 98.285670515655440, 63.500000000000000); // interior point
  point_in_prism_test_points_tapered_sidewall.items[2]  = make_vector3(102.72366312425248, 35.642282404302410, 63.500000000000000); // point on external side face
  point_in_prism_test_points_tapered_sidewall.items[3]  = make_vector3(21.423995187964220, 70.244056207821420, 95.250000000000000); // point on internal side face
  point_in_prism_test_points_tapered_sidewall.items[4]  = make_vector3(29.618783181268217, 110.86913318128589, 127.00000000000000); // point on top face
  point_in_prism_test_points_tapered_sidewall.items[5]  = make_vector3(134.09200000000000, 96.690900000000000, 0.0000000000000000); // point on bottom face
  point_in_prism_test_points_tapered_sidewall.items[6]  = make_vector3(20.037760250618970, 70.244062415642820, 127.00000000000000); // edge on top
  point_in_prism_test_points_tapered_sidewall.items[7]  = make_vector3(70.244050000000000, 114.90500000000000, 0.0000000000000000); // edge on bottom
  point_in_prism_test_points_tapered_sidewall.items[8]  = make_vector3(50.596305376632360, 22.810230125309488, 63.500000000000000); // edge on side
  point_in_prism_test_points_tapered_sidewall.items[9]  = make_vector3(130.69912049055401, 101.28725051332967, 127.00000000000000); // vertex -> corner on top at edge of c  // failing
  point_in_prism_test_points_tapered_sidewall.items[10] = make_vector3(130.62227962053330, 101.30253528002449, 127.99692620419043); // continuation of edge from vertex
  point_in_prism_test_points_tapered_sidewall.items[11] = make_vector3(131.40622727174056, 100.58014373214311, 127.00000000000000); // continuation of edge from vertex
  point_in_prism_test_points_tapered_sidewall.items[12] = make_vector3(131.62300162627434, 101.66993007518276, 127.00000000000000); // continuation of edge from vertex
  point_in_prism_test_points_tapered_sidewall.items[13] = make_vector3(129.14497344366782, 101.59639296596830, 126.00307379580957); // continuation of edge from vertex
  point_in_prism_test_points_tapered_sidewall.items[14] = make_vector3(20.037760250618966, 91.040214078020940, 127.00000000000000); // vertex -> corner on top inside c
  point_in_prism_test_points_tapered_sidewall.items[15] = make_vector3(19.994147981293120, 91.058279066765540, 127.99888519167415); // continuation of edge from vertex
  point_in_prism_test_points_tapered_sidewall.items[16] = make_vector3(19.330648063809882, 90.333112702498250, 127.00000000000000); // continuation of edge from vertex
  point_in_prism_test_points_tapered_sidewall.items[17] = make_vector3(20.037760250618966, 92.040214078020940, 127.00000000000000); // continuation of edge from vertex
  point_in_prism_test_points_tapered_sidewall.items[18] = make_vector3(20.788484706753895, 90.729250464799020, 126.00111480832585); // continuation of edge from vertex
  point_in_prism_test_points_tapered_sidewall.items[19] = make_vector3(43.444489246735300, 5.5449397493810295, 127.00000000000000); // vertex -> corner on top outside c
  point_in_prism_test_points_tapered_sidewall.items[20] = make_vector3(114.90500000000000, 51.744700000000000, 0.0000000000000000); // vertex -> corner on bottom at edge of c
  point_in_prism_test_points_tapered_sidewall.items[21] = make_vector3(51.744700000000000, 114.90500000000000, 0.0000000000000000); // vertex -> corner on bottom inside c
  point_in_prism_test_points_tapered_sidewall.items[22] = make_vector3(0.0000000000000000, 99.340100000000000, 0.0000000000000000); // vertex -> corner on bottom outside c
  point_in_prism_test_points_tapered_sidewall.items[23] = make_vector3(0.0000000000000000, 0.0000000000000000, 0.0000000000000000); // origin
  point_in_prism_test_points_tapered_sidewall.items[24] = make_vector3(70.244000000000000, 70.244000000000000, 63.500000000000000); // center of the c

  int point_in_prism_expected_tapered_sidewall[point_in_prism_test_points_tapered_sidewall.num_items];
  point_in_prism_expected_tapered_sidewall[0]  = 1; // interior point
  point_in_prism_expected_tapered_sidewall[1]  = 1; // interior point
  point_in_prism_expected_tapered_sidewall[2]  = 1; // point on external side face
  point_in_prism_expected_tapered_sidewall[3]  = 1; // point on internal side face
  point_in_prism_expected_tapered_sidewall[4]  = 1; // point on top face
  point_in_prism_expected_tapered_sidewall[5]  = 1; // point on bottom face
  point_in_prism_expected_tapered_sidewall[6]  = 1; // edge on top
  point_in_prism_expected_tapered_sidewall[7]  = 1; // edge on bottom
  point_in_prism_expected_tapered_sidewall[8]  = 1; // edge on side
  point_in_prism_expected_tapered_sidewall[9]  = 1; // vertex -> corner on top at edge of c
  point_in_prism_expected_tapered_sidewall[10] = 0; // continuation of edge from vertex
  point_in_prism_expected_tapered_sidewall[11] = 0; // continuation of edge from vertex
  point_in_prism_expected_tapered_sidewall[12] = 0; // continuation of edge from vertex
  point_in_prism_expected_tapered_sidewall[13] = 1; // continuation of edge from vertex
  point_in_prism_expected_tapered_sidewall[14] = 1; // vertex -> corner on top inside c
  point_in_prism_expected_tapered_sidewall[15] = 0; // continuation of edge from vertex
  point_in_prism_expected_tapered_sidewall[16] = 1; // continuation of edge from vertex
  point_in_prism_expected_tapered_sidewall[17] = 1; // continuation of edge from vertex
  point_in_prism_expected_tapered_sidewall[18] = 0; // continuation of edge from vertex
  point_in_prism_expected_tapered_sidewall[19] = 1; // vertex -> corner on top outside c
  point_in_prism_expected_tapered_sidewall[20] = 1; // vertex -> corner on bottom at edge of c
  point_in_prism_expected_tapered_sidewall[21] = 1; // vertex -> corner on bottom inside c
  point_in_prism_expected_tapered_sidewall[22] = 1; // vertex -> corner on bottom outside c
  point_in_prism_expected_tapered_sidewall[23] = 0; // origin
  point_in_prism_expected_tapered_sidewall[24] = 0; // center of the c

  int point_in_prism_actual_tapered_sidewall[point_in_prism_test_points_tapered_sidewall.num_items];
  for (i = 0; i < point_in_prism_test_points_tapered_sidewall.num_items; i++) {
    num_tests_tapered++;
    point_in_prism_actual_tapered_sidewall[i] = point_in_fixed_pobjectp(point_in_prism_test_points_tapered_sidewall.items[i], &octagon_c_two_half_degree_sidewall_geom_object);
  }

  for (i = 0; i < point_in_prism_test_points_tapered_sidewall.num_items; i++) {
    if (point_in_prism_actual_tapered_sidewall[i] != point_in_prism_expected_tapered_sidewall[i]) {
      ctl_printf("\tAt (%f, %f, %f) we expected point_in_fixed_pobjectp on the tapered sidewall prism to return %i, but instead it returned %i\n", point_in_prism_test_points_tapered_sidewall.items[i].x, point_in_prism_test_points_tapered_sidewall.items[i].y, point_in_prism_test_points_tapered_sidewall.items[i].z, point_in_prism_expected_tapered_sidewall[i], point_in_prism_actual_tapered_sidewall[i]);
      num_failed_tapered++;
    }
  }

  // test normal_to_prism
  vector3_list normal_to_prism_test_points_normal_sidewall;
  normal_to_prism_test_points_normal_sidewall.num_items = 30;
  normal_to_prism_test_points_normal_sidewall.items = (vector3 *)malloc(normal_to_prism_test_points_normal_sidewall.num_items * sizeof(vector3));
  normal_to_prism_test_points_normal_sidewall.items[0]  = make_vector3(98.2887, 98.2887, 63.5000); // points around sidewalls
  normal_to_prism_test_points_normal_sidewall.items[1]  = make_vector3(70.2441, 109.905, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[2]  = make_vector3(42.1992, 98.2886, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[3]  = make_vector3(30.5827, 70.2441, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[4]  = make_vector3(42.1992, 42.1992, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[5]  = make_vector3(70.2441, 30.5827, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[6]  = make_vector3(98.2886, 42.1992, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[7]  = make_vector3(129.610, 51.0656, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[8]  = make_vector3(123.450, 17.0383, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[9]  = make_vector3(70.2439, -5.0000, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[10] = make_vector3(17.0383, 17.0383, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[11] = make_vector3(-5.0000, 70.2439, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[12] = make_vector3(17.0383, 123.450, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[13] = make_vector3(70.2439, 145.488, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[14] = make_vector3(123.450, 123.450, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[15] = make_vector3(129.610, 89.4223, 63.5000);
  normal_to_prism_test_points_normal_sidewall.items[16] = make_vector3(110.869, 110.869, -5.0000); // points off bottom face
  normal_to_prism_test_points_normal_sidewall.items[17] = make_vector3(70.2440, 127.697, -5.0000);
  normal_to_prism_test_points_normal_sidewall.items[18] = make_vector3(29.6188, 110.869, -5.0000);
  normal_to_prism_test_points_normal_sidewall.items[19] = make_vector3(12.7914, 70.2440, -5.0000);
  normal_to_prism_test_points_normal_sidewall.items[20] = make_vector3(29.6188, 29.6188, -5.0000);
  normal_to_prism_test_points_normal_sidewall.items[21] = make_vector3(70.2440, 12.7914, -5.0000);
  normal_to_prism_test_points_normal_sidewall.items[22] = make_vector3(110.869, 29.6188, -5.0000);
  normal_to_prism_test_points_normal_sidewall.items[23] = make_vector3(108.747, 112.991, 132.000); // points off top face
  normal_to_prism_test_points_normal_sidewall.items[24] = make_vector3(70.2440, 127.697, 132.000);
  normal_to_prism_test_points_normal_sidewall.items[25] = make_vector3(29.6188, 110.869, 132.000);
  normal_to_prism_test_points_normal_sidewall.items[26] = make_vector3(12.7914, 70.2440, 132.000);
  normal_to_prism_test_points_normal_sidewall.items[27] = make_vector3(29.6188, 29.6188, 132.000);
  normal_to_prism_test_points_normal_sidewall.items[28] = make_vector3(70.2440, 12.7914, 132.000);
  normal_to_prism_test_points_normal_sidewall.items[29] = make_vector3(108.747, 27.4968, 132.000);

  vector3 normal_to_prism_expected_normal_sidewall[normal_to_prism_test_points_normal_sidewall.num_items];
  normal_to_prism_expected_normal_sidewall[0]  = make_vector3(-0.707107, -0.707107, 0.0000000); // points around sidewalls
  normal_to_prism_expected_normal_sidewall[1]  = make_vector3(0.0000000, -1.000000, 0.0000000);
  normal_to_prism_expected_normal_sidewall[2]  = make_vector3(0.7071010, -0.707112, 0.0000000);
  normal_to_prism_expected_normal_sidewall[3]  = make_vector3(1.0000000, 0.0000000, 0.0000000);
  normal_to_prism_expected_normal_sidewall[4]  = make_vector3(0.7071070, 0.7071070, 0.0000000);
  normal_to_prism_expected_normal_sidewall[5]  = make_vector3(0.0000000, 1.0000000, 0.0000000);
  normal_to_prism_expected_normal_sidewall[6]  = make_vector3(-0.707112, 0.7071010, 0.0000000);
  normal_to_prism_expected_normal_sidewall[7]  = make_vector3(0.3826890, 0.9238770, 0.0000000);
  normal_to_prism_expected_normal_sidewall[8]  = make_vector3(0.7071050, -0.707108, 0.0000000);
  normal_to_prism_expected_normal_sidewall[9]  = make_vector3(0.0000000, -1.000000, 0.0000000);
  normal_to_prism_expected_normal_sidewall[10] = make_vector3(-0.707107, -0.707107, 0.0000000);
  normal_to_prism_expected_normal_sidewall[11] = make_vector3(-1.000000, 0.0000000, 0.0000000);
  normal_to_prism_expected_normal_sidewall[12] = make_vector3(-0.707108, 0.7071050, 0.0000000);
  normal_to_prism_expected_normal_sidewall[13] = make_vector3(0.0000000, 1.0000000, 0.0000000);
  normal_to_prism_expected_normal_sidewall[14] = make_vector3(0.7071070, 0.7071070, 0.0000000);
  normal_to_prism_expected_normal_sidewall[15] = make_vector3(0.3826800, -0.923881, 0.0000000);
  normal_to_prism_expected_normal_sidewall[16] = make_vector3(0.0000000, 0.0000000, -1.000000); // points off bottom face
  normal_to_prism_expected_normal_sidewall[17] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_normal_sidewall[18] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_normal_sidewall[19] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_normal_sidewall[20] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_normal_sidewall[21] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_normal_sidewall[22] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_normal_sidewall[23] = make_vector3(0.0000000, 0.0000000, 1.0000000); // points off top face
  normal_to_prism_expected_normal_sidewall[24] = make_vector3(0.0000000, 0.0000000, 1.0000000);
  normal_to_prism_expected_normal_sidewall[25] = make_vector3(0.0000000, 0.0000000, 1.0000000);
  normal_to_prism_expected_normal_sidewall[26] = make_vector3(0.0000000, 0.0000000, 1.0000000);
  normal_to_prism_expected_normal_sidewall[27] = make_vector3(0.0000000, 0.0000000, 1.0000000);
  normal_to_prism_expected_normal_sidewall[28] = make_vector3(0.0000000, 0.0000000, 1.0000000);
  normal_to_prism_expected_normal_sidewall[29] = make_vector3(0.0000000, 0.0000000, 1.0000000);

  vector3 normal_to_prism_actual_normal_sidewall[normal_to_prism_test_points_normal_sidewall.num_items];
  for (i = 0; i < normal_to_prism_test_points_normal_sidewall.num_items; i++) {
    num_tests_normal++;
    normal_to_prism_actual_normal_sidewall[i] = unit_vector3(normal_to_object(normal_to_prism_test_points_normal_sidewall.items[i], octagon_c_normal_sidewall_geom_object));
  }

  for (i = 0; i < normal_to_prism_test_points_normal_sidewall.num_items; i++) {
    if (!vector3_nearly_equal(normal_to_prism_expected_normal_sidewall[i], normal_to_prism_actual_normal_sidewall[i], tolerance)
        && !vector3_nearly_equal(normal_to_prism_expected_normal_sidewall[i], vector3_scale(-1, normal_to_prism_actual_normal_sidewall[i]), tolerance)) {
      num_failed_normal++;
      vector3 test_point = normal_to_prism_test_points_normal_sidewall.items[i];
      vector3 expected = normal_to_prism_expected_normal_sidewall[i];
      vector3 actual = normal_to_prism_actual_normal_sidewall[i];
      ctl_printf("\tAt (%f, %f, %f) the expected normal vector was (%f, %f, %f), but the actual\n\t\tnormal vector was (%f, %f, %f\n", test_point.x, test_point.y, test_point.z, expected.x, expected.y, expected.z, actual.x, actual.y, actual.z);
    }
  }

  vector3_list normal_to_prism_test_points_tapered_sidewall;
  normal_to_prism_test_points_tapered_sidewall.num_items = 30;
  normal_to_prism_test_points_tapered_sidewall.items = (vector3 *)malloc(normal_to_prism_test_points_tapered_sidewall.num_items * sizeof(vector3));
  normal_to_prism_test_points_tapered_sidewall.items[0]  = make_vector3(106.256, 108.378, 63.2819); // points around sidewalls
  normal_to_prism_test_points_tapered_sidewall.items[1]  = make_vector3(70.2441, 122.673, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[2]  = make_vector3(33.1711, 107.317, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[3]  = make_vector3(17.8150, 70.2441, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[4]  = make_vector3(33.1711, 33.1711, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[5]  = make_vector3(70.2441, 17.8150, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[6]  = make_vector3(106.256, 32.1101, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[7]  = make_vector3(123.663, 39.7093, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[8]  = make_vector3(113.360, 25.0055, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[9]  = make_vector3(70.2439, 7.76771, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[10] = make_vector3(26.0665, 26.0665, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[11] = make_vector3(7.76771, 70.2439, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[12] = make_vector3(26.0665, 114.421, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[13] = make_vector3(70.2439, 132.720, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[14] = make_vector3(113.360, 115.482, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[15] = make_vector3(123.663, 100.779, 63.2819);
  normal_to_prism_test_points_tapered_sidewall.items[16] = make_vector3(110.869, 110.869, -5.0000); // points off bottom face
  normal_to_prism_test_points_tapered_sidewall.items[17] = make_vector3(70.2440, 127.697, -5.0000);
  normal_to_prism_test_points_tapered_sidewall.items[18] = make_vector3(29.6188, 110.869, -5.0000);
  normal_to_prism_test_points_tapered_sidewall.items[19] = make_vector3(12.7914, 70.2440, -5.0000);
  normal_to_prism_test_points_tapered_sidewall.items[20] = make_vector3(29.6188, 29.6188, -5.0000);
  normal_to_prism_test_points_tapered_sidewall.items[21] = make_vector3(70.2440, 12.7914, -5.0000);
  normal_to_prism_test_points_tapered_sidewall.items[22] = make_vector3(110.869, 29.6188, -5.0000);
  normal_to_prism_test_points_tapered_sidewall.items[23] = make_vector3(108.747, 112.991, 132.000); // points off top face
  normal_to_prism_test_points_tapered_sidewall.items[24] = make_vector3(70.2440, 127.697, 132.000);
  normal_to_prism_test_points_tapered_sidewall.items[25] = make_vector3(29.6188, 110.869, 132.000);
  normal_to_prism_test_points_tapered_sidewall.items[26] = make_vector3(12.7914, 70.2440, 132.000);
  normal_to_prism_test_points_tapered_sidewall.items[27] = make_vector3(29.6188, 29.6188, 132.000);
  normal_to_prism_test_points_tapered_sidewall.items[28] = make_vector3(70.2440, 12.7914, 132.000);
  normal_to_prism_test_points_tapered_sidewall.items[29] = make_vector3(108.747, 27.4968, 132.000);

  vector3 normal_to_prism_expected_tapered_sidewall[normal_to_prism_test_points_tapered_sidewall.num_items];
  normal_to_prism_expected_tapered_sidewall[0]  = make_vector3(0.7064340, 0.7064340, -0.0436194); // points off top face
  normal_to_prism_expected_tapered_sidewall[1]  = make_vector3(0.0000000, 0.9990480, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[2]  = make_vector3(-0.706428, 0.7064390, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[3]  = make_vector3(-0.999048, 0.0000000, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[4]  = make_vector3(-0.706434, -0.706434, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[5]  = make_vector3(0.0000000, -0.999048, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[6]  = make_vector3(0.7064390, -0.706428, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[7]  = make_vector3(-0.382325, -0.922998, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[8]  = make_vector3(-0.706432, 0.7064350, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[9]  = make_vector3(0.0000000, 0.9990480, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[10] = make_vector3(0.7064340, 0.7064340, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[11] = make_vector3(0.9990480, 0.0000000, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[12] = make_vector3(0.7064350, -0.706432, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[13] = make_vector3(0.0000000, -0.999048, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[14] = make_vector3(-0.706434, -0.706434, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[15] = make_vector3(-0.382315, 0.9230020, -0.0436194);
  normal_to_prism_expected_tapered_sidewall[16] = make_vector3(0.0000000, 0.0000000, -1.000000); // points off bottom face
  normal_to_prism_expected_tapered_sidewall[17] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_tapered_sidewall[18] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_tapered_sidewall[19] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_tapered_sidewall[20] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_tapered_sidewall[21] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_tapered_sidewall[22] = make_vector3(0.0000000, 0.0000000, -1.000000);
  normal_to_prism_expected_tapered_sidewall[23] = make_vector3(0.0000000, 0.0000000, 1.0000000);  // points off top face
  normal_to_prism_expected_tapered_sidewall[24] = make_vector3(0.0000000, 0.0000000, 1.0000000);
  normal_to_prism_expected_tapered_sidewall[25] = make_vector3(0.0000000, 0.0000000, 1.0000000);
  normal_to_prism_expected_tapered_sidewall[26] = make_vector3(0.0000000, 0.0000000, 1.0000000);
  normal_to_prism_expected_tapered_sidewall[27] = make_vector3(0.0000000, 0.0000000, 1.0000000);
  normal_to_prism_expected_tapered_sidewall[28] = make_vector3(0.0000000, 0.0000000, 1.0000000);
  normal_to_prism_expected_tapered_sidewall[29] = make_vector3(0.0000000, 0.0000000, 1.0000000);

  vector3 normal_to_prism_actual_tapered_sidewall[normal_to_prism_test_points_tapered_sidewall.num_items];
  for (i = 0; i < normal_to_prism_test_points_tapered_sidewall.num_items; i++) {
    num_tests_tapered++;
    normal_to_prism_actual_tapered_sidewall[i] = unit_vector3(normal_to_object(normal_to_prism_test_points_tapered_sidewall.items[i], octagon_c_two_half_degree_sidewall_geom_object));
  }

  for (i = 0; i < normal_to_prism_test_points_tapered_sidewall.num_items; i++) {
    if (!vector3_nearly_equal(normal_to_prism_expected_tapered_sidewall[i], normal_to_prism_actual_tapered_sidewall[i], tolerance)
        && !vector3_nearly_equal(normal_to_prism_expected_tapered_sidewall[i], vector3_scale(-1, normal_to_prism_actual_tapered_sidewall[i]), tolerance)) {
      num_failed_tapered++;
      vector3 test_point = normal_to_prism_test_points_tapered_sidewall.items[i];
      vector3 expected = normal_to_prism_expected_tapered_sidewall[i];
      vector3 actual = normal_to_prism_actual_tapered_sidewall[i];
      ctl_printf("\tAt (%f, %f, %f) the expected normal vector was (%f, %f, %f), but the actual\n\t\tnormal vector was (%f, %f, %f\n", test_point.x, test_point.y, test_point.z, expected.x, expected.y, expected.z, actual.x, actual.y, actual.z);
    }
  }

  // test intersect_line_segment_with_prism
  vector3_list intersect_line_with_prism_test_points_normal_sidewall;
  intersect_line_with_prism_test_points_normal_sidewall.num_items = 9;
  intersect_line_with_prism_test_points_normal_sidewall.items = (vector3 *)malloc(intersect_line_with_prism_test_points_normal_sidewall.num_items * sizeof(vector3));
  intersect_line_with_prism_test_points_normal_sidewall.items[0] = make_vector3(100.809, 144.033, 130.205); // line crossing top[15] to bottom[11]
  intersect_line_with_prism_test_points_normal_sidewall.items[1] = make_vector3(17.0383, 123.450, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_points_normal_sidewall.items[2] = make_vector3(17.0383, 123.450, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_points_normal_sidewall.items[3] = make_vector3(17.0383, 123.450, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_points_normal_sidewall.items[4] = make_vector3(12.7914, 70.2440, 63.5000); // interior point between 4, 5, 12, 13 in positive xhat
  intersect_line_with_prism_test_points_normal_sidewall.items[5] = make_vector3(12.7914, 70.2440, 63.5000); // interior point between 4, 5, 12, 13 in negative xhat
  intersect_line_with_prism_test_points_normal_sidewall.items[6] = make_vector3(40.1648, 142.861, 131.290); // between top point 14 and center of c on bottom
  intersect_line_with_prism_test_points_normal_sidewall.items[7] = make_vector3(41.1477, 0.00000, 127.000); // between top point 11 and origin
  intersect_line_with_prism_test_points_normal_sidewall.items[8] = make_vector3(51.7447, 114.905, 127.000); // between top point 3 and center of c on bottom

  vector3 intersect_line_with_prism_test_vectors_normal_sidewall[intersect_line_with_prism_test_points_normal_sidewall.num_items];
  intersect_line_with_prism_test_vectors_normal_sidewall[0] = make_vector3(-0.29372, -0.709099, -0.64102); // line crossing top[15] to bottom[11]
  intersect_line_with_prism_test_vectors_normal_sidewall[1] = make_vector3(0.707107, -0.707107, 0.000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_vectors_normal_sidewall[2] = make_vector3(0.707107, -0.707107, 0.000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_vectors_normal_sidewall[3] = make_vector3(0.707107, -0.707107, 0.000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_vectors_normal_sidewall[4] = make_vector3(1.000000, 0.0000000, 0.000000); // interior point between 4, 5, 12, 13 in positive xhat
  intersect_line_with_prism_test_vectors_normal_sidewall[5] = make_vector3(-1.00000, 0.0000000, 0.000000); // interior point between 4, 5, 12, 13 in negative xhat
  intersect_line_with_prism_test_vectors_normal_sidewall[6] = make_vector3(0.196571, -0.474559,-0.857994); // between top point 14 and center of c on bottom
  intersect_line_with_prism_test_vectors_normal_sidewall[7] = make_vector3(-0.308223, 0.000000,-0.951314); // between top point 11 and origin
  intersect_line_with_prism_test_vectors_normal_sidewall[8] = make_vector3(0.136135, -0.328658,-0.934586); // between top point 3 and center of c on bottom

  double intersect_line_with_prism_expected_normal_sidewall[intersect_line_with_prism_test_points_normal_sidewall.num_items];
  intersect_line_with_prism_expected_normal_sidewall[0] = 36.07816398; // line crossing top[15] to bottom[11]
  intersect_line_with_prism_expected_normal_sidewall[1] = 25.58291121; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_expected_normal_sidewall[2] = 25.58291120; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_expected_normal_sidewall[3] = 51.16582241; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_expected_normal_sidewall[4] = 12.79135000; // interior point between 4, 5, 12, 13 in positive xhat
  intersect_line_with_prism_expected_normal_sidewall[5] = 12.79135000; // interior point between 4, 5, 12, 13 in negative xhat
  intersect_line_with_prism_expected_normal_sidewall[6] = 53.90914485; // between top point 14 and center of c on bottom
  intersect_line_with_prism_expected_normal_sidewall[7] = 0.000000000; // between top point 11 and origin
  intersect_line_with_prism_expected_normal_sidewall[8] = 0.000000000; // between top point 3 and center of c on bottom

  double intersect_line_with_prism_a_normal_sidewall[intersect_line_with_prism_test_points_normal_sidewall.num_items];
  intersect_line_with_prism_a_normal_sidewall[0] = 0;   // line crossing top[15] to bottom[11]
  intersect_line_with_prism_a_normal_sidewall[1] = 0;   // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_a_normal_sidewall[2] = 100; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_a_normal_sidewall[3] = 0;   // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_a_normal_sidewall[4] = 0;   // interior point between 4, 5, 12, 13 in positive xhat
  intersect_line_with_prism_a_normal_sidewall[5] = 0;   // interior point between 4, 5, 12, 13 in negative xhat
  intersect_line_with_prism_a_normal_sidewall[6] = 0;   // between top point 14 and center of c on bottom
  intersect_line_with_prism_a_normal_sidewall[7] = 0;   // between top point 11 and origin
  intersect_line_with_prism_a_normal_sidewall[8] = 0;   // between top point 3 and center of c on bottom

  double intersect_line_with_prism_b_normal_sidewall[intersect_line_with_prism_test_points_normal_sidewall.num_items];
  intersect_line_with_prism_b_normal_sidewall[0] = 150; // line crossing top[15] to bottom[11]
  intersect_line_with_prism_b_normal_sidewall[1] = 100; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_b_normal_sidewall[2] = 150; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_b_normal_sidewall[3] = 150; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_b_normal_sidewall[4] = 300; // interior point between 4, 5, 12, 13 in positive xhat
  intersect_line_with_prism_b_normal_sidewall[5] = 300; // interior point between 4, 5, 12, 13 in negative xhat
  intersect_line_with_prism_b_normal_sidewall[6] = 300; // between top point 14 and center of c on bottom
  intersect_line_with_prism_b_normal_sidewall[7] = 300; // between top point 11 and origin
  intersect_line_with_prism_b_normal_sidewall[8] = 300; // between top point 3 and center of c on bottom

  double intersect_line_with_prism_actual_normal_sidewall[intersect_line_with_prism_test_points_normal_sidewall.num_items];
  for (i = 0; i < intersect_line_with_prism_test_points_normal_sidewall.num_items; i++) {
    num_tests_normal++;
    vector3 p = intersect_line_with_prism_test_points_normal_sidewall.items[i];
    vector3 d = intersect_line_with_prism_test_vectors_normal_sidewall[i];
    geometric_object o = octagon_c_normal_sidewall_geom_object;
    double a = intersect_line_with_prism_a_normal_sidewall[i];
    double b = intersect_line_with_prism_b_normal_sidewall[i];
    intersect_line_with_prism_actual_normal_sidewall[i] = intersect_line_segment_with_object(p, d, o, a, b);
  }

  for (i = 0; i < intersect_line_with_prism_test_points_normal_sidewall.num_items; i++) {
    double actual = intersect_line_with_prism_actual_normal_sidewall[i];
    double expected = intersect_line_with_prism_expected_normal_sidewall[i];
    if (fabs(fabs(actual)-fabs(expected)) > tolerance * fmax(fabs(actual), fabs(expected))) {
      double px = intersect_line_with_prism_test_points_normal_sidewall.items[i].x;
      double py = intersect_line_with_prism_test_points_normal_sidewall.items[i].y;
      double pz = intersect_line_with_prism_test_points_normal_sidewall.items[i].z;
      double dx = intersect_line_with_prism_test_vectors_normal_sidewall[i].x;
      double dy = intersect_line_with_prism_test_vectors_normal_sidewall[i].y;
      double dz = intersect_line_with_prism_test_vectors_normal_sidewall[i].z;
      ctl_printf(
          "\tThe line segment emanating from (%f, %f, %f) along s*d,\n\t\twith 0 <= s <= 300, d = (%f, %f, %f), was expected\n\t\tto have intersection length %f but instead had %f.\n",
          px, py, pz, dx, dy, dz, expected, actual);
      num_failed_normal++;
    }
  }

  vector3_list intersect_line_with_prism_test_points_tapered_sidewall;
  intersect_line_with_prism_test_points_tapered_sidewall.num_items = 9;
  intersect_line_with_prism_test_points_tapered_sidewall.items = (vector3 *)malloc(intersect_line_with_prism_test_points_tapered_sidewall.num_items * sizeof(vector3));
  intersect_line_with_prism_test_points_tapered_sidewall.items[0] = make_vector3(98.4872, 138.429, 130.281); // line crossing top[15] to bottom[11]
  intersect_line_with_prism_test_points_tapered_sidewall.items[1] = make_vector3(19.0383, 121.528, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_points_tapered_sidewall.items[2] = make_vector3(19.0383, 121.528, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_points_tapered_sidewall.items[3] = make_vector3(19.0383, 121.528, 63.5000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_points_tapered_sidewall.items[4] = make_vector3(12.7914, 70.2440, 63.5000); // interior point between 4, 5, 12, 13 in positive xhat
  intersect_line_with_prism_test_points_tapered_sidewall.items[5] = make_vector3(12.7914, 70.2440, 63.5000); // interior point between 4, 5, 12, 13 in negative xhat
  intersect_line_with_prism_test_points_tapered_sidewall.items[6] = make_vector3(43.4445, 134.943, 127.000); // between top point 14 and center of c on bottom
  intersect_line_with_prism_test_points_tapered_sidewall.items[7] = make_vector3(43.4445, 5.54494, 127.000); // between top point 11 and origin
  intersect_line_with_prism_test_points_tapered_sidewall.items[8] = make_vector3(34.7428, 105.745, 127.000); // between top point 3 and center of c on bottom

  vector3 intersect_line_with_prism_test_vectors_tapered_sidewall[intersect_line_with_prism_test_points_tapered_sidewall.num_items];
  intersect_line_with_prism_test_vectors_tapered_sidewall[0] = make_vector3(-0.288786, -0.697187, -0.656149); // line crossing top[15] to bottom[11]
  intersect_line_with_prism_test_vectors_tapered_sidewall[1] = make_vector3(0.6992010, -0.714925, 0.0000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_vectors_tapered_sidewall[2] = make_vector3(0.6992010, -0.714925, 0.0000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_vectors_tapered_sidewall[3] = make_vector3(0.6992010, -0.714925, 0.0000000); // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_test_vectors_tapered_sidewall[4] = make_vector3(1.0000000, 0.0000000, 0.0000000); // interior point between 4, 5, 12, 13 in positive xhat
  intersect_line_with_prism_test_vectors_tapered_sidewall[5] = make_vector3(-1.000000, 0.0000000, 0.0000000); // interior point between 4, 5, 12, 13 in negative xhat
  intersect_line_with_prism_test_vectors_tapered_sidewall[6] = make_vector3(0.1847880,-0.4461140, -0.875692); // between top point 14 and center of c on bottom
  intersect_line_with_prism_test_vectors_tapered_sidewall[7] = make_vector3(-0.323393,-0.0412755, -0.945364); // between top point 11 and origin
  intersect_line_with_prism_test_vectors_tapered_sidewall[8] = make_vector3(0.2599600,-0.2599600, -0.929969); // between top point 3 and center of c on bottom

  double intersect_line_with_prism_expected_tapered_sidewall[intersect_line_with_prism_test_points_tapered_sidewall.num_items];
  intersect_line_with_prism_expected_tapered_sidewall[0] = 21.67860775; // line crossing top[15] to bottom[11]
  intersect_line_with_prism_expected_tapered_sidewall[1] = 20.03920840; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_expected_tapered_sidewall[2] = 20.03919670; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_expected_tapered_sidewall[3] = 40.07840510; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_expected_tapered_sidewall[4] = 10.01888013; // interior point between 4, 5, 12, 13 in positive xhat
  intersect_line_with_prism_expected_tapered_sidewall[5] = 10.01888013; // interior point between 4, 5, 12, 13 in negative xhat
  intersect_line_with_prism_expected_tapered_sidewall[6] = 35.53300107; // between top point 14 and center of c on bottom
  intersect_line_with_prism_expected_tapered_sidewall[7] = 0.000000000; // between top point 11 and origin
  intersect_line_with_prism_expected_tapered_sidewall[8] = 0.000000000; // between top point 3 and center of c on bottom

  double intersect_line_with_prism_a_tapered_sidewall[intersect_line_with_prism_test_points_tapered_sidewall.num_items];
  intersect_line_with_prism_a_tapered_sidewall[0] = 0;  // line crossing top[15] to bottom[11]
  intersect_line_with_prism_a_tapered_sidewall[1] = 0;  // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_a_tapered_sidewall[2] = 50; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_a_tapered_sidewall[3] = 0;  // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_a_tapered_sidewall[4] = 0;  // interior point between 4, 5, 12, 13 in positive xhat
  intersect_line_with_prism_a_tapered_sidewall[5] = 0;  // interior point between 4, 5, 12, 13 in negative xhat
  intersect_line_with_prism_a_tapered_sidewall[6] = 0;  // between top point 14 and center of c on bottom
  intersect_line_with_prism_a_tapered_sidewall[7] = 0;  // between top point 11 and origin
  intersect_line_with_prism_a_tapered_sidewall[8] = 0;  // between top point 3 and center of c on bottom

  double intersect_line_with_prism_b_tapered_sidewall[intersect_line_with_prism_test_points_tapered_sidewall.num_items];
  intersect_line_with_prism_b_tapered_sidewall[0] = 150; // line crossing top[15] to bottom[11]
  intersect_line_with_prism_b_tapered_sidewall[1] = 50;  // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_b_tapered_sidewall[2] = 150; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_b_tapered_sidewall[3] = 150; // line crossing midpoint 13-14 face to midpoint 9-10 face
  intersect_line_with_prism_b_tapered_sidewall[4] = 300; // interior point between 4, 5, 12, 13 in positive xhat
  intersect_line_with_prism_b_tapered_sidewall[5] = 300; // interior point between 4, 5, 12, 13 in negative xhat
  intersect_line_with_prism_b_tapered_sidewall[6] = 300; // between top point 14 and center of c on bottom
  intersect_line_with_prism_b_tapered_sidewall[7] = 300; // between top point 11 and origin
  intersect_line_with_prism_b_tapered_sidewall[8] = 300; // between top point 3 and center of c on bottom

  double intersect_line_with_prism_actual_tapered_sidewall[intersect_line_with_prism_test_points_tapered_sidewall.num_items];
  for (i = 0; i < intersect_line_with_prism_test_points_tapered_sidewall.num_items; i++) {
    num_tests_tapered++;
    vector3 p = intersect_line_with_prism_test_points_tapered_sidewall.items[i];
    vector3 d = intersect_line_with_prism_test_vectors_tapered_sidewall[i];
    geometric_object o = octagon_c_two_half_degree_sidewall_geom_object;
    double a = intersect_line_with_prism_a_tapered_sidewall[i];
    double b = intersect_line_with_prism_b_tapered_sidewall[i];
    intersect_line_with_prism_actual_tapered_sidewall[i] = intersect_line_segment_with_object(p, d, o, a, b);
  }

  for (i = 0; i < intersect_line_with_prism_test_points_tapered_sidewall.num_items; i++) {
    double actual = intersect_line_with_prism_actual_tapered_sidewall[i];
    double expected = intersect_line_with_prism_expected_tapered_sidewall[i];
    if (fabs(fabs(actual)-fabs(expected)) > tolerance * fmax(fabs(actual), fabs(expected))) {
      double px = intersect_line_with_prism_test_points_tapered_sidewall.items[i].x;
      double py = intersect_line_with_prism_test_points_tapered_sidewall.items[i].y;
      double pz = intersect_line_with_prism_test_points_tapered_sidewall.items[i].z;
      double dx = intersect_line_with_prism_test_vectors_tapered_sidewall[i].x;
      double dy = intersect_line_with_prism_test_vectors_tapered_sidewall[i].y;
      double dz = intersect_line_with_prism_test_vectors_tapered_sidewall[i].z;
      ctl_printf(
          "\tThe line segment emanating from (%f, %f, %f) along s*d,\n\t\twith 0 <= s <= 300, d = (%f, %f, %f), was expected\n\t\tto have intersection length %f but instead had %f.\n",
          px, py, pz, dx, dy, dz, expected, actual);
      num_failed_tapered++;
    }
  }

  printf("\tprism helper function testing summary: \n\t\t%i/%i tests failed with normal sidewall\n\t\t%i/%i tests failed with tapered sidewall\n", num_failed_normal, num_tests_normal, num_failed_tapered, num_tests_tapered);

  return num_failed_normal + num_failed_tapered;
}

/***************************************************************/
/* unit tests: create the same parallelepiped two ways (as a   */
/* block and as a prism) and verify that geometric primitives  */
/* give identical results                                      */
/***************************************************************/
#define NUMPTS 10000
#define NUMLINES 1000

#define LX 0.5
#define LY 1.0
#define LZ 1.5

int run_unit_tests() {
  void *m = NULL;
  vector3 c = {0, 0, 0};
  vector3 xhat = make_vector3(1, 0, 0);
  vector3 yhat = make_vector3(0, 1, 0);
  vector3 zhat = make_vector3(0, 0, 1);
  vector3 size = make_vector3(LX, LY, LZ);

  vector3 v[4];
  v[0].x = -0.5 * LX;
  v[0].y = -0.5 * LY;
  v[0].z = -0.5 * LZ;
  v[1].x = +0.5 * LX;
  v[1].y = -0.5 * LY;
  v[1].z = -0.5 * LZ;
  v[2].x = +0.5 * LX;
  v[2].y = +0.5 * LY;
  v[2].z = -0.5 * LZ;
  v[3].x = -0.5 * LX;
  v[3].y = +0.5 * LY;
  v[3].z = -0.5 * LZ;

  geometric_object the_block = make_block(m, c, xhat, yhat, zhat, size);
  geometric_object the_prism = make_prism(m, v, 4, LZ, zhat);

  /***************************************************************/
  /* with probability P_SHIFT, shift the centers of both block   */
  /* and prism by a random displacement vector                   */
  /***************************************************************/
#define P_SHIFT 0.75
  if (urand(0.0, 1.0) < P_SHIFT) {
    vector3 shift = vector3_scale(urand(0.0, 1.0), random_unit_vector3());
    the_block.center = vector3_plus(the_block.center, shift);
    the_prism.center = vector3_plus(the_prism.center, shift);
  }

  char *s = getenv("LIBCTL_TEST_PRISM_LOG");
  int write_log = (s && s[0] == '1') ? 1 : 0;

  if (write_log) prism2gnuplot(the_prism.subclass.prism_data, "/tmp/test-prism.prism");

  int num_failed_1 = test_point_inclusion(the_block, the_prism, NUMPTS, write_log);
  // 20180712 disabling this test because the new implementation of normal_to_object
  //          for prisms is actually more accurate than the implementation for blocks,
  //          although the distinction is only significant in cases where it is irrelevant
  // int num_failed_2 = test_normal_to_object(the_block, the_prism, NUMLINES, write_log);
  int num_failed_3 = test_line_segment_intersection(the_block, the_prism, NUMLINES, write_log);
  int num_failed_4 = test_point_in_polygon(write_log);
  int num_failed_5 = test_square_base_sidewall_prisms_to_gnuplot();
  int num_failed_6 = test_octagon_c_base_sidewall_prisms_to_gnuplot();
  int num_failed_7 = test_helper_functions_on_octagonal_c_prism();

  return num_failed_1 + num_failed_3 + num_failed_4 + num_failed_5 + num_failed_6 + num_failed_7;
}

/***************************************************************/
/***************************************************************/
/***************************************************************/
void print_usage(char *msg, int print_usage) {
  if (!msg) fprintf(stderr, "%s\n", msg);
  if (print_usage) {
    printf("usage: \n");
    printf(" --vertexfile MyVertices\n");
    printf(" --height     height\n");
    printf(" --axis       x y z\n");
    printf("\n");
    printf(" --point      x y z\n");
    printf(" --dir        x y z\n");
    printf(" --a          a\n");
    printf(" --b          b\n");
  }
  exit(1);
}

void quit(char *msg) { print_usage(msg, 0); }

void usage(char *msg) { print_usage(msg, 1); }

/************************************************************************/
/************************************************************************/
/************************************************************************/
int main(int argc, char *argv[]) {
  srand(time(NULL));
  geom_initialize();

  if (argc <= 1) // if no arguments, run unit tests
    return run_unit_tests();

  /***************************************************************/
  /* process arguments *******************************************/
  /***************************************************************/
  char *vertexfile = 0;
  vector3 axis = {0, 0, 1};
  double height = 1.5;
  vector3 test_point = {0, 0, 0};
  vector3 test_dir = {0, 0, 1};
  double a = 0.2, b = 0.3;
  int narg;
  for (narg = 1; narg < argc - 1; narg++) {
    if (!strcmp(argv[narg], "--vertexfile"))
      vertexfile = argv[++narg];
    else if (!strcmp(argv[narg], "--axis")) {
      if (narg + 3 >= argc) usage("too few arguments to --axis");
      sscanf(argv[narg + 1], "%le", &(axis.x));
      sscanf(argv[narg + 2], "%le", &(axis.y));
      sscanf(argv[narg + 3], "%le", &(axis.z));
      narg += 3;
    }
    else if (!strcmp(argv[narg], "--point")) {
      if (narg + 3 >= argc) usage("too few arguments to --point");
      sscanf(argv[narg + 1], "%le", &(test_point.x));
      sscanf(argv[narg + 2], "%le", &(test_point.y));
      sscanf(argv[narg + 3], "%le", &(test_point.z));
      narg += 3;
    }
    else if (!strcmp(argv[narg], "--line")) {
      if (narg + 6 >= argc) usage("too few arguments to --line");
      vector3 v1, v2;
      sscanf(argv[narg + 1], "%le", &(v1.x));
      sscanf(argv[narg + 2], "%le", &(v1.y));
      sscanf(argv[narg + 3], "%le", &(v1.z));
      sscanf(argv[narg + 4], "%le", &(v2.x));
      sscanf(argv[narg + 5], "%le", &(v2.y));
      sscanf(argv[narg + 6], "%le", &(v2.z));
      printf("Min distance=%e\n", min_distance_to_line_segment(test_point, v1, v2));
      narg += 6;
    }
    else if (!strcmp(argv[narg], "--dir")) {
      if (narg + 3 >= argc) usage("too few arguments to --lineseg");
      sscanf(argv[narg + 1], "%le", &(test_dir.x));
      sscanf(argv[narg + 2], "%le", &(test_dir.y));
      sscanf(argv[narg + 3], "%le", &(test_dir.z));
      narg += 3;
    }
    else if (!strcmp(argv[narg], "--height"))
      sscanf(argv[++narg], "%le", &height);
    else if (!strcmp(argv[narg], "--a"))
      sscanf(argv[++narg], "%le", &a);
    else if (!strcmp(argv[narg], "--b"))
      sscanf(argv[++narg], "%le", &b);
    else
      usage("unknown argument");
  }
  if (!vertexfile) usage("no --vertexfile specified");

  /***************************************************************/
  /* read vertices from vertex file and create prism *************/
  /***************************************************************/
  vector3 *vertices = 0;
  int num_vertices = 0;
  FILE *f = fopen(vertexfile, "r");
  if (!f) usage("could not open vertexfile");
  char Line[100];
  int LineNum = 0;
  while (fgets(Line, 100, f)) {
    if (Line[0] == '\n' || Line[0] == '#') continue;
    num_vertices++;
    vector3 v;
    if (3 != sscanf(Line, "%le %le %le\n", &(v.x), &(v.y), &(v.z))) {
      fprintf(stderr, "bad vertex on line %i of %s", num_vertices, vertexfile);
      exit(1);
    }
    vertices = (vector3 *)realloc(vertices, num_vertices * sizeof(vector3));
    vertices[num_vertices - 1] = v;
  }
  fclose(f);

  geometric_object the_prism = make_prism(NULL, vertices, num_vertices, height, axis);
  prism *prsm = the_prism.subclass.prism_data;
  prism2gmsh(prsm, "test-prism.pp");
  prism2gnuplot(prsm, "test-prism.gp");
  f = fopen("test-point.gp", "w");
  fprintf(f, "%e %e %e\n", test_point.x, test_point.y, test_point.z);
  fclose(f);
  printf("Wrote prism description to GNUPLOT file test-prism.gp.\n");
  printf("Wrote prism description to GMSH file test-prism.geo.\n");

  geom_box prism_box;
  my_get_prism_bounding_box(prsm, &prism_box);
  f = fopen("test-prism-bb.gp", "w");
  fprintf(f, "%e %e %e\n", prism_box.low.x, prism_box.low.y, prism_box.low.z);
  fprintf(f, "%e %e %e\n", prism_box.high.x, prism_box.low.y, prism_box.low.z);
  fprintf(f, "%e %e %e\n", prism_box.high.x, prism_box.high.y, prism_box.low.z);
  fprintf(f, "%e %e %e\n", prism_box.low.x, prism_box.high.y, prism_box.low.z);
  fprintf(f, "%e %e %e\n\n\n", prism_box.low.x, prism_box.low.y, prism_box.low.z);

  fprintf(f, "%e %e %e\n", prism_box.low.x, prism_box.low.y, prism_box.high.z);
  fprintf(f, "%e %e %e\n", prism_box.high.x, prism_box.low.y, prism_box.high.z);
  fprintf(f, "%e %e %e\n", prism_box.high.x, prism_box.high.y, prism_box.high.z);
  fprintf(f, "%e %e %e\n", prism_box.low.x, prism_box.high.y, prism_box.high.z);
  fprintf(f, "%e %e %e\n\n\n", prism_box.low.x, prism_box.low.y, prism_box.high.z);
  printf("Wrote bounding box to GNUPLOT file test-prism-bb.gp.\n");

  /***************************************************************/
  /* test point inclusion, normal to object, and line-segment    */
  /* intersection with specified data                            */
  /***************************************************************/
  boolean in_prism = point_in_objectp(test_point, the_prism);
  vector3 nhat = normal_to_object(test_point, the_prism);
  double s = intersect_line_segment_with_object(test_point, test_dir, the_prism, a, b);
  printf("point {%e,%e,%e}: \n", test_point.x, test_point.y, test_point.z);
  printf(" %s prism\n", in_prism ? "in" : "not in");
  printf(" normal to prism: {%e,%e,%e}\n", nhat.x, nhat.y, nhat.z);
  printf(" intersection with line segment {%e,%e,%e} + (%e,%e)*{%e,%e,%e}: %e\n", test_point.x,
         test_point.y, test_point.z, a, b, test_dir.x, test_dir.y, test_dir.z, s);
}