1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
#ifndef _TEST_UTIL_HH
#define _TEST_UTIL_HH
// Utilities for running stress tests and benchmarks
#include <array>
#include <atomic>
#include <cerrno>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <mutex>
#include <random>
#include <pcg/pcg_random.hpp>
std::mutex print_lock;
int main_return_value = EXIT_SUCCESS;
typedef std::lock_guard<std::mutex> mutex_guard;
// Prints a message if the two items aren't equal
template <class T, class U>
inline void do_expect_equal(T x, const char *xname, U y, const char *yname,
size_t line) {
if (x != y) {
mutex_guard m(print_lock);
main_return_value = EXIT_FAILURE;
std::cout << "ERROR:\t" << xname << "(" << x << ") does not equal " << yname
<< "(" << y << ") on line " << line << std::endl;
}
}
#define EXPECT_EQ(x, y) do_expect_equal(x, #x, y, #y, __LINE__)
// Prints a message if the two items are equal
template <class T, class U>
inline void do_expect_not_equal(T x, const char *xname, U y, const char *yname,
size_t line) {
if (x == y) {
mutex_guard m(print_lock);
main_return_value = EXIT_FAILURE;
std::cout << "ERROR:\t" << xname << "(" << x << ") equals " << yname << "("
<< y << ") on line " << line << std::endl;
}
}
#define EXPECT_NE(x, y) do_expect_not_equal(x, #x, y, #y, __LINE__)
// Prints a message if the item is false
inline void do_expect_true(bool x, const char *xname, size_t line) {
if (!x) {
mutex_guard m(print_lock);
main_return_value = EXIT_FAILURE;
std::cout << "ERROR:\t" << xname << "(" << x << ") is false on line "
<< line << std::endl;
}
}
#define EXPECT_TRUE(x) do_expect_true(x, #x, __LINE__)
// Prints a message if the item is true
inline void do_expect_false(bool x, const char *xname, size_t line) {
if (x) {
mutex_guard m(print_lock);
main_return_value = EXIT_FAILURE;
std::cout << "ERROR:\t" << xname << "(" << x << ") is true on line " << line
<< std::endl;
}
}
#define EXPECT_FALSE(x) do_expect_false(x, #x, __LINE__)
// Prints a message and exists if the two items aren't equal
template <class T, class U>
inline void do_assert_equal(T x, const char *xname, U y, const char *yname,
size_t line) {
if (x != y) {
mutex_guard m(print_lock);
std::cout << "FATAL ERROR:\t" << xname << "(" << x << ") does not equal "
<< yname << "(" << y << ") on line " << line << std::endl;
exit(EXIT_FAILURE);
}
}
#define ASSERT_EQ(x, y) do_assert_equal(x, #x, y, #y, __LINE__)
// Prints a message and exists if the item is false
inline void do_assert_true(bool x, const char *xname, size_t line) {
if (!x) {
mutex_guard m(print_lock);
std::cout << "FATAL ERROR:\t" << xname << "(" << x << ") is false on line "
<< line << std::endl;
exit(EXIT_FAILURE);
}
}
#define ASSERT_TRUE(x) do_assert_true(x, #x, __LINE__)
// Parses boolean flags and flags with positive integer arguments
void parse_flags(int argc, char **argv, const char *description,
const char *args[], size_t *arg_vars[], const char *arg_help[],
size_t arg_num, const char *flags[], bool *flag_vars[],
const char *flag_help[], size_t flag_num) {
errno = 0;
for (int i = 0; i < argc; i++) {
for (size_t j = 0; j < arg_num; j++) {
if (strcmp(argv[i], args[j]) == 0) {
if (i == argc - 1) {
std::cerr << "You must provide a positive integer argument"
<< " after the " << args[j] << " argument" << std::endl;
exit(EXIT_FAILURE);
} else {
size_t argval = strtoull(argv[i + 1], NULL, 10);
if (errno != 0) {
std::cerr << "The argument to " << args[j]
<< " must be a valid size_t" << std::endl;
exit(EXIT_FAILURE);
} else {
*(arg_vars[j]) = argval;
}
}
}
}
for (size_t j = 0; j < flag_num; j++) {
if (strcmp(argv[i], flags[j]) == 0) {
*(flag_vars[j]) = true;
}
}
if (strcmp(argv[i], "--help") == 0) {
std::cerr << description << std::endl;
std::cerr << "Arguments:" << std::endl;
for (size_t j = 0; j < arg_num; j++) {
std::cerr << args[j] << " (default " << *arg_vars[j] << "):\t"
<< arg_help[j] << std::endl;
}
for (size_t j = 0; j < flag_num; j++) {
std::cerr << flags[j] << " (default "
<< (*flag_vars[j] ? "true" : "false") << "):\t"
<< flag_help[j] << std::endl;
}
exit(0);
}
}
}
// generateKey is a function from a number to another given type, used to
// generate keys for insertion.
template <class T> T generateKey(size_t i) { return (T)i; }
// This specialization returns a stringified representation of the given
// integer, where the number is copied to the end of a long string of 'a's, in
// order to make comparisons and hashing take time.
template <> std::string generateKey<std::string>(size_t n) {
const size_t min_length = 100;
const std::string num(std::to_string(n));
if (num.size() >= min_length) {
return num;
}
std::string ret(min_length, 'a');
const size_t startret = min_length - num.size();
for (size_t i = 0; i < num.size(); i++) {
ret[i + startret] = num[i];
}
return ret;
}
// An overloaded class that does the inserts for different table types. Inserts
// with a value of 0.
template <class Table> class insert_thread {
public:
typedef typename std::vector<typename Table::key_type>::iterator it_t;
static void func(Table &table, it_t begin, it_t end) {
for (; begin != end; begin++) {
ASSERT_TRUE(table.insert(*begin, 0));
}
}
};
// An overloaded class that does the reads for different table types. It
// repeatedly searches for the keys in the given range until the time is up. All
// the keys we're searching for should either be in the table or not in the
// table, so we assert that.
template <class Table> class read_thread {
public:
typedef typename std::vector<typename Table::key_type>::iterator it_t;
static void func(Table &table, it_t begin, it_t end,
std::atomic<size_t> &counter, bool in_table,
std::atomic<bool> &finished) {
typename Table::mapped_type v;
// We keep track of our own local counter for reads, to avoid
// over-burdening the shared atomic counter
size_t reads = 0;
while (!finished.load(std::memory_order_acquire)) {
for (auto it = begin; it != end; it++) {
if (finished.load(std::memory_order_acquire)) {
counter.fetch_add(reads);
return;
}
ASSERT_EQ(in_table, table.find(*it, v));
reads++;
}
}
}
};
// An overloaded class that does a mixture of reads and inserts for different
// table types. It repeatedly searches for the keys in the given range until
// everything has been inserted.
template <class Table> class read_insert_thread {
public:
typedef typename std::vector<typename Table::key_type>::iterator it_t;
static void func(Table &table, it_t begin, it_t end,
std::atomic<size_t> &counter, const double insert_prob,
const size_t start_seed) {
typename Table::mapped_type v;
pcg64_fast gen(start_seed);
std::uniform_real_distribution<double> dist(0.0, 1.0);
auto inserter_it = begin;
auto reader_it = begin;
size_t ops = 0;
while (inserter_it != end) {
if (dist(gen) < insert_prob) {
// Do an insert
ASSERT_TRUE(table.insert(*inserter_it, 0));
++inserter_it;
} else {
// Do a read
ASSERT_EQ(table.find(*reader_it, v), (reader_it < inserter_it));
++reader_it;
if (reader_it == end) {
reader_it = begin;
}
}
++ops;
}
counter.fetch_add(ops);
}
};
#endif // _TEST_UTIL_HH
|