1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
/*
Copyright (c) 2019, NVIDIA Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#ifdef NDEBUG
#undef NDEBUG
#endif
#include <cmath>
#include <mutex>
#include <thread>
#include <vector>
#include <string>
#include <iostream>
#include <iomanip>
#include <numeric>
#include <tuple>
#include <set>
#include <chrono>
#include <algorithm>
#include <cuda/std/cstdint>
#include <cuda/std/cstddef>
#include <cuda/std/climits>
#include <cuda/std/ratio>
#include <cuda/std/chrono>
#include <cuda/std/limits>
#include <cuda/std/type_traits>
#include <cuda/std/atomic>
#include <cuda/std/barrier>
#include <cuda/std/latch>
#include <cuda/std/semaphore>
#ifdef __CUDACC__
# include <cuda_awbarrier.h>
#endif
#ifdef __CUDACC__
# define _ABI __host__ __device__
# define check(ans) { assert_((ans), __FILE__, __LINE__); }
inline void assert_(cudaError_t code, const char *file, int line) {
if (code == cudaSuccess)
return;
std::cerr << "check failed: " << cudaGetErrorString(code) << ": " << file << ':' << line << std::endl;
abort();
}
#else
# define _ABI
#endif
template <class T>
struct managed_allocator {
typedef cuda::std::size_t size_type;
typedef cuda::std::ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;// (deprecated in C++17)(removed in C++20) T*
typedef const T* const_pointer;// (deprecated in C++17)(removed in C++20) const T*
typedef T& reference;// (deprecated in C++17)(removed in C++20) T&
typedef const T& const_reference;// (deprecated in C++17)(removed in C++20) const T&
template< class U > struct rebind { typedef managed_allocator<U> other; };
managed_allocator() = default;
template <class U> constexpr managed_allocator(const managed_allocator<U>&) noexcept {}
T* allocate(std::size_t n) {
void* out = nullptr;
#ifdef __CUDACC__
# ifdef __aarch64__
check(cudaMallocHost(&out, n*sizeof(T), cudaHostAllocMapped));
void* out2;
check(cudaHostGetDevicePointer(&out2, out, 0));
assert(out2==out); //< we can't handle non-uniform addressing
# else
check(cudaMallocManaged(&out, n*sizeof(T)));
# endif
#else
out = malloc(n*sizeof(T));
#endif
return static_cast<T*>(out);
}
void deallocate(T* p, std::size_t) noexcept {
#ifdef __CUDACC__
# ifdef __aarch64__
check(cudaFreeHost(p));
# else
check(cudaFree(p));
# endif
#else
free(p);
#endif
}
};
template<class T, class... Args>
T* make_(Args &&... args) {
managed_allocator<T> ma;
auto n_ = new (ma.allocate(1)) T(std::forward<Args>(args)...);
#if defined(__CUDACC__) && !defined(__aarch64__)
check(cudaMemAdvise(n_, sizeof(T), cudaMemAdviseSetPreferredLocation, 0));
check(cudaMemPrefetchAsync(n_, sizeof(T), 0));
#endif
return n_;
}
template<class T>
void unmake_(T* ptr) {
managed_allocator<T> ma;
ptr->~T();
ma.deallocate(ptr, sizeof(T));
}
struct null_mutex {
_ABI void lock() noexcept { }
_ABI void unlock() noexcept { }
};
struct mutex {
_ABI void lock() noexcept {
while (1 == l.exchange(1, cuda::std::memory_order_acquire))
#ifndef __NO_WAIT
l.wait(1, cuda::std::memory_order_relaxed)
#endif
;
}
_ABI void unlock() noexcept {
l.store(0, cuda::std::memory_order_release);
#ifndef __NO_WAIT
l.notify_one();
#endif
}
alignas(64) cuda::atomic<int, cuda::thread_scope_device> l = ATOMIC_VAR_INIT(0);
};
struct ticket_mutex {
_ABI void lock() noexcept {
auto const my = in.fetch_add(1, cuda::std::memory_order_acquire);
while(1) {
auto const now = out.load(cuda::std::memory_order_acquire);
if(now == my)
return;
#ifndef __NO_WAIT
out.wait(now, cuda::std::memory_order_relaxed);
#endif
}
}
_ABI void unlock() noexcept {
out.fetch_add(1, cuda::std::memory_order_release);
#ifndef __NO_WAIT
out.notify_all();
#endif
}
alignas(64) cuda::atomic<int, cuda::thread_scope_device> in = ATOMIC_VAR_INIT(0);
alignas(64) cuda::atomic<int, cuda::thread_scope_device> out = ATOMIC_VAR_INIT(0);
};
struct sem_mutex {
void lock() noexcept {
c.acquire();
}
void unlock() noexcept {
c.release();
}
sem_mutex() : c(1) { }
cuda::binary_semaphore<cuda::thread_scope_device> c;
};
static constexpr int sections = 1 << 18;
using sum_mean_dev_t = std::tuple<double, double, double>;
template<class V>
sum_mean_dev_t sum_mean_dev(V && v) {
assert(!v.empty());
auto const sum = std::accumulate(v.begin(), v.end(), 0.0);
assert(sum >= 0.0);
auto const mean = sum / v.size();
auto const sq_diff_sum = std::accumulate(v.begin(), v.end(), 0.0, [=](double left, double right) -> double {
auto const delta = right - mean;
return left + delta * delta;
});
auto const variance = sq_diff_sum / v.size();
assert(variance >= 0.0);
auto const stddev = std::sqrt(variance);
return sum_mean_dev_t(sum, mean, stddev);
}
#ifdef __CUDACC__
template<class F>
__global__ void launcher(F f, int t, int s_per_t, int* p) {
auto const tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid < t)
p[tid] = (*f)(s_per_t, tid);
}
#endif
int get_max_threads(cuda::thread_scope scope) {
#ifndef __CUDACC__
return std::thread::hardware_concurrency();
#else
cudaDeviceProp deviceProp;
check(cudaGetDeviceProperties(&deviceProp, 0));
assert(deviceProp.major >= 7);
return scope == cuda::thread_scope_block
? deviceProp.maxThreadsPerBlock
: deviceProp.multiProcessorCount * deviceProp.maxThreadsPerMultiProcessor;
#endif
}
template <class F>
sum_mean_dev_t test_body(int threads, F f, cuda::thread_scope scope) {
std::vector<int, managed_allocator<int>> progress(threads, 0);
#ifdef __CUDACC__
auto p_ = &progress[0];
# ifndef __aarch64__
check(cudaMemAdvise(p_, threads * sizeof(int), cudaMemAdviseSetPreferredLocation, 0));
check(cudaMemPrefetchAsync(p_, threads * sizeof(int), 0));
# endif
auto f_ = make_<F>(f);
cudaDeviceSynchronize();
int const max_blocks = scope == cuda::thread_scope_block ? 1 : get_max_threads(scope) / 1024;
int const blocks = (std::min)(threads, max_blocks);
int const threads_per_block = (threads / blocks) + (threads % blocks ? 1 : 0);
launcher<<<blocks, threads_per_block>>>(f_, threads, sections / threads, p_);
check(cudaDeviceSynchronize());
check(cudaGetLastError());
unmake_(f_);
#else
std::vector<std::thread> ts(threads);
for (int i = 0; i < threads; ++i)
ts[i] = std::thread([&, i]() {
progress[i] = f(sections / threads, i);
});
for (auto& t : ts)
t.join();
#endif
return sum_mean_dev(progress);
}
template <class F>
sum_mean_dev_t test_omp_body(int threads, F && f) {
#ifdef _OPENMP
std::vector<int> progress(threads, 0);
#pragma omp parallel for num_threads(threads)
for (int i = 0; i < threads; ++i)
progress[i] = f(sections / threads, i);
return sum_mean_dev(progress);
#else
assert(0); // build with -fopenmp
return sum_mean_dev_t();
#endif
}
template <class F>
void test(std::string const& name, int threads, F && f, cuda::std::atomic<bool>& keep_going, bool use_omp, bool rate_per_thread, cuda::thread_scope scope) {
std::cout << name << ": " << std::flush;
std::thread test_helper([&]() {
std::this_thread::sleep_for(std::chrono::seconds(1));
keep_going.store(false, cuda::std::memory_order_relaxed);
});
auto const t1 = std::chrono::steady_clock::now();
auto const smd = use_omp ? test_omp_body(threads, f)
: test_body(threads, f, scope);
auto const t2 = std::chrono::steady_clock::now();
test_helper.join();
auto r = std::chrono::duration_cast<std::chrono::nanoseconds>(t2 - t1).count() / std::get<0>(smd);
if(rate_per_thread)
r *= threads;
std::cout << std::setprecision(2) << std::fixed;
std::cout << r << "ns per step, fairness metric = "
<< 100 * (1.0 - std::min(1.0, std::get<2>(smd) / std::get<1>(smd))) << "%."
<< std::endl << std::flush;
}
template<class F>
void test_loop(cuda::thread_scope scope, F && f) {
std::cout << "============================" << std::endl;
static int const max = get_max_threads(scope);
static std::vector<std::pair<int, std::string>> const counts =
{ { 1, "single-threaded" },
{ 2, "2 threads" },
{ 3, "3 threads" },
{ 4, "4 threads" },
{ 5, "5 threads" },
{ 8, "8 threads" },
{ 16, "16 threads" },
{ 32, "32 threads" },
{ 64, "64 threads" },
{ 512, "512 threads" },
{ 4096, "4096 threads" },
{ max, "maximum occupancy" },
//#if !defined(__NO_SPIN) || !defined(__NO_WAIT)
// { max * 2, "200% occupancy" }
//#endif
};
std::set<int> done{0};
for(auto const& c : counts) {
if(done.find(c.first) != done.end())
continue;
if(c.first <= max)
f(c);
done.insert(c.first);
}
}
template<class M>
void test_mutex_contended(std::string const& name, bool use_omp = false) {
test_loop(cuda::thread_scope_system, [&](std::pair<int, std::string> c) {
M* m = make_<M>();
cuda::std::atomic<bool> *keep_going = make_<cuda::std::atomic<bool>>(true);
auto f = [=] _ABI (int, int) -> int {
int i = 0;
while(keep_going->load(cuda::std::memory_order_relaxed)) {
m->lock();
++i;
m->unlock();
}
return i;
};
test(name + ", " + c.second, c.first, f, *keep_going, use_omp, false, cuda::thread_scope_system);
unmake_(m);
unmake_(keep_going);
});
};
template<class M>
void test_mutex_uncontended(std::string const& name, bool use_omp = false) {
test_loop(cuda::thread_scope_system, [&](std::pair<int, std::string> c) {
std::vector<M, managed_allocator<M>> ms(c.first);
M* ms_ = &ms[0];
cuda::std::atomic<bool> *keep_going = make_<cuda::std::atomic<bool>>(true);
auto f = [=] _ABI (int, int id) -> int {
int i = 0;
while(keep_going->load(cuda::std::memory_order_relaxed)) {
ms_[id].lock();
++i;
ms_[id].unlock();
}
return i;
};
test(name + ": " + c.second, c.first, f, *keep_going, use_omp, true, cuda::thread_scope_system);
unmake_(keep_going);
});
};
template<class M>
void test_mutex(std::string const& name, bool use_omp = false) {
test_mutex_uncontended<M>(name + " uncontended", use_omp);
test_mutex_contended<M>(name + " contended", use_omp);
}
template<typename Barrier>
struct scope_of_barrier
{
static const constexpr auto scope = cuda::thread_scope_system;
};
#ifdef __CUDACC__
template<>
struct scope_of_barrier<nvcuda::experimental::awbarrier>
{
static const constexpr auto scope = cuda::thread_scope_block;
};
#endif
template<cuda::thread_scope Scope, typename F>
struct scope_of_barrier<cuda::barrier<Scope, F>>
{
static const constexpr auto scope = Scope;
};
#ifdef __CUDACC__
template<class B>
void test_barrier_shared(std::string const& name) {
constexpr auto scope = scope_of_barrier<B>::scope;
assert(scope == cuda::thread_scope_block);
(void)scope;
test_loop(cuda::thread_scope_block, [&](std::pair<int, std::string> c) {
int count = c.first;
cuda::std::atomic<bool> *keep_going = make_<cuda::std::atomic<bool>>(true);
auto f = [=] __device__ (int n, int) -> int {
__shared__ B b;
if (threadIdx.x == 0) {
init(&b, count);
}
__syncthreads();
for (int i = 0; i < n; ++i)
b.arrive_and_wait();
return n;
};
test(name + ": " + c.second, c.first, f, *keep_going, false, true, cuda::thread_scope_block);
unmake_(keep_going);
});
};
#endif
template<class B>
void test_barrier(std::string const& name, bool use_omp = false) {
constexpr auto scope = scope_of_barrier<B>::scope;
(void)scope;
#ifdef __CUDACC__
if (scope == cuda::thread_scope_block) {
test_barrier_shared<B>(name + " __shared__");
}
#endif
test_loop(scope_of_barrier<B>::scope, [&](std::pair<int, std::string> c) {
B* b = make_<B>(c.first);
cuda::std::atomic<bool> *keep_going = make_<cuda::std::atomic<bool>>(true);
auto f = [=] _ABI (int n, int) -> int {
for (int i = 0; i < n; ++i)
b->arrive_and_wait();
return n;
};
test(name + ": " + c.second, c.first, f, *keep_going, use_omp, true, scope_of_barrier<B>::scope);
unmake_(b);
unmake_(keep_going);
});
};
template<typename Latch>
struct scope_of_latch
{
static const constexpr auto scope = cuda::thread_scope_system;
};
template<cuda::thread_scope Scope>
struct scope_of_latch<cuda::latch<Scope>>
{
static const constexpr auto scope = Scope;
};
template<class L>
void test_latch(std::string const& name, bool use_omp = false) {
constexpr auto scope = scope_of_latch<L>::scope;
(void)scope;
test_loop(scope, [&](std::pair<int, std::string> c) {
managed_allocator<L> ma;
size_t const n = sections / c.first;
auto* ls = ma.allocate(n);
for(size_t i = 0; i < n; ++i)
new (ls + i) L(c.first);
cuda::std::atomic<bool> *keep_going = make_<cuda::std::atomic<bool>>(true);
auto f = [=] _ABI (int, int) -> int {
for (int i = 0; i < n; ++i)
ls[i].arrive_and_wait();
return n;
};
test(name + ": " + c.second, c.first, f, *keep_going, use_omp, true, scope);
ma.deallocate(ls, n);
unmake_(keep_going);
});
};
int main() {
int const max = get_max_threads(cuda::thread_scope_system);
std::cout << "System has " << max << " hardware threads." << std::endl;
#ifdef __CUDACC__
int const block_max = get_max_threads(cuda::thread_scope_block);
std::cout << "System has " << block_max << " hardware threads in a single block." << std::endl;
#endif
#ifndef __NO_MUTEX
test_mutex<sem_mutex>("sem_mutex");
// test_mutex<null_mutex>("Null");
test_mutex<mutex>("spinlock_mutex");
test_mutex<ticket_mutex>("ticket_mutex");
#ifndef __CUDACC__
test_mutex<std::mutex>("std::mutex");
#endif
#endif
#ifndef __NO_BARRIER
#ifdef __CUDACC__
test_latch<cuda::latch<cuda::thread_scope_block>>("cuda::latch<block>");
test_latch<cuda::latch<cuda::thread_scope_device>>("cuda::latch<device>");
#endif
test_latch<cuda::latch<cuda::thread_scope_system>>("cuda::latch<system>");
#ifdef __CUDACC__
test_barrier<cuda::barrier<cuda::thread_scope_block>>("cuda::barrier<block>");
test_barrier<cuda::barrier<cuda::thread_scope_device>>("cuda::barrier<device>");
#endif
test_barrier<cuda::barrier<cuda::thread_scope_system>>("cuda::barrier<system>");
#ifdef __CUDACC__
test_barrier_shared<nvcuda::experimental::awbarrier>("nvcuda::exp::awbarrier __shared__");
#endif
#endif
#ifdef _OPENMP
struct omp_barrier {
omp_barrier(ptrdiff_t) { }
void arrive_and_wait() {
#pragma omp barrier
}
};
test_barrier<omp_barrier>("omp_barrier", true);
#endif
#if !defined(__CUDACC__) && defined(_POSIX_THREADS) && !defined(__APPLE__)
struct posix_barrier {
posix_barrier(ptrdiff_t count) {
pthread_barrier_init(&pb, nullptr, count);
}
~posix_barrier() {
pthread_barrier_destroy(&pb);
}
void arrive_and_wait() {
pthread_barrier_wait(&pb);
}
pthread_barrier_t pb;
};
test_barrier<posix_barrier>("pthread_barrier");
#endif
return 0;
}
|