File: concurrent_hash_table.cu

package info (click to toggle)
libcudacxx 1.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 66,464 kB
  • sloc: cpp: 517,767; ansic: 9,474; python: 6,108; sh: 2,225; asm: 2,154; makefile: 7
file content (260 lines) | stat: -rw-r--r-- 8,502 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Copyright (c) 2018-2020 NVIDIA Corporation
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Released under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.

#include <cuda/std/cstdint>
#include <cuda/std/atomic>

// TODO: It would be great if this example could NOT depend on Thrust.
#include <thrust/pair.h>
#include <thrust/functional.h>
#include <thrust/allocate_unique.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/iterator/counting_iterator.h>

#include <cassert>
#include <random>

#include <iostream>
#include <cstdio>
#include <cassert>

// TODO: This should be upstreamed and then removed.
namespace thrust {

using universal_raw_memory_resource =
  thrust::system::cuda::detail::cuda_memory_resource<
    thrust::system::cuda::detail::cudaMallocManaged, cudaFree, void*
  >;

template <typename T>
using universal_allocator =
  thrust::mr::stateless_resource_allocator<T, universal_raw_memory_resource>;

template <typename T>
using universal_vector = thrust::device_vector<T, universal_allocator<T>>;

} // thrust

template <
  typename Key, typename Value,
  typename Hash     = thrust::identity<Key>,
  typename KeyEqual = thrust::equal_to<Key>,
  typename MemoryResource = thrust::universal_raw_memory_resource
>
struct concurrent_hash_table {
  // Elements transition from state_empty -> state_reserved ->
  // state_filled; no other transitions are allowed.
  enum state_type {
    state_empty, state_reserved, state_filled
  };

  using key_type       = Key;
  using mapped_type    = Value;
  using size_type      = cuda::std::uint64_t;

  using key_allocator    = thrust::mr::stateless_resource_allocator<
    key_type, MemoryResource
  >;
  using mapped_allocator = thrust::mr::stateless_resource_allocator<
    mapped_type, MemoryResource
  >;
  using state_allocator  = thrust::mr::stateless_resource_allocator<
    cuda::std::atomic<state_type>, MemoryResource
  >;

  using key_iterator   = typename key_allocator::pointer;
  using value_iterator = typename mapped_allocator::pointer;
  using state_iterator = typename state_allocator::pointer;

  // This whole thing is silly and should be a lambda, or at least a private
  // nested class, but alas, NVCC doesn't like that.
  struct element_destroyer {
  private:
    size_type      capacity_;
    key_iterator   keys_;
    value_iterator values_;
    state_iterator states_;

  public:
    __host__ __device__
    element_destroyer(size_type capacity,
                      key_iterator keys,
                      value_iterator values,
                      state_iterator states)
      : capacity_(capacity), keys_(keys), values_(values), states_(states)
    {}

    element_destroyer(element_destroyer const&) = default;

    __host__ __device__
    void operator()(size_type i) {
      if (state_empty != states_[i]) {
        (keys_ + i)->~key_type();
        (values_ + i)->~mapped_type();
      }
    }
  };

private:
  size_type      capacity_;
  key_iterator   keys_;
  value_iterator values_;
  state_iterator states_;
  Hash           hash_;
  KeyEqual       key_equal_;

public:
  __host__
  concurrent_hash_table(size_type capacity,
                        Hash hash = Hash(),
                        KeyEqual key_equal = KeyEqual())
    : capacity_(capacity)
    , keys_(key_allocator{}.allocate(capacity_))
    , values_(mapped_allocator{}.allocate(capacity_))
    , states_(state_allocator{}.allocate(capacity_))
    , hash_(std::move(hash))
    , key_equal_(std::move(key_equal))
  {
    thrust::uninitialized_fill(thrust::device,
                               states_, states_ + capacity_,
                               state_empty);
  }

  __host__
  ~concurrent_hash_table()
  {
    thrust::for_each(thrust::device,
                     thrust::counting_iterator<size_type>(0),
                     thrust::counting_iterator<size_type>(capacity_),
                     element_destroyer(capacity_, keys_, values_, states_));
  }

  // TODO: Change return type to an enum with three possible values, succeeded,
  // exists, and full.
  template <typename UKey, typename... Args>
  __host__ __device__
  thrust::pair<value_iterator, bool>
  try_emplace(UKey&& key, Args&&... args) {
    auto index{hash_(key) % capacity_};
    // Linearly probe the storage space up to `capacity_` times; if we haven't
    // succeeded by then, the container is full.
    for (size_type i = 0; i < capacity_; ++i) {
      state_type old = states_[index].load(cuda::std::memory_order_acquire);
      while (old == state_empty) {
        // As long as the state of this element is empty, attempt to set it to
        // reserved.
        if (states_[index].compare_exchange_weak(
              old, state_reserved, cuda::std::memory_order_acq_rel))
        {
          // We succeeded; the element is now "locked" as reserved.
          new (keys_ + index) key_type(std::forward<UKey>(key));
          new (values_ + index) mapped_type(std::forward<Args>(args)...);
          states_[index].store(state_filled, cuda::std::memory_order_release);
          return thrust::make_pair(values_ + index, true);
        }
      }
      // If we are here, the element we are probing is not empty and we didn't
      // fill it, so we need to wait for it to be filled.
      while (state_filled != states_[index].load(cuda::std::memory_order_acquire))
        ;
      // Now we know that the element we are probing has been filled by someone
      // else, so we check if our key is equal to it.
      if (key_equal_(keys_[index], key))
        // It is, so the element already exists.
        return thrust::make_pair(values_ + index, false);
      // Otherwise, the element isn't a match, so move on to the next element.
      index = (index + 1) % capacity_;
    }
    // If we are here, the container is full.
    return thrust::make_pair(value_iterator{}, false);
  }

  __host__ __device__
  mapped_type& operator[](key_type const& key) {
    return (*try_emplace(key).first);
  }
  __host__ __device__
  mapped_type& operator[](key_type&& key) {
    return (*try_emplace(std::move(key)).first);
  }
};

template <typename T>
struct identity_modulo {
private:
  T const modulo_;

public:
  __host__ __device__
  identity_modulo(T modulo) : modulo_(std::move(modulo)) {}

  identity_modulo(identity_modulo const&) = default;

  __host__ __device__
  T operator()(T i) { return i % modulo_; }
};

int main() {
  {
    using table = concurrent_hash_table<int, cuda::std::atomic<int>>;

    auto freq = thrust::allocate_unique<table>(thrust::universal_allocator<table>{}, 8);

    thrust::universal_vector<int> input = [] {
      thrust::universal_vector<int> v(2048);
      std::mt19937 gen(1337);
      std::uniform_int_distribution<long> dis(0, 7);
      thrust::generate(v.begin(), v.end(), [&] { return dis(gen); });
      return v;
    }();

    thrust::for_each(thrust::device, input.begin(), input.end(),
      [freq = freq.get()] __device__ (int i) {
        (*freq)[i].fetch_add(1, cuda::std::memory_order_relaxed);
      }
    );

    thrust::host_vector<int> gold(8);
    thrust::for_each(input.begin(), input.end(), [&] (int i) { ++gold[i]; });

    for (cuda::std::uint64_t i = 0; i < 8; ++i)
      std::cout << "i: " << i
                << " gold: " << gold[i]
                << " observed: " << (*freq)[i] << "\n";

    assert(cudaSuccess == cudaDeviceSynchronize());
  }
  {
    using table = concurrent_hash_table<int, cuda::std::atomic<int>, identity_modulo<int>>;

    auto freq = thrust::allocate_unique<table>(thrust::universal_allocator<table>{}, 8, identity_modulo<int>(4));

    thrust::universal_vector<int> input = [] {
      thrust::universal_vector<int> v(2048);
      std::mt19937 gen(1337);
      std::uniform_int_distribution<long> dis(0, 7);
      thrust::generate(v.begin(), v.end(), [&] { return dis(gen); });
      return v;
    }();

    thrust::for_each(thrust::device, input.begin(), input.end(),
      [freq = freq.get()] __device__ (int i) {
        (*freq)[i].fetch_add(1, cuda::std::memory_order_relaxed);
      }
    );

    thrust::host_vector<int> gold(8);
    thrust::for_each(input.begin(), input.end(), [&] (int i) { ++gold[i]; });

    for (cuda::std::uint64_t i = 0; i < 8; ++i)
      std::cout << "i: " << i
                << " gold: " << gold[i]
                << " observed: " << (*freq)[i] << "\n";

    assert(cudaSuccess == cudaDeviceSynchronize());
  }
}