1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
// Copyright (c) 2018-2020 NVIDIA Corporation
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Released under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
#include <cuda/std/cstdint>
#include <cuda/std/atomic>
// TODO: It would be great if this example could NOT depend on Thrust.
#include <thrust/pair.h>
#include <thrust/functional.h>
#include <thrust/allocate_unique.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/iterator/counting_iterator.h>
#include <cassert>
#include <random>
#include <iostream>
#include <cstdio>
#include <cassert>
// TODO: This should be upstreamed and then removed.
namespace thrust {
using universal_raw_memory_resource =
thrust::system::cuda::detail::cuda_memory_resource<
thrust::system::cuda::detail::cudaMallocManaged, cudaFree, void*
>;
template <typename T>
using universal_allocator =
thrust::mr::stateless_resource_allocator<T, universal_raw_memory_resource>;
template <typename T>
using universal_vector = thrust::device_vector<T, universal_allocator<T>>;
} // thrust
template <
typename Key, typename Value,
typename Hash = thrust::identity<Key>,
typename KeyEqual = thrust::equal_to<Key>,
typename MemoryResource = thrust::universal_raw_memory_resource
>
struct concurrent_hash_table {
// Elements transition from state_empty -> state_reserved ->
// state_filled; no other transitions are allowed.
enum state_type {
state_empty, state_reserved, state_filled
};
using key_type = Key;
using mapped_type = Value;
using size_type = cuda::std::uint64_t;
using key_allocator = thrust::mr::stateless_resource_allocator<
key_type, MemoryResource
>;
using mapped_allocator = thrust::mr::stateless_resource_allocator<
mapped_type, MemoryResource
>;
using state_allocator = thrust::mr::stateless_resource_allocator<
cuda::std::atomic<state_type>, MemoryResource
>;
using key_iterator = typename key_allocator::pointer;
using value_iterator = typename mapped_allocator::pointer;
using state_iterator = typename state_allocator::pointer;
// This whole thing is silly and should be a lambda, or at least a private
// nested class, but alas, NVCC doesn't like that.
struct element_destroyer {
private:
size_type capacity_;
key_iterator keys_;
value_iterator values_;
state_iterator states_;
public:
__host__ __device__
element_destroyer(size_type capacity,
key_iterator keys,
value_iterator values,
state_iterator states)
: capacity_(capacity), keys_(keys), values_(values), states_(states)
{}
element_destroyer(element_destroyer const&) = default;
__host__ __device__
void operator()(size_type i) {
if (state_empty != states_[i]) {
(keys_ + i)->~key_type();
(values_ + i)->~mapped_type();
}
}
};
private:
size_type capacity_;
key_iterator keys_;
value_iterator values_;
state_iterator states_;
Hash hash_;
KeyEqual key_equal_;
public:
__host__
concurrent_hash_table(size_type capacity,
Hash hash = Hash(),
KeyEqual key_equal = KeyEqual())
: capacity_(capacity)
, keys_(key_allocator{}.allocate(capacity_))
, values_(mapped_allocator{}.allocate(capacity_))
, states_(state_allocator{}.allocate(capacity_))
, hash_(std::move(hash))
, key_equal_(std::move(key_equal))
{
thrust::uninitialized_fill(thrust::device,
states_, states_ + capacity_,
state_empty);
}
__host__
~concurrent_hash_table()
{
thrust::for_each(thrust::device,
thrust::counting_iterator<size_type>(0),
thrust::counting_iterator<size_type>(capacity_),
element_destroyer(capacity_, keys_, values_, states_));
}
// TODO: Change return type to an enum with three possible values, succeeded,
// exists, and full.
template <typename UKey, typename... Args>
__host__ __device__
thrust::pair<value_iterator, bool>
try_emplace(UKey&& key, Args&&... args) {
auto index{hash_(key) % capacity_};
// Linearly probe the storage space up to `capacity_` times; if we haven't
// succeeded by then, the container is full.
for (size_type i = 0; i < capacity_; ++i) {
state_type old = states_[index].load(cuda::std::memory_order_acquire);
while (old == state_empty) {
// As long as the state of this element is empty, attempt to set it to
// reserved.
if (states_[index].compare_exchange_weak(
old, state_reserved, cuda::std::memory_order_acq_rel))
{
// We succeeded; the element is now "locked" as reserved.
new (keys_ + index) key_type(std::forward<UKey>(key));
new (values_ + index) mapped_type(std::forward<Args>(args)...);
states_[index].store(state_filled, cuda::std::memory_order_release);
return thrust::make_pair(values_ + index, true);
}
}
// If we are here, the element we are probing is not empty and we didn't
// fill it, so we need to wait for it to be filled.
while (state_filled != states_[index].load(cuda::std::memory_order_acquire))
;
// Now we know that the element we are probing has been filled by someone
// else, so we check if our key is equal to it.
if (key_equal_(keys_[index], key))
// It is, so the element already exists.
return thrust::make_pair(values_ + index, false);
// Otherwise, the element isn't a match, so move on to the next element.
index = (index + 1) % capacity_;
}
// If we are here, the container is full.
return thrust::make_pair(value_iterator{}, false);
}
__host__ __device__
mapped_type& operator[](key_type const& key) {
return (*try_emplace(key).first);
}
__host__ __device__
mapped_type& operator[](key_type&& key) {
return (*try_emplace(std::move(key)).first);
}
};
template <typename T>
struct identity_modulo {
private:
T const modulo_;
public:
__host__ __device__
identity_modulo(T modulo) : modulo_(std::move(modulo)) {}
identity_modulo(identity_modulo const&) = default;
__host__ __device__
T operator()(T i) { return i % modulo_; }
};
int main() {
{
using table = concurrent_hash_table<int, cuda::std::atomic<int>>;
auto freq = thrust::allocate_unique<table>(thrust::universal_allocator<table>{}, 8);
thrust::universal_vector<int> input = [] {
thrust::universal_vector<int> v(2048);
std::mt19937 gen(1337);
std::uniform_int_distribution<long> dis(0, 7);
thrust::generate(v.begin(), v.end(), [&] { return dis(gen); });
return v;
}();
thrust::for_each(thrust::device, input.begin(), input.end(),
[freq = freq.get()] __device__ (int i) {
(*freq)[i].fetch_add(1, cuda::std::memory_order_relaxed);
}
);
thrust::host_vector<int> gold(8);
thrust::for_each(input.begin(), input.end(), [&] (int i) { ++gold[i]; });
for (cuda::std::uint64_t i = 0; i < 8; ++i)
std::cout << "i: " << i
<< " gold: " << gold[i]
<< " observed: " << (*freq)[i] << "\n";
assert(cudaSuccess == cudaDeviceSynchronize());
}
{
using table = concurrent_hash_table<int, cuda::std::atomic<int>, identity_modulo<int>>;
auto freq = thrust::allocate_unique<table>(thrust::universal_allocator<table>{}, 8, identity_modulo<int>(4));
thrust::universal_vector<int> input = [] {
thrust::universal_vector<int> v(2048);
std::mt19937 gen(1337);
std::uniform_int_distribution<long> dis(0, 7);
thrust::generate(v.begin(), v.end(), [&] { return dis(gen); });
return v;
}();
thrust::for_each(thrust::device, input.begin(), input.end(),
[freq = freq.get()] __device__ (int i) {
(*freq)[i].fetch_add(1, cuda::std::memory_order_relaxed);
}
);
thrust::host_vector<int> gold(8);
thrust::for_each(input.begin(), input.end(), [&] (int i) { ++gold[i]; });
for (cuda::std::uint64_t i = 0; i < 8; ++i)
std::cout << "i: " << i
<< " gold: " << gold[i]
<< " observed: " << (*freq)[i] << "\n";
assert(cudaSuccess == cudaDeviceSynchronize());
}
}
|