1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
|
// -*- mode: c++; c-basic-offset:4 -*-
// This file is part of libdap, A C++ implementation of the OPeNDAP Data
// Access Protocol.
// Copyright (c) 2002,2003 OPeNDAP, Inc.
// Author: James Gallagher <jgallagher@opendap.org>
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
// You can contact OPeNDAP, Inc. at PO Box 112, Saunderstown, RI. 02874-0112.
// (c) COPYRIGHT URI/MIT 1994-1999
// Please read the full copyright statement in the file COPYRIGHT_URI.
//
// Authors:
// jhrg,jimg James Gallagher <jgallagher@gso.uri.edu>
// Implementation for BaseType.
//
// jhrg 9/6/94
#include "config.h"
#include <cstdio> // for stdin and stdout
#include <sstream>
#include <string>
//#define DODS_DEBUG
#include "BaseType.h"
#include "Byte.h"
#include "Int16.h"
#include "UInt16.h"
#include "Int32.h"
#include "UInt32.h"
#include "Float32.h"
#include "Float64.h"
#include "Str.h"
#include "Url.h"
#include "Array.h"
#include "Structure.h"
#include "Sequence.h"
#include "Grid.h"
#include "D4Attributes.h"
#include "DMR.h"
#include "XMLWriter.h"
#include "D4BaseTypeFactory.h"
#include "InternalErr.h"
#include "util.h"
#include "escaping.h"
#include "DapIndent.h"
#include "debug.h"
using namespace std;
namespace libdap {
// Protected copy mfunc
/** Perform a deep copy. Copies the values of \e bt into \c *this. Pointers
are dereferenced and their values are copied into a newly allocated
instance.
@brief Perform a deep copy.
@param bt The source object. */
void
BaseType::m_duplicate(const BaseType &bt)
{
DBG(cerr << "In BaseType::m_duplicate for " << bt.name() << endl);
d_name = bt.d_name;
d_type = bt.d_type;
d_dataset = bt.d_dataset;
d_is_read = bt.d_is_read; // added, reza
d_is_send = bt.d_is_send; // added, reza
d_in_selection = bt.d_in_selection;
d_is_synthesized = bt.d_is_synthesized; // 5/11/2001 jhrg
d_parent = bt.d_parent; // copy pointers 6/4/2001 jhrg
d_attr = bt.d_attr; // Deep copy.
if (bt.d_attributes)
d_attributes = new D4Attributes(*bt.d_attributes); // deep copy
else
d_attributes = 0; // init to null if not used.
d_is_dap4 = bt.d_is_dap4;
DBG(cerr << "Exiting BaseType::m_duplicate for " << bt.name() << endl);
}
// Public mfuncs
/** The BaseType constructor needs a name and a type.
The BaseType class exists to provide data to
type classes that inherit from it. The constructors of those
classes call the BaseType constructor; it is never called
directly.
@brief The BaseType constructor.
@param n A string containing the name of the new variable.
@param t The type of the variable.
@param is_dap4 True if this is a DAP4 variable. Default is False
@see Type */
BaseType::BaseType(const string &n, const Type &t, bool is_dap4)
: d_name(n), d_type(t), d_dataset(""), d_is_read(false), d_is_send(false),
d_parent(0), d_attributes(0), d_is_dap4(is_dap4),
d_in_selection(false), d_is_synthesized(false)
{}
/** The BaseType constructor needs a name, a dataset, and a type.
The BaseType class exists to provide data to
type classes that inherit from it. The constructors of those
classes call the BaseType constructor; it is never called
directly.
@brief The BaseType constructor.
@param n A string containing the name of the new variable.
@param d A string containing the dataset name.
@param t The type of the variable. Default is False
@param is_dap4 True if this is a DAP4 variable.
@see Type */
BaseType::BaseType(const string &n, const string &d, const Type &t, bool is_dap4)
: d_name(n), d_type(t), d_dataset(d), d_is_read(false), d_is_send(false),
d_parent(0), d_attributes(0), d_is_dap4(is_dap4),
d_in_selection(false), d_is_synthesized(false)
{}
/** @brief The BaseType copy constructor. */
BaseType::BaseType(const BaseType ©_from) : DapObj()
{
DBG(cerr << "In BaseTpe::copy_ctor for " << copy_from.name() << endl);
m_duplicate(copy_from);
}
BaseType::~BaseType()
{
DBG2(cerr << "Entering ~BaseType (" << this << ")" << endl);
if (d_attributes)
delete d_attributes;
DBG2(cerr << "Exiting ~BaseType" << endl);
}
BaseType &
BaseType::operator=(const BaseType &rhs)
{
if (this == &rhs)
return *this;
m_duplicate(rhs);
return *this;
}
/** Write out the object's internal fields in a string. To be used for
debugging when regular inspection w/ddd or gdb isn't enough.
@return A string which shows the object's internal stuff. */
string BaseType::toString()
{
ostringstream oss;
oss << "BaseType (" << this << "):" << endl
<< " _name: " << name() << endl
<< " _type: " << type_name() << endl
<< " _dataset: " << d_dataset << endl
<< " _read_p: " << d_is_read << endl
<< " _send_p: " << d_is_send << endl
<< " _synthesized_p: " << d_is_synthesized << endl
<< " d_parent: " << d_parent << endl
<< " d_attr: " << hex << &d_attr << dec << endl;
return oss.str();
}
/** @brief DAP2 to DAP4 transform
*
* For the current BaseType, return a DAP4 'copy' of the variable.
*
* @note For most DAP2 types, in this implementation of DAP4 the corresponding
* DAP4 type is the same. The different types are Sequences (which are D4Sequences
* in the DAP4 implementation), Grids (which are coverages) and Arrays (which use
* shared dimensions).
*
* @param root The root group that should hold this new variable. Add Group-level
* stuff here (e.g., D4Dimensions).
* @param container Add the new variable to this container.
*
* @return A pointer to the transformed variable
*/
void
BaseType::transform_to_dap4(D4Group */*root*/, Constructor *container)
{
BaseType *dest = ptr_duplicate();
// If it's already a DAP4 object then we can just return it!
if(!is_dap4()){
dest->attributes()->transform_to_dap4(get_attr_table());
dest->set_is_dap4(true);
}
container->add_var_nocopy(dest);
}
/** @brief DAP4 to DAP2 transform
*
* For the current BaseType, return a DAP2 'copy' of the variable.
*
* @note For most DAP4 types, in this implementation of DAP2 the corresponding
* DAP4 type is the same.
* These types have a different representations in DAP2 and DAP4:
* Sequences (which are D4Sequences in the DAP4 implementation),
* - Grids (which are semantically subsumed by coverages in DAP4)
* - Arrays (which use shared dimensions in DAP4)
*
* Additionally DAP4 adds the following types:
* - UInt8, Int8, and Char which map to Byte in DAP2.
* - Int64, Unit64 which have no natural representation in DAP2.
* - Opaque Possible Byte stuff[] plus metadata?
* - Enum's can be represented as Int32.
*
* - Groups, with the exception of the root group "disappear" into the
* names of their member variables. Specifically the Group name is add as a prefix
* followed by a "/" separator to the names of all of the Group's member groups
* variables.
*
* @param The AttrTable pointer parent_attr_table is used by Groups, which disappear
* from the DAP2 representation. Their children are returned in the the BAseType vector
* their attributes are added to parent_attr_table;
* @return A pointer to a vector of BaseType pointers (right?). In most cases this vector
* will contain a single pointer but DAP4 types 'disappear' such as Group will return all
* of their member variables in the vector. DAP4 types with no representation in DAP2
* (ex: UInt64) the will return a NULL pointer and so this must be tested!
*/
std::vector<BaseType *> *
BaseType::transform_to_dap2(AttrTable *)
{
BaseType *dest = this->ptr_duplicate();
// convert the d4 attributes to a dap2 attribute table.
// HK-403. jhrg 6/17/19
#if 0
AttrTable *attrs = this->attributes()->get_AttrTable(name());
dest->set_attr_table(*attrs);
#else
if (dest->get_attr_table().get_size() == 0) {
attributes()->transform_attrs_to_dap2(&dest->get_attr_table());
dest->get_attr_table().set_name(name());
}
#endif
dest->set_is_dap4(false);
vector<BaseType *> *result = new vector<BaseType *>();
result->push_back(dest);
return result;
}
/** @brief dumps information about this object
*
* Displays the pointer value of this instance and then displays information
* about this base type.
*
* @param strm C++ i/o stream to dump the information to
* @return void
*/
void
BaseType::dump(ostream &strm) const
{
strm << DapIndent::LMarg << "BaseType::dump - ("
<< (void *)this << ")" << endl ;
DapIndent::Indent() ;
strm << DapIndent::LMarg << "name: " << name() << endl ;
strm << DapIndent::LMarg << "type: " << type_name() << endl ;
strm << DapIndent::LMarg << "dataset: " << d_dataset << endl ;
strm << DapIndent::LMarg << "read_p: " << d_is_read << endl ;
strm << DapIndent::LMarg << "send_p: " << d_is_send << endl ;
strm << DapIndent::LMarg << "synthesized_p: " << d_is_synthesized << endl ;
strm << DapIndent::LMarg << "parent: " << (void *)d_parent << endl ;
strm << DapIndent::LMarg << "attributes: " << endl ;
DapIndent::Indent() ;
if (d_attributes)
d_attributes->dump(strm);
else
d_attr.dump(strm) ;
DapIndent::UnIndent() ;
DapIndent::UnIndent() ;
}
/** @brief Returns the name of the class instance.
*/
string
BaseType::name() const
{
return d_name;
}
/**
* Return the FQN for this variable. This will include the D4 Group
* component of the name.
*
* @return The FQN in a string
*/
string
BaseType::FQN() const
{
if (get_parent() == 0)
return name();
else if (get_parent()->type() == dods_group_c)
return get_parent()->FQN() + name();
else
return get_parent()->FQN() + "." + name();
}
/** @brief Sets the name of the class instance. */
void
BaseType::set_name(const string &n)
{
string name = n;
d_name = www2id(name); // www2id writes into its param.
}
/** @brief Returns the name of the dataset used to create this instance
A dataset from which the data is to be read. The meaning of this string
will vary among different types of data sources. It \e may be the name
of a data file or an identifier used to read data from a relational
database.
*/
string
BaseType::dataset() const
{
return d_dataset;
}
/** @brief Returns the type of the class instance. */
Type
BaseType::type() const
{
return d_type;
}
/** @brief Sets the type of the class instance. */
void
BaseType::set_type(const Type &t)
{
d_type = t;
}
/** @brief Returns the type of the class instance as a string. */
string
BaseType::type_name() const
{
if (is_dap4())
return libdap::D4type_name(d_type);
else
return libdap::D2type_name(d_type);
}
/** @brief Returns true if the instance is a numeric, string or URL
type variable.
@return True if the instance is a scalar numeric, String or URL variable,
False otherwise. Arrays (even of simple types) return False.
@see is_vector_type() */
bool
BaseType::is_simple_type() const
{
return libdap::is_simple_type(type());
}
/** @brief Returns true if the instance is a vector (i.e., array) type
variable.
@return True if the instance is an Array, False otherwise. */
bool
BaseType::is_vector_type() const
{
return libdap::is_vector_type(type());
}
/** @brief Returns true if the instance is a constructor (i.e., Structure,
Sequence or Grid) type variable.
@return True if the instance is a Structure, Sequence or Grid, False
otherwise. */
bool
BaseType::is_constructor_type() const
{
return libdap::is_constructor_type(type());
}
/** Return a count of the total number of variables in this variable.
This is used to count the number of variables held by a constructor
variable - for simple type and vector variables it always
returns 1.
For compound data types, there are two ways to count members.
You can count the members, or you can count the simple members
and add that to the count of the compound members. For
example, if a Structure contains an Int32 and another
Structure that itself contains two Int32 members, the element
count of the top-level structure could be two (one Int32 and
one Structure) or three (one Int32 by itself and two Int32's
in the subsidiary Structure). Use the <i>leaves</i> parameter
to control which kind of counting you desire.
@brief Count the members of constructor types.
@return Returns 1 for simple
types. For compound members, the count depends on the
<i>leaves</i> argument.
@param leaves This parameter is only relevant if the object
contains other compound data types. If FALSE, the function
counts only the data variables mentioned in the object's
declaration. If TRUE, it counts the simple members, and adds
that to the sum of the counts for the compound members.
This parameter has no effect for simple type variables. */
int
BaseType::element_count(bool)
{
return 1;
}
/** Returns true if the variable is a synthesized variable. A synthesized
variable is one that is added to the dataset by the server (usually
with a `projection function'. */
bool
BaseType::synthesized_p()
{
return d_is_synthesized;
}
/** Set the synthesized flag. Before setting this flag be sure to set the
<tt>read_p()</tt> state. Once this flag is set you cannot
alter the state of the <tt>read_p</tt> flag!
@see synthesized_p() */
void
BaseType::set_synthesized_p(bool state)
{
d_is_synthesized = state;
}
// Return the state of d_is_read (true if the value of the variable has been
// read (and is in memory) false otherwise).
/** Returns true if the value(s) for this variable have been read from the
data source, otherwise returns false. This method is used to determine
when values need to be read using the read() method. When read_p()
returns true, this library assumes that buf2val() (and other methods
such as get_vec()) can be used to access the value(s) of a variable.
@brief Has this variable been read?
@return True if the variable's value(s) have been read, false otherwise. */
bool
BaseType::read_p()
{
return d_is_read;
}
/** Sets the value of the <tt>read_p</tt> property. This indicates that the
value(s) of this variable has/have been read. An implementation of the
read() method should use this to set the \c read_p property to true.
@note If the is_synthesized property is true, this method will _not_
alter the is_read property. If you need that behavior, specialize the
method in your subclasses if the various types.
@note For most of the types the default implementation of this method is
fine. However, if you're building a server which must handle data
represented using nested sequences, then you may need to provide a
specialization of Sequence::set_read_p(). By default Sequence::set_read_p()
recursively sets the \e read_p property for all child variables to
\e state. For servers where one Sequence reads an outer set of values
and another reads an inner set, this is cumbersome. In such a case, it is
easier to specialize Sequence::set_read_p() so that it does \e not
recursively set the \e read_p property for the inner Sequence. Be sure
to see the documentation for the read() method!
@todo Look at making synthesized variables easier to implement and at
making them more integrated into the overall CE evaluation process.
Maybe the code that computes the synthesized var's value should be in the
that variable's read() method? This might provide a way to get rid of the
awkward 'projection functions' by replacing them with real children of
BaseType. It would also provide a way to clean up the way the
\e synthesized_p prop intrudes on the \e read_p prop.
@see BaseType::read()
@brief Sets the value of the \e read_p property.
@param state Set the \e read_p property to this state. */
void
BaseType::set_read_p(bool state)
{
// The this comment is/was wrong!
// The is_synthesized property was not being used and the more I thought
// about how this was coded, the more this code below seemed like a bad idea.
// Once the property was set, the read_p property could not be changed.
// That seems a little silly. Also, I think I need to use this is_synthesized
// property for some of the server function code I'm working on for Raytheon,
// and I'd like to be able to control the read_p property! jhrg 3/9/15
// What's true: The is_synthesized property is used by
// 'projection functions' in the freeform handler. It might be better
// to modify the FFtypes to support this behavior, but for now I'm returning
// the library to its old behavior. That this change (setting is_read
// of the value of is_syn...) broke the FF handler was not detected
// because the FF tests were not being run due to an error in the FF
// bes-testsuite Makefile.am). jhrg 9/9/15
#if 1
if (!d_is_synthesized) {
d_is_read = state;
}
#else
d_is_read = state;
#endif
}
/** Returns the state of the \c send_p property. If true, this variable
should be sent to the client, if false, it should not. If no constraint
expression (CE) has been evaluated, this property is true for all
variables in a data source (i.e., for all the variables listed in a DDS).
If a CE has been evaluated, this property is true only for those
variables listed in the <em>projection part</em> of the CE.
@brief Should this variable be sent?
@return True if the variable should be sent to the client, false
otherwise. */
bool
BaseType::send_p()
{
return d_is_send;
}
/** Sets the value of the <tt>send_p</tt> flag. This
function is meant to be called from within the constraint evaluator of
other code which determines that this variable should be returned to the
client. Data are ready to be sent when <i>both</i> the <tt>d_is_send</tt>
and <tt>d_is_read</tt> flags are set to TRUE.
@param state The logical state to set the <tt>send_p</tt> flag.
*/
void
BaseType::set_send_p(bool state)
{
DBG2(cerr << "Calling BaseType::set_send_p() for: " << this->name()
<< endl);
d_is_send = state;
}
/** Get this variable's AttrTable. It's generally a bad idea to return a
reference to a contained object, but in this case it seems that building
an interface inside BaseType is overkill.
Use the AttrTable methods to manipulate the table. */
AttrTable &
BaseType::get_attr_table()
{
return d_attr;
}
/** Set this variable's attribute table.
@param at Source of the attributes. */
void
BaseType::set_attr_table(const AttrTable &at)
{
d_attr = at;
}
/** DAP4 Attribute methods
* @{
*/
D4Attributes *
BaseType::attributes()
{
if (!d_attributes) d_attributes = new D4Attributes();
return d_attributes;
}
void
BaseType::set_attributes(D4Attributes *attrs)
{
d_attributes = new D4Attributes(*attrs);
}
void
BaseType::set_attributes_nocopy(D4Attributes *attrs)
{
d_attributes = attrs;
}
///@}
/**
* Transfer attributes from a DAS object into this variable. Because of the
* rough history of the DAS object and the way that various server code built
* the DAS, this is necessarily a heuristic process. The intent is that this
* method will be overridden by handlers that need to look for certain patterns
* in the DAS (e.g., hdf4's odd variable_dim_n; where n = 0, 1, 2, ...)
* attribute containers.
*
* There should be a one-to-one
* mapping between variables and attribute containers. However, in some cases
* one variable has attributes spread across several top level containers and
* in some cases one container is used by several variables
*
* @note This method is technically \e unnecessary because a server (or
* client) can easily add attributes directly using the DDS::get_attr_table
* or BaseType::get_attr_table methods and then poke values in using any
* of the methods AttrTable provides. This method exists to ease the
* transition to DDS objects which contain attribute information for the
* existing servers (Since they all make DAS objects separately from the
* DDS). They could be modified to use the same AttrTable methods but
* operate on the AttrTable instances in a DDS/BaseType instead of those in
* a DAS.
*
* @param at_container Transfer attributes from this container.
* @return void
*/
void BaseType::transfer_attributes(AttrTable *at_container) {
DBG(cerr << __func__ << "() - BEGIN name:'" << name() << "'" << endl);
AttrTable *at = at_container->get_attr_table(name());
DBG(cerr << __func__ << "() - at: "<< (void *) at << endl);
if (at) {
at->set_is_global_attribute(false);
DBG(cerr << __func__ << "() - Processing AttrTable: " << at->get_name() << endl);
AttrTable::Attr_iter at_p = at->attr_begin();
while (at_p != at->attr_end()) {
DBG(cerr << __func__ << "() - Attribute '" << at->get_name(at_p) << "' is type: " << at->get_type(at_p) << endl);
if (at->get_attr_type(at_p) == Attr_container){
// An attribute container may actually represent a child member variable. When
// that's the case we don't want to add the container to the parent type, but
// rather let any child of BaseType deal with those containers in the child's
// overridden transfer_attributes() method.
// We capitalize on the magic of the BaseType API and utilize the var() method
// to check for a child variable of the same name and, if one exists, we'll skip
// this AttrTable and let a child constructor class like Grid or Constructor
// deal with it.
BaseType *bt = var(at->get_name(at_p),true);
if(bt==0){
DBG(cerr << __func__ << "() - Adding container '" << at->get_name(at_p) << endl);
get_attr_table().append_container(new AttrTable(*at->get_attr_table(at_p)), at->get_name(at_p));
}
else {
DBG(cerr << __func__ << "() - Found child var: '"<< bt->type_name()<< " " << bt->name() << " (address:" << (void *) bt << ")" << endl);
DBG(cerr << __func__ << "() - Skipping container '" << at->get_name(at_p) << endl);
}
}
else {
DBG(cerr << __func__ << "() - Adding Attribute '" << at->get_name(at_p) << endl);
get_attr_table().append_attr(at->get_name(at_p), at->get_type(at_p), at->get_attr_vector(at_p));
}
at_p++;
}
}
else {
DBG(cerr << __func__ << "() - Unable to locate AttrTable '" << name() << "' SKIPPING" << endl);
}
}
/** Does this variable appear in either the selection part or as a function
argument in the current constrain expression. If this property is set
(true) then implementations of the read() method should read this
variable.
@note This method does not check, nor does it know about the semantics of,
string arguments passed to functions. Those functions might include
variable names in strings; they are responsible for reading those variables.
See the grid (func_grid_select()) for an example.
@see BaseType::read()
@brief Is this variable part of the current selection? */
bool
BaseType::is_in_selection()
{
return d_in_selection;
}
/** Set the \e in_selection property to \e state. This property indicates
that the variable is used as a parameter to a constraint expression
function or that it appears as an argument in a selection sub-expression.
If set (true), implementations of the BaseType::read() method should read
this variable.
@param state Set the \e in_selection property to this state.
@see BaseType::read()
@see BaseType::is_in_selection() for more information. */
void
BaseType::set_in_selection(bool state)
{
d_in_selection = state;
}
// Protected method.
/** Set the <tt>parent</tt> property for this variable.
@note Added ability to set parent to null. 10/19/12 jhrg
@param parent Pointer to the Constructor of Vector parent variable or null
if the variable has no parent (if it is at the top-level of a DAP2/3 DDS).
@exception InternalErr thrown if called with anything other than a
Constructor, Vector or Null. */
void
BaseType::set_parent(BaseType *parent)
{
if (!dynamic_cast<Constructor *>(parent)
&& !dynamic_cast<Vector *>(parent)
&& parent != 0)
throw InternalErr("Call to set_parent with incorrect variable type.");
d_parent = parent;
}
// Public method.
/** Return a pointer to the Constructor or Vector which holds (contains)
this variable. If this variable is at the top level, this method
returns null.
@return A BaseType pointer to the variable's parent. */
BaseType *
BaseType::get_parent() const
{
return d_parent;
}
// Documented in the header file.
BaseType *
BaseType::var(const string &/*name*/, bool /*exact_match*/, btp_stack */*s*/)
{
return static_cast<BaseType *>(0);
}
/** This version of var(...) searches for <i>name</i> and returns a
pointer to the BaseType object if found. It uses the same search
algorithm as BaseType::var(const string &, bool, btp_stack *) when
<i>exact_match</i> is false. In addition to returning a pointer to
the variable, it pushes onto <i>s</i> a BaseType pointer to each
constructor type that ultimately contains <i>name</i>.
@note The BaseType implementation always returns null. There are no default
values for the parameters. If var() is called w/o any params, the three
parameter version will be used.
@deprecated This method is deprecated because it tries first to use
exact_match and, if that fails, then tries leaf_match. It's better to use
the alternate form of var(...) and specify exactly what you'd like to do.
@return A pointer to the named variable. */
BaseType *
BaseType::var(const string &, btp_stack &)
{
return static_cast<BaseType *>(0);
}
/** Adds a variable to an instance of a constructor class, such as Array,
Structure <em>et cetera</em>. This function is only used by those
classes. For constructors with more than one variable, the variables
appear in the same order in which they were added (i.e., the order in
which add_var() was called). Since this method is only for use by Vectors
and Constructors, the BaseType implementation throws InternalErr.
@note For the implementation of this method in Structure, Sequence, et c.,
first copy \e bt and then insert the copy. If \e bt is itself a constructor
type you must either use the var() method to get a pointer to the actual
instance added to \c *this or you must first add all of <em>bt</em>'s
children to it before adding it to \c *this. The implementations should use
m_duplicate() to perform a deep copy of \e bt.
@brief Add a variable.
@todo We should get rid of the Part parameter and adopt the convention
that the first variable is the Array and all subsequent ones are Maps
(when dealing with a Grid, the only time Part matters). This would enable
several methods to migrate from Structure, Sequence and Grid to
Constructor.
@param bt The variable to be added to this instance. The caller of this
method <i>must</i> free memory it allocates for <tt>v</tt>. This method
will make a deep copy of the object pointed to by <tt>v</tt>.
@param part The part of the constructor data to be modified. Only
meaningful for Grid variables.
@see Part */
void
BaseType::add_var(BaseType *, Part)
{
throw InternalErr(__FILE__, __LINE__, "BaseType::add_var unimplemented");
}
void
BaseType::add_var_nocopy(BaseType *, Part)
{
throw InternalErr(__FILE__, __LINE__, "BaseType::add_var_nocopy unimplemented");
}
/** This method should be implemented for each of the data type classes (Byte,
..., Grid) when using the DAP class library to build a server. This
method is only for DAP servers. The library provides a default
definition here which throws an InternalErr exception \e unless the read_p
property has been set. In that case it returns false, indicating that all
the data have been read. The latter case can happen when building a
constant value that needs to be passed to a function. The variable/constant
is loaded with a value when it is created.
When implementing a new DAP server, the Byte, ..., Grid data type classes
are usually specialized. In each of those specializations read() should
be defined to read values from the data source and store them in the
object's local buffer. The read() method is called by other methods in
this library. When writing read(), follow these rules:
<ul>
<li> read() should throw Error if it encounters an error. The message
should be verbose enough to be understood by someone running a
client on a different machine.</li>
<li> The value(s) should be read if and only if either send_p() or
is_in_selection() return true. If neither of these return true, the
value(s) should not be read. This is important when writing read()
for a Constructor type such as Grid where a client may ask for only
the map vectors (and thus reading the much larger Array part is not
needed).</li>
<li> For each specialization of read(), the method should first test
the value of the \c read_p property (using the read_p() method)
and read values only if the value of read_p() is false. Once the
read() method reads data and stores it in the instance, it must
set the value of the \c read_p property to true using set_read_p().
If your read() methods fail to do this data may not serialize
correctly.</li>
<li> The Array::read() and Grid::read() methods should take into account
any restrictions on Array sizes.</li>
<li> If you are writing Sequence::read(), be sure to check the
documentation for Sequence::read_row() and Sequence::serialize()
so you understand how Sequence::read() is being called.</li>
<li> For Sequence::read(), your specialization must correctly manage the
\c unsent_data property and row count in addition to the \c read_p
property (handle the \c read_p property as describe above). For a
Sequence to serialize correctly, once all data from the Sequence
has been read, \c unsent_data property must be set to false (use
Sequence::set_unsent_data()). Also, at that time the row number
counter must be reset (use Sequence::reset_row_counter()). Typically
the correct time to set \c unsent_data to false and reset the row
counter is the time when Sequence::read() return false indicating
that all the data for the Sequence have been read. Failure to
handle these tasks will break serialization of nested Sequences. Note
that when Sequence::read() returns with a result of true (indicating
there is more data to send, the value of the \c unsent_data property
should be true.
Also, if you server must handle nested sequences, be sure to read
about subclassing set_read_p().</li>
</ul>
@brief Read data into a local buffer.
@todo Modify the D4 serialize code so that it supports the true/false
behavior of read() for arrays.
@todo Modify all of the stock handlers so they conform to this!
@return False means more data remains to be read, True indicates that no
more data need to be read. For Sequence and D4Sequence, this method will
generally read one instance of the Sequence; for other types it will generally
read the entire variable modulo any limitations due to a constraint. However,
the library should be written so that read can return less than all of the data
for a variable - serialize() would then call the function until it returns
True.
@see BaseType */
bool
BaseType::read()
{
if (d_is_read)
return true;
throw InternalErr("Unimplemented BaseType::read() method called for the variable named: " + name());
}
void
BaseType::intern_data(ConstraintEvaluator &, DDS &/*dds*/)
{
#if USE_LOCAL_TIMEOUT_SCHEME
dds.timeout_on();
#endif
DBG2(cerr << "BaseType::intern_data: " << name() << endl);
if (!read_p())
read(); // read() throws Error and InternalErr
#if USE_LOCAL_TIMEOUT_SCHEME
dds.timeout_off();
#endif
}
/**
* @brief Read data into this variable
* @param eval Evaluator for a constraint expression
* @param dmr DMR for the whole dataset
*/
void
BaseType::intern_data(/*Crc32 &checksum, DMR &, ConstraintEvaluator &*/)
{
if (!read_p())
read(); // read() throws Error and InternalErr
#if 0
compute_checksum(checksum);
#endif
}
bool
BaseType::serialize(ConstraintEvaluator &, DDS &, Marshaller &, bool)
{
throw InternalErr(__FILE__, __LINE__, "The DAP2 serialize() method has not been implemented for " + type_name());
}
bool
BaseType::deserialize(UnMarshaller &, DDS *, bool)
{
throw InternalErr(__FILE__, __LINE__, "The DAP2 deserialize() method has not been implemented for " + type_name());
}
void
BaseType::serialize(D4StreamMarshaller &, DMR &, /*ConstraintEvaluator &,*/ bool)
{
throw InternalErr(__FILE__, __LINE__, "The DAP4 serialize() method has not been implemented for " + type_name());
}
void
BaseType::deserialize(D4StreamUnMarshaller &, DMR &)
{
throw InternalErr(__FILE__, __LINE__, "The DAP4 deserialize() method has not been implemented for " + type_name());
}
/** Write the variable's declaration in a C-style syntax. This
function is used to create textual representation of the Data
Descriptor Structure (DDS). See <i>The DODS User Manual</i> for
information about this structure.
A simple array declaration might look like this:
\verbatim
Float64 lat[lat = 180];
\endverbatim
While a more complex declaration (for a Grid, in this case),
would look like this:
\verbatim
Grid {
ARRAY:
Int32 sst[time = 404][lat = 180][lon = 360];
MAPS:
Float64 time[time = 404];
Float64 lat[lat = 180];
Float64 lon[lon = 360];
} sst;
\endverbatim
@brief Print an ASCII representation of the variable structure.
@param out The output stream on which to print the
declaration.
@param space Each line of the declaration will begin with the
characters in this string. Usually used for leading spaces.
@param print_semi A boolean value indicating whether to print a
semicolon at the end of the declaration.
@param constraint_info A boolean value indicating whether
constraint information is to be printed with the declaration.
If the value of this parameter is TRUE, <tt>print_decl()</tt> prints
the value of the variable's <tt>send_p()</tt> flag after the
declaration.
@param constrained If this boolean value is TRUE, the variable's
declaration is only printed if is the <tt>send_p()</tt> flag is TRUE.
If a constraint expression is in place, and this variable is not
requested, the <tt>send_p()</tt> flag is FALSE.
@see DDS
@see DDS::CE
*/
void
BaseType::print_decl(FILE *out, string space, bool print_semi,
bool constraint_info, bool constrained)
{
ostringstream oss;
print_decl(oss, space, print_semi, constraint_info, constrained);
fwrite(oss.str().data(), sizeof(char), oss.str().length(), out);
}
/** Write the variable's declaration in a C-style syntax. This
function is used to create textual representation of the Data
Descriptor Structure (DDS). See <i>The DODS User Manual</i> for
information about this structure.
A simple array declaration might look like this:
\verbatim
Float64 lat[lat = 180];
\endverbatim
While a more complex declaration (for a Grid, in this case),
would look like this:
\verbatim
Grid {
ARRAY:
Int32 sst[time = 404][lat = 180][lon = 360];
MAPS:
Float64 time[time = 404];
Float64 lat[lat = 180];
Float64 lon[lon = 360];
} sst;
\endverbatim
@brief Print an ASCII representation of the variable structure.
@param out The output stream on which to print the
declaration.
@param space Each line of the declaration will begin with the
characters in this string. Usually used for leading spaces.
@param print_semi A boolean value indicating whether to print a
semicolon at the end of the declaration.
@param constraint_info A boolean value indicating whether
constraint information is to be printed with the declaration.
If the value of this parameter is TRUE, <tt>print_decl()</tt> prints
the value of the variable's <tt>send_p()</tt> flag after the
declaration.
@param constrained If this boolean value is TRUE, the variable's
declaration is only printed if is the <tt>send_p()</tt> flag is TRUE.
If a constraint expression is in place, and this variable is not
requested, the <tt>send_p()</tt> flag is FALSE.
@see DDS
@see DDS::CE
*/
void
BaseType::print_decl(ostream &out, string space, bool print_semi,
bool constraint_info, bool constrained)
{
// if printing the constrained declaration, exit if this variable was not
// selected.
if (constrained && !send_p())
return;
out << space << type_name() << " " << id2www(name()) ;
if (constraint_info) {
if (send_p())
out << ": Send True" ;
else
out << ": Send False" ;
}
if (print_semi)
out << ";\n" ;
}
/** Prints the value of the variable, with its declaration. This
function is primarily intended for debugging DODS
applications. However, it can be overloaded and used to do
some useful things. Take a look at the asciival and writeval
clients, both of which overload this to output the values of
variables in different ways.
@brief Prints the value of the variable.
@param out The output stream on which to print the value.
@param space This value is passed to the print_decl()
function, and controls the leading spaces of the output.
@param print_decl_p A boolean value controlling whether the
variable declaration is printed as well as the value. */
void
BaseType::print_val(FILE *out, string space, bool print_decl_p)
{
ostringstream oss;
print_val(oss, space, print_decl_p);
fwrite(oss.str().data(), sizeof(char), oss.str().length(), out);
}
/** Write the XML representation of this variable. This method is used to
build the DDX XML response.
@param out Destination.
@param space Use this to indent child declarations. Default is "".
@param constrained If true, only print this if it's part part of the
current projection. Default is False.
@deprecated */
void
BaseType::print_xml(FILE *out, string space, bool constrained)
{
XMLWriter xml(space);
print_xml_writer(xml, constrained);
fwrite(xml.get_doc(), sizeof(char), xml.get_doc_size(), out);
}
/** Write the XML representation of this variable. This method is used to
build the DDX XML response.
@param out Destination output stream
@param space Use this to indent child declarations. Default is "".
@param constrained If true, only print this if it's part part of the
current projection. Default is False.
@deprecated */
void
BaseType::print_xml(ostream &out, string space, bool constrained)
{
XMLWriter xml(space);
print_xml_writer(xml, constrained);
out << xml.get_doc();
}
/** Write the XML representation of this variable. This method is used to
build the DDX XML response.
@param out Destination output stream
@param space Use this to indent child declarations. Default is "".
@param constrained If true, only print this if it's part part of the
current projection. Default is False. */
void
BaseType::print_xml_writer(XMLWriter &xml, bool constrained)
{
if (constrained && !send_p())
return;
if (xmlTextWriterStartElement(xml.get_writer(), (const xmlChar*)type_name().c_str()) < 0)
throw InternalErr(__FILE__, __LINE__, "Could not write " + type_name() + " element");
if (!name().empty())
if (xmlTextWriterWriteAttribute(xml.get_writer(), (const xmlChar*) "name", (const xmlChar*)name().c_str()) < 0)
throw InternalErr(__FILE__, __LINE__, "Could not write attribute for name");
if (is_dap4())
attributes()->print_dap4(xml);
if (!is_dap4() && get_attr_table().get_size() > 0)
get_attr_table().print_xml_writer(xml);
if (xmlTextWriterEndElement(xml.get_writer()) < 0)
throw InternalErr(__FILE__, __LINE__, "Could not end " + type_name() + " element");
}
/** Write the DAP4 XML representation for this variable. This method is used
* to build the DAP4 DMR response object.
*
* @param xml An XMLWriter that will do the serialization
* @param constrained True if the response should show the variables subject
* to the current constraint expression.
*/
void
BaseType::print_dap4(XMLWriter &xml, bool constrained)
{
print_xml_writer(xml, constrained);
}
// Compares the object's current state with the semantics of a particular
// type. This will typically be defined in ctor classes (which have
// complicated semantics). For BaseType, an object is semantically correct if
// it has both a non-null name and type.
//
// NB: This is not the same as an invariant -- during the parse objects exist
// but have no name. Also, the bool ALL defaults to false for BaseType. It is
// used by children of CtorType.
//
// Returns: true if the object is semantically correct, false otherwise.
/** This function checks the class instance for internal
consistency. This is important to check for complex constructor
classes. For BaseType, an object is semantically correct if it
has both a non-null name and type.
For example, an Int32 instance would return FALSE if it had no
name or no type defined. A Grid instance might return FALSE for
more complex reasons, such as having Map arrays of the wrong
size or shape.
This function is used by the DDS class, and will rarely, if
ever, be explicitly called by a DODS application program. A
variable must pass this test before it is sent, but there may be
many other stages in a retrieve operation where it would fail.
@brief Compare an object's current state with the semantics of its
type.
@return Returns FALSE when the current state violates some
aspect of the type semantics, TRUE otherwise.
@param msg A returned string, containing a message indicating
the source of any problem.
@param all For complex constructor types (Grid,
Sequence, Structure), this flag indicates whether to check the
semantics of the member variables, too.
@see DDS::check_semantics
*/
bool
BaseType::check_semantics(string &msg, bool)
{
bool sem = (d_type != dods_null_c && name().length());
if (!sem)
msg = "Every variable must have both a name and a type\n";
return sem;
}
/** This method contains the relational operators used by the constraint
expression evaluator in the DDS class. Each class that wants to be able
to evaluate relational expressions must overload this function. The
implementation in BaseType throws an InternalErr exception. The DAP
library classes Byte, ..., Url provide specializations of this method. It
is not meaningful for classes such as Array because relational
expressions using Array are not supported.
The <i>op</i> argument refers to a table generated by bison from
the constraint expression parser. Use statements like the
following to correctly interpret its value:
\verbatim
switch (op) {
case EQUAL: return i1 == i2;
case NOT_EQUAL: return i1 != i2;
case GREATER: return i1 > i2;
case GREATER_EQL: return i1 >= i2;
case LESS: return i1 < i2;
case LESS_EQL: return i1 <= i2;
case REGEXP: throw Error("Regular expressions are not supported for integer values");
default: throw Error("Unknown operator");
}
\endverbatim
This function is used by the constraint expression evaluator.
@brief Evaluate relational operators.
@param b Compare the value of this instance with \e b.
@param op An integer index indicating which relational operator
is implied. Choose one from the following: <tt>EQUAL</tt>,
<tt>NOT_EQUAL</tt>, <tt>GREATER</tt>, <tt>GREATER_EQL</tt>,
<tt>LESS</tt>, <tt>LESS_EQL</tt>, and <tt>REGEXP</tt>.
@return The boolean value of the comparison.
@see BaseType::d4_ops(BaseType *, int)
*/
bool
BaseType::ops(BaseType *, int)
{
// Even though ops is a public method, it can never be called because
// they will never have a BaseType object since this class is abstract,
// however any of the child classes could by mistake call BaseType::ops
// so this is an internal error. Jose Garcia
throw InternalErr(__FILE__, __LINE__, "Unimplemented operator.");
}
/**
* @brief Evaluator a relop for DAP4
*
* This method is used by the filter expression evaluation code in DAP4.
* Each of the 'data type' classes that support relops must overload this
* method. In an expression of the form arg1 op arg2, this object is arg1,
* the parameter 'b' is arg2 and op is the relational operator.
*
* @note I used the same relop codes for DAP4 as in the DAP2 parser/scanner
* which makes for some coupling between them, but cuts way down on the
* duplication of the evaluator logic, which is somewhat involved.
*
* @param b The second argument in the relational expression
* @param op The infix relational operator
* @return True if the expression is true, False otherwise.
*/
bool
BaseType::d4_ops(BaseType *, int)
{
throw InternalErr(__FILE__, __LINE__, "Unimplemented operator.");
}
/**
* @brief How many bytes does this variable use
* Return the number of bytes of storage this variable uses. For scalar types,
* this is pretty simple (an int32 uses 4 bytes, etc.). For arrays and Constructors,
* it is a bit more complex. Note that a scalar String variable uses sizeof(String*)
* bytes, not the length of the string value. The width() of a String array returns
* the number of elements in the array times sizeof(String*).
*
* @param constrained Should the current constraint be taken into account?
* @return Bytes of storage
*/
unsigned int
BaseType::width(bool /* constrained */) const
{
throw InternalErr(__FILE__, __LINE__, "not implemented");
}
} // namespace libdap
|