1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
// -*- mode: c++; c-basic-offset:4 -*-
// This file is part of libdap, A C++ implementation of the OPeNDAP Data
// Access Protocol.
// Copyright (c) 2002,2003 OPeNDAP, Inc.
// Author: James Gallagher <jgallagher@opendap.org>
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
// You can contact OPeNDAP, Inc. at PO Box 112, Saunderstown, RI. 02874-0112.
// (c) COPYRIGHT URI/MIT 1995-1999
// Please read the full copyright statement in the file COPYRIGHT_URI.
//
// Authors:
// jhrg,jimg James Gallagher <jgallagher@gso.uri.edu>
// This is the interface definition file for the abstract class
// Vector. Vector is the parent class for List and Array.
#ifndef _vector_h
#define _vector_h 1
#include <cassert>
#ifndef _basetype_h
#include "BaseType.h"
#endif
#ifndef _dds_h
#include "DDS.h"
#endif
#ifndef constraint_evaluator_h
#include "ConstraintEvaluator.h"
#endif
class Crc32;
namespace libdap {
/** Holds a one-dimensional array of DAP2 data types. This class
takes two forms, depending on whether the elements of the vector
are themselves simple or compound objects. This class contains
common functionality for the List and Array classes, and should
rarely be used directly.
When each element of the class is a simple data type, the Vector
is implemented as a simple array of C types, rather than as an
array of BaseType data types. A single private ``template''
BaseType instance (<tt>_var</tt>) is used to hold information in common
to all the members of the array. The template is also used as a
container to pass values back and forth to an application
program, as in <tt>var()</tt>.
If the elements of the vector are themselves compound data
types, the array is stored as a vector of BaseType pointers (see
the libdap class <b>BaseTypePtrVec</b>). The template is still used to
hold information in common to all the members of the array, but
is not used to pass information to and from the application
program.
@brief Holds a one-dimensional collection of DAP2 data types.
@see BaseType
@see Array
*/
class Vector : public BaseType {
private:
// Add d_length_ll. This uses -1 as a sentinel value. jhrg 7/25/22
// If we decide to add a bool for 'no values yet' do that as a
// separate refactor. jhrg 7/25/22
int64_t d_length_ll = -1; // number of elements in the vector
int d_length = -1; // number of elements in the vector
BaseType *d_proto = nullptr; // element prototype for the Vector
// _buf was a pointer to void; delete[] complained. 6/4/2001 jhrg
char *d_buf = nullptr; // storage for cardinal data
vector<string> d_str; // special storage for strings. jhrg 2/11/05
vector<BaseType *> d_compound_buf; // storage for data in compound types (e.g., Structure)
// the number of elements we have allocated memory to store.
// This should be either the sizeof(buf)/width(bool constrained = false) for cardinal data
// or the capacity of d_str for strings or capacity of _vec.
unsigned int d_capacity = 0;
uint64_t d_capacity_ll = 0;
bool d_too_big_for_dap2 = false; /// Conditionally set to true in set_length_ll()
friend class MarshallerTest;
// Made these template methods private because they can't be
// overridden anyways (because c++...) - ndp 08/14/2015
template <typename T> void value_worker(T *v) const;
template <typename T> void value_ll_worker(T *v) const;
template <typename T> void value_worker(vector<unsigned int> *indices, T *b) const;
template <typename T> void value_ll_worker(vector<uint64_t> *indices, T *b) const;
template <typename T> bool set_value_worker(T *v, int sz);
template <typename T> bool set_value_ll_worker(T *v, int64_t sz);
template <typename T> bool set_value_worker(vector<T> &v, int sz);
template <typename T> bool set_value_ll_worker(vector<T> &v, int64_t sz);
bool m_is_cardinal_type() const;
int64_t m_create_cardinal_data_buffer_for_type(int64_t num_elements);
void m_delete_cardinal_data_buffer();
template <class CardType> void m_set_cardinal_values_internal(const CardType *fromArray, int64_t num_elements);
// This function copies the private members of Vector.
void m_duplicate(const Vector &v);
public:
Vector(const string &n, BaseType *v, const Type &t, bool is_dap4 = false);
Vector(const string &n, const string &d, BaseType *v, const Type &t, bool is_dap4 = false);
Vector(const Vector &rhs);
virtual ~Vector();
Vector &operator=(const Vector &rhs);
// FIXME BaseType *ptr_duplicate() = 0 override;
/**
* Provide access to internal data. Callers cannot delete this
* but can pass them to other methods.
*
* @note Added so that the NCML handler can code some optimizations in its
* specialized versions of Array. jhrg 8/14/15
* @return A pointer to the data buffer for Vectors/Arrays of the cardinal types.
*/
char *get_buf() { return d_buf; }
/**
* Provide access to internal string data by reference. Callers cannot delete this
* but can pass them to other methods.
*
* @return A reference to a vector of strings
*/
vector<string> &get_str() { return d_str; }
/**
* Provide access to internal data by reference. Callers cannot delete this
* but can pass them to other methods.
*
* @return A reference to a vector of BaseType pointers. Treat with care; never
* delete these!
*/
vector<BaseType *> &get_compound_buf() { return d_compound_buf; }
virtual BaseType *prototype() const { return d_proto; }
/**
* @brief Change the Vector/Array element type
* @param btp
* @return The previous template, calling code is responsible for the returned BaseType lifecycle.
*/
virtual BaseType *set_prototype(BaseType *btp) {
BaseType *orig = d_proto;
d_proto = btp;
return orig;
}
void set_name(const std::string &name) override;
int element_count(bool leaves) override;
void set_send_p(bool state) override;
void set_read_p(bool state) override;
/** Returns the number of bytes needed to hold the entire
array. This is equal to \c length() (the number of elements in
in the array) times the width of each
element.
@brief Returns the width of the data, in bytes.
@deprecated Use width_ll() instead */
unsigned int width(bool constrained = false) const override {
// Jose Garcia
assert(d_proto);
return length() * d_proto->width(constrained);
}
/**
* @brief Return the number of bytes needed to hold the array data
* @param constrained If true, return the number of bytes given the current constraint
* @return The number of bytes needed to hold the array data, as a 64-bit integer
*/
int64_t width_ll(bool constrained = false) const override { return length_ll() * d_proto->width_ll(constrained); }
/** @brief Returns the number of elements in the vector.
* Note that some child classes of Vector use the length of -1 as a flag value.
* @return The number of elements in the vector
* @deprecated Use length_ll() instead
*/
int length() const override { return d_length; }
/** @brief Get the number of elements in this Vector/Array
* This version of the function deprecates length() which is limited to
* 32-bit sizes. The field uses -1 as a sentinel value indicating that
* the Vector/Array holds no values yet (as opposed to zero values).
* @return The number of elements in this Vector/Array
*/
int64_t length_ll() const override { return d_length_ll; }
void set_length(int64_t l) override;
void set_length_ll(int64_t l) override;
// DAP2
void intern_data(ConstraintEvaluator &eval, DDS &dds) override;
bool serialize(ConstraintEvaluator &eval, DDS &dds, Marshaller &m, bool ce_eval = true) override;
bool deserialize(UnMarshaller &um, DDS *dds, bool reuse = false) override;
// DAP4
void compute_checksum(Crc32 &checksum) override;
void intern_data(/*Crc32 &checksum*/) override;
void serialize(D4StreamMarshaller &m, DMR &dmr, bool filter = false) override;
void deserialize(D4StreamUnMarshaller &um, DMR &dmr) override;
unsigned int val2buf(void *val, bool reuse = false) override;
unsigned int buf2val(void **val) override;
int64_t val2buf_ll(void *val, bool reuse = false);
int64_t buf2val_ll(void **val);
void set_vec(unsigned int i, BaseType *val);
void set_vec_nocopy(unsigned int i, BaseType *val);
void set_vec_ll(uint64_t i, BaseType *val);
void set_vec_nocopy_ll(uint64_t i, BaseType *val);
void vec_resize(int l);
void vec_resize_ll(int64_t l);
void clear_local_data() override;
virtual unsigned int get_value_capacity() const;
virtual uint64_t get_value_capacity_ll() const;
void set_value_capacity(uint64_t l);
virtual void reserve_value_capacity(unsigned int numElements);
virtual void reserve_value_capacity();
virtual void reserve_value_capacity_ll(uint64_t numElements);
virtual void reserve_value_capacity_ll();
virtual void reserve_value_capacity_ll_byte(uint64_t numBytes);
virtual uint64_t set_value_slice_from_row_major_vector(const Vector &rowMajorData, uint64_t startElement);
virtual bool set_value(dods_byte *val, int sz);
virtual bool set_value(dods_int8 *val, int sz);
virtual bool set_value(dods_int16 *val, int sz);
virtual bool set_value(dods_uint16 *val, int sz);
virtual bool set_value(dods_int32 *val, int sz);
virtual bool set_value(dods_uint32 *val, int sz);
virtual bool set_value(dods_int64 *val, int sz);
virtual bool set_value(dods_uint64 *val, int sz);
virtual bool set_value(dods_float32 *val, int sz);
virtual bool set_value(dods_float64 *val, int sz);
virtual bool set_value(string *val, int sz);
virtual bool set_value_ll(dods_byte *val, int64_t sz);
virtual bool set_value_ll(dods_int8 *val, int64_t sz);
virtual bool set_value_ll(dods_int16 *val, int64_t sz);
virtual bool set_value_ll(dods_uint16 *val, int64_t sz);
virtual bool set_value_ll(dods_int32 *val, int64_t sz);
virtual bool set_value_ll(dods_uint32 *val, int64_t sz);
virtual bool set_value_ll(dods_int64 *val, int64_t sz);
virtual bool set_value_ll(dods_uint64 *val, int64_t sz);
virtual bool set_value_ll(dods_float32 *val, int64_t sz);
virtual bool set_value_ll(dods_float64 *val, int64_t sz);
virtual bool set_value_ll(string *val, int64_t sz);
virtual bool set_value(vector<dods_byte> &val, int sz);
virtual bool set_value(vector<dods_int8> &val, int sz);
virtual bool set_value(vector<dods_int16> &val, int sz);
virtual bool set_value(vector<dods_uint16> &val, int sz);
virtual bool set_value(vector<dods_int32> &val, int sz);
virtual bool set_value(vector<dods_uint32> &val, int sz);
virtual bool set_value(vector<dods_int64> &val, int sz);
virtual bool set_value(vector<dods_uint64> &val, int sz);
virtual bool set_value(vector<dods_float32> &val, int sz);
virtual bool set_value(vector<dods_float64> &val, int sz);
virtual bool set_value(vector<string> &val, int sz);
virtual bool set_value_ll(vector<dods_byte> &val, int64_t sz);
virtual bool set_value_ll(vector<dods_int8> &val, int64_t sz);
virtual bool set_value_ll(vector<dods_int16> &val, int64_t sz);
virtual bool set_value_ll(vector<dods_uint16> &val, int64_t sz);
virtual bool set_value_ll(vector<dods_int32> &val, int64_t sz);
virtual bool set_value_ll(vector<dods_uint32> &val, int64_t sz);
virtual bool set_value_ll(vector<dods_int64> &val, int64_t sz);
virtual bool set_value_ll(vector<dods_uint64> &val, int64_t sz);
virtual bool set_value_ll(vector<dods_float32> &val, int64_t sz);
virtual bool set_value_ll(vector<dods_float64> &val, int64_t sz);
virtual bool set_value_ll(vector<string> &val, int64_t sz);
virtual void value(dods_byte *b) const;
virtual void value(dods_int8 *b) const;
virtual void value(dods_int16 *b) const;
virtual void value(dods_uint16 *b) const;
virtual void value(dods_int32 *b) const;
virtual void value(dods_uint32 *b) const;
virtual void value(dods_int64 *b) const;
virtual void value(dods_uint64 *b) const;
virtual void value(dods_float32 *b) const;
virtual void value(dods_float64 *b) const;
virtual void value(vector<string> &b) const;
virtual void value(vector<unsigned int> *indices, dods_byte *b) const;
virtual void value(vector<unsigned int> *indices, dods_int8 *b) const;
virtual void value(vector<unsigned int> *indices, dods_int16 *b) const;
virtual void value(vector<unsigned int> *indices, dods_uint16 *b) const;
virtual void value(vector<unsigned int> *indices, dods_int32 *b) const;
virtual void value(vector<unsigned int> *indices, dods_uint32 *b) const;
virtual void value(vector<unsigned int> *indices, dods_int64 *b) const;
virtual void value(vector<unsigned int> *indices, dods_uint64 *b) const;
virtual void value(vector<unsigned int> *indices, dods_float32 *b) const;
virtual void value(vector<unsigned int> *indices, dods_float64 *b) const;
virtual void value(vector<unsigned int> *index, vector<string> &b) const;
virtual void value_ll(vector<uint64_t> *indices, dods_byte *b) const;
virtual void value_ll(vector<uint64_t> *indices, dods_int8 *b) const;
virtual void value_ll(vector<uint64_t> *indices, dods_int16 *b) const;
virtual void value_ll(vector<uint64_t> *indices, dods_uint16 *b) const;
virtual void value_ll(vector<uint64_t> *indices, dods_int32 *b) const;
virtual void value_ll(vector<uint64_t> *indices, dods_uint32 *b) const;
virtual void value_ll(vector<uint64_t> *indices, dods_int64 *b) const;
virtual void value_ll(vector<uint64_t> *indices, dods_uint64 *b) const;
virtual void value_ll(vector<uint64_t> *indices, dods_float32 *b) const;
virtual void value_ll(vector<uint64_t> *indices, dods_float64 *b) const;
virtual void value_ll(vector<uint64_t> *index, vector<string> &b) const;
virtual void *value();
BaseType *var(const string &name = "", bool exact_match = true, btp_stack *s = nullptr) override;
BaseType *var(const string &name, btp_stack &s) override;
virtual BaseType *var(unsigned int i);
virtual BaseType *var_ll(uint64_t i);
void add_var(BaseType *v, Part p = nil) override;
void add_var_nocopy(BaseType *v, Part p = nil) override;
bool check_semantics(string &msg, bool all = false) override;
bool is_dap4_projected(std::vector<std::string> &projected_dap4_inventory) override;
void dump(ostream &strm) const override;
};
} // namespace libdap
#endif /* _vector_h */
|