1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
package Data::Password::zxcvbn::MatchList;
use Moo;
use Data::Password::zxcvbn::Match::BruteForce;
use Data::Password::zxcvbn::Combinatorics qw(factorial);
use Data::Password::zxcvbn::TimeEstimate qw(guesses_to_score);
use Module::Runtime qw(use_module);
use List::AllUtils 0.14 qw(max_by);
our $VERSION = '1.1.2'; # VERSION
# ABSTRACT: a collection of matches for a password
has password => (is => 'ro', required => 1); # string
has matches => (is => 'ro', default => sub { [] });
has guesses => (is => 'ro');
sub omnimatch {
my ($class, $password, $opts) = @_;
# let's protect people who try to pass BruteForce in
my @modules = $opts->{modules}
? grep { $_ ne 'Data::Password::zxcvbn::Match::BruteForce' } @{$opts->{modules}}
: map { "Data::Password::zxcvbn::Match::$_" }
qw(
Dictionary
UserInput
Spatial
Repeat
Sequence
Regex
Date
);
# here, we need to pass the whole $opts down, because some
# matchers (e.g. Repeat) will use it to call us recursively, and
# we don't want to lose any option
my @matches = map {
@{ use_module($_)->make($password,$opts) },
} @modules;
@matches = sort @matches;
return $class->new({
password => $password,
matches => \@matches,
});
}
# the following is a O($l_max * ($n + $m)) dynamic programming
# algorithm for a length-$n password with $m candidate matches. $l_max
# is the maximum optimal sequence length spanning each prefix of the
# password. In practice it rarely exceeds 5 and the search terminates
# rapidly.
#
# the optimal "minimum guesses" sequence is here defined to be the
# sequence that minimizes the following function:
#
# $g = $l! * Product($_->guesses for $sequence) + $D^($l - 1)
#
# where $l is the length of the $sequence.
#
# the factorial term is the number of ways to order $l patterns.
#
# the $D^($l-1) term is another length penalty, roughly capturing the
# idea that an attacker will try lower-length sequences first before
# trying length-$l sequences.
#
# for example, consider a sequence that is date-repeat-dictionary.
#
# - an attacker would need to try other date-repeat-dictionary
# combinations, hence the product term.
#
# - an attacker would need to try repeat-date-dictionary,
# dictionary-repeat-date, ..., hence the factorial term.
#
# - an attacker would also likely try length-1 (dictionary) and
# length-2 (dictionary-date) sequences before length-3. assuming at
# minimum $D guesses per pattern type, $D^($l-1) approximates
# Sum($D**$_ for 1..$l-1)
my $MIN_GUESSES_BEFORE_GROWING_SEQUENCE = 10000;
sub most_guessable_match_list { ## no critic(ProhibitExcessComplexity)
my ($self, $exclude_additive) = @_;
my $password = $self->password;
my $n = length($password);
# partition matches into sublists according to ending index j
my %matches_by_j;
for my $match (@{$self->matches}) {
push @{$matches_by_j{$match->j}},$match;
}
# small detail: for deterministic output, sort each sublist by i.
for my $list (values %matches_by_j) {
$list = [ sort {$a->i <=> $b->i} @{$list} ];
}
# $optimal{m}{$k}{$l} holds final match in the best length-$l
# match sequence covering the password prefix up to $k, inclusive.
# if there is no length-$l sequence that scores better (fewer
# guesses) than a shorter match sequence spanning the same prefix,
# this is undefined.
#
# $optimal{pi} has the same structure as $optimal{m} -- holds the
# product term Prod(m.guesses for m in sequence). $optimal{pi}
# allows for fast (non-looping) updates to the minimization
# function.
#
# $optimal{g} again same structure, holds the overall metric
my %optimal;
# helper: considers whether a length-$length sequence ending at
# $match is better (fewer guesses) than previously encountered
# sequences, updating state if so.
my $update = sub {
my ($match,$length) = @_;
my $k = $match->j;
my $pi = $match->guesses_for_password($password);
if ($length > 1) {
# we're considering a length-$length sequence ending with
# $match: obtain the product term in the minimization
# function by multiplying $match->guesses by the product
# of the length-($length-1) sequence ending just before
# $match, at $match->i - 1
$pi *= $optimal{pi}->{$match->i-1}{$length-1};
}
my $guesses = factorial($length) * $pi;
$guesses += $MIN_GUESSES_BEFORE_GROWING_SEQUENCE ** ($length-1)
unless $exclude_additive;
# update state if new best. first see if any competing
# sequences covering this prefix, with $length or fewer
# matches, fare better than this sequence. if so, skip it and
# return.
for my $competing_length (keys %{$optimal{g}->{$k}}) {
next if $competing_length > $length;
my $competing_g = $optimal{g}->{$k}{$competing_length};
next unless defined $competing_g;
return if $competing_g <= $guesses;
}
$optimal{g}->{$k}{$length} = $guesses;
$optimal{m}->{$k}{$length} = $match;
$optimal{pi}->{$k}{$length} = $pi;
};
# helper: evaluate bruteforce matches ending at k.
my $bruteforce_update = sub {
my ($k) = @_;
# see if a single bruteforce match spanning the k-prefix is optimal.
my $match = Data::Password::zxcvbn::Match::BruteForce->new({
password => $password,
i => 0, j => $k,
});
$update->($match, 1);
for my $i (1..$k) {
# generate $k bruteforce matches, spanning from (i=1, j=$k) up to
# (i=$k, j=$k). see if adding these new matches to any of the
# sequences in $optimal{m}->[i-1] leads to new bests.
my $other_match = Data::Password::zxcvbn::Match::BruteForce->new({
password => $password,
i => $i, j => $k,
});
for my $length (keys %{$optimal{m}->{$i-1}}) {
my $last_match = $optimal{m}->{$i-1}{$length};
# corner: an optimal sequence will never have two adjacent
# bruteforce matches. it is strictly better to have a single
# bruteforce match spanning the same region: same contribution
# to the guess product with a lower length.
# --> safe to skip those cases.
next if $last_match->isa('Data::Password::zxcvbn::Match::BruteForce');
# try adding m to this length-l sequence.
$update->($other_match, $length + 1);
}
}
};
# helper: step backwards through optimal.m starting at the end,
# constructing the final optimal match sequence.
my $unwind = sub {
my ($k) = @_;
my @optimal_match_sequence;
--$k;
# find the final best sequence length and score
my $length; my $guesses;
for my $candidate_length (keys %{$optimal{g}->{$k}}) {
my $candidate_guesses = $optimal{g}->{$k}{$candidate_length};
if (!defined($guesses) || $candidate_guesses < $guesses) {
$length = $candidate_length;
$guesses = $candidate_guesses;
}
}
while ($k >= 0) {
my $match = $optimal{m}->{$k}{$length};
unshift @optimal_match_sequence,$match;
$k = $match->i - 1;
--$length;
}
return \@optimal_match_sequence;
};
for my $k (0..$n-1) {
for my $match (@{$matches_by_j{$k}}) {
if ($match->i > 0) {
for my $l (keys %{$optimal{m}->{$match->i - 1}}) {
$update->($match, $l+1);
}
}
else {
$update->($match,1);
}
}
$bruteforce_update->($k);
}
my $optimal_match_sequence = $unwind->($n);
my $optimal_length = @{$optimal_match_sequence};
my $guesses;
# corner: empty password
if ($n==0) {
$guesses = 1;
}
else {
$guesses = $optimal{g}->{$n - 1}{$optimal_length};
}
return ref($self)->new({
password => $password,
guesses => $guesses,
matches => $optimal_match_sequence,
});
}
sub guesses_log10 {
return log(shift->guesses)/log(10);
}
sub score { guesses_to_score(shift->guesses) }
sub get_feedback {
my ($self, $max_score_for_feedback) = @_;
# yes, if someone passes a 0, they'll get the default; I consider
# this a feature
$max_score_for_feedback ||= 2;
my $matches = $self->matches;
my $matches_count = @{$matches};
if ($matches_count == 0) {
return $self->feedback_for_no_matches;
}
if ($self->score > $max_score_for_feedback) {
return $self->feedback_above_threshold;
}
my $longest_match = max_by { length($_->token) } @{$matches};
my $is_sole_match = $matches_count == 1;
my $feedback = $longest_match->get_feedback($is_sole_match);
my $extra_feedback = $self->feedback_below_threshold;
push @{$feedback->{suggestions}}, @{$extra_feedback->{suggestions}};
$feedback->{warning} ||= $extra_feedback->{warning};
return $feedback;
}
sub feedback_for_no_matches {
return {
warning => '',
suggestions => [
'Use a few words, avoid common phrases.',
'No need for symbols, digits, or uppercase letters.',
],
};
}
sub feedback_above_threshold {
return { warning => '', suggestions => [] };
}
sub feedback_below_threshold {
return {
warning => '',
suggestions => [
'Add another word or two. Uncommon words are better.'
],
};
}
1;
__END__
=pod
=encoding UTF-8
=for :stopwords JS
=for :stopwords precendence
=head1 NAME
Data::Password::zxcvbn::MatchList - a collection of matches for a password
=head1 VERSION
version 1.1.2
=head1 SYNOPSIS
use Data::Password::zxcvbn::MatchList;
my $list = Data::Password::zxcvbn::MatchList->omnimatch($password)
->most_guessable_match_list;
=head1 DESCRIPTION
zxcvbn estimates the strength of a password by guessing which way a
generic password cracker would produce it, and then guessing after how
many tries it would produce it.
This class represents a list of guesses ("matches"), covering
different substrings of a password.
=head1 ATTRIBUTES
=head2 C<password>
Required string, the password this list is about.
=head2 C<matches>
Arrayref, the actual list of matches.
=head2 C<guesses>
The estimated number of attempts that a generic password cracker would
need to guess the whole L</password>. This will be set for objects
returned by L<< /C<most_guessable_match_list> >>, not for those
returned by L<< /C<omnimatch> >>.
=head1 METHODS
=head2 C<omnimatch>
my $match_list = Data::Password::zxcvbn::MatchList->omnimatch($password,\%opts);
Main constructor (the name comes from the original JS
implementation). Calls C<< ->make($password,\%opts) >> on all the
C<Data::Password::zxcvbn::Match::*> classes (or the ones in C<<
@{$opts{modules}} >>), combines all the matches, and returns a
C<MatchList> holding them.
=head2 C<most_guessable_match_list>
my $minimal_list = $match_list->most_guessable_match_list;
This method extracts, from the L</matches> of the invocant, a list of
non-overlapping matches with minimum guesses. That list should
represent the way that a generic password cracker would guess the
L</password>, and as such is the one that the L<main
function|Data::Password::zxcvbn/password_strength> will use.
=head2 C<guesses_log10>
The logarithm in base 10 of L<< /C<guesses> >>.
=head2 C<score>
my $score = $match_list->score;
Returns an integer from 0-4 (useful for implementing a strength
bar). See L<<
C<Data::Password::zxcvbn::TimeEstimate::guesses_to_score>|Data::Password::zxcvbn::TimeEstimate/guesses_to_score
>>.
=head2 C<get_feedback>
my %feedback = %{ $match_list->get_feedback };
my %feedback = %{ $match_list->get_feedback($max_score_for_feedback) };
If there's no matches, returns the result of L<<
/C<feedback_for_no_matches> >>.
If the match list L</score> is above C<$max_score_for_feedback>
(default 2), returns the result of L<< /C<feedback_above_threshold>
>>.
Otherwise, collects all the feedback from the L</matches>, and returns
it, merged with the result of L<< /C<feedback_below_threshold> >>
(suggestions are appended, but the warning from the matches takes
precendence).
=head2 C<feedback_for_no_matches>
Returns a feedback for when the password didn't match any of our
heuristics. It contains no warning, and some simple common
suggestions.
=head2 C<feedback_above_threshold>
Returns a feedback for when the password scored above the threshold
passed to L<< /C<get_feedback> >> (i.e. the password is "good"). It's
an empty feedback.
=head2 C<feedback_below_threshold>
Returns a feedback for when the password scored below the threshold
passed to L<< /C<get_feedback> >> (i.e. the password is "bad"). It
suggests to add some words.
=head1 AUTHOR
Gianni Ceccarelli <gianni.ceccarelli@broadbean.com>
=head1 COPYRIGHT AND LICENSE
This software is copyright (c) 2022 by BroadBean UK, a CareerBuilder Company.
This is free software; you can redistribute it and/or modify it under
the same terms as the Perl 5 programming language system itself.
=cut
|