File: Stag.pm

package info (click to toggle)
libdata-stag-perl 0.14-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,480 kB
  • sloc: perl: 6,394; lisp: 141; xml: 116; ansic: 55; makefile: 17; sh: 2
file content (1960 lines) | stat: -rw-r--r-- 48,016 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
# $Id: Stag.pm,v 1.41 2007/10/15 04:08:45 cmungall Exp $
# -------------------------------------------------------
#
# Copyright (C) 2004 Chris Mungall <cjm@fruitfly.org>
#
# See also - http://stag.sourceforge.net
#
# This module is free software.
# You may distribute this module under the same terms as perl itself

#---
# POD docs at end of file
#---

package Data::Stag;

require 5.006;
use strict;
use vars qw(@ISA @EXPORT_OK %EXPORT_TAGS $DEBUG $AUTOLOAD @AUTOMETHODS @OLD);
use Carp;
use Data::Stag::Base;

use vars qw($VERSION);
$VERSION="0.14";

@AUTOMETHODS = qw(
                  new
                  node
                  nodify stagify
                  unflatten
                  from
                  f find
                  fn findnode
                  fvl findvallist
                  fv findval
                  fvl findvallist
                  sfv sfindval
                  g  get
                  sg sget scalarget
                  gl getl getlist
                  gn getn getnode
		  sgetmap sgm
                  s  set
                  setl
                  u  unset
		  free
                  a  add
                  e element name
                  k kids children
                  ak addkid addchild
                  subnodes
                  tnodes
                  ntnodes
                  isterminal
                  j ij ijoin nj njoin
                  paste
                  qm qmatch
                  tm tmatch
                  tmh tmatchhash
                  tmn tmatchnode
                  cm cmatch
                  w where
		  iterate
                  run
                  collapse
                  merge
                  d duplicate
                  isanode
                  parser
                  parse parsefile
		  parsestr
		  generate gen write
                  makehandler mh
                  findhandler 
                  getformathandler 
		  chainhandlers
                  xml  
                  sxpr
                  itext
                  indent
                  hash tree2hash
                  pairs tree2pairs
                  sax tree2sax
                  xp xpath tree2xpath
                  xpq xpquery xpathquery
                 );


@EXPORT_OK =
  ((
    map {
        "stag_$_"
    } @AUTOMETHODS
   ),
   qw(
      Node
      stag_unflatten
      stag_nodify
      stag_load
      stag_loadxml
     )
  );
%EXPORT_TAGS = (all => [@EXPORT_OK],
                lazy => [@EXPORT_OK,
                         @AUTOMETHODS]);
@ISA = qw(Exporter);

our $DEBUG;
our $IMPL = "Data::Stag::StagImpl";
use Data::Stag::StagImpl;

sub DEBUG {
    $DEBUG = shift if @_;
    return $DEBUG;
}

sub IMPL {
    $IMPL = shift if @_;
    return $IMPL;
}

# OO usage
sub new {
    shift;
    return $IMPL->new(@_);
}
# procedural usage
sub stag_new {
    return $IMPL->new(@_);
}
*Node = \&stag_new;
*node = \&stag_new;

sub stag_from {
    return $IMPL->from(@_);
}

sub stag_load {
    my $node = stag_new();
    return $node->parse(@_);
}

sub stag_loadxml {
    return $IMPL->from('xml', @_);
}

sub stag_nodify {
    bless shift, $IMPL;
}

# allows entering trees like this
# [tag=>val, tag=>val, tag=>val]
sub stag_unflatten {
    return $IMPL->unflatten(@_);
}

#sub xml2tree {
#    warn("DEPRECATED: xml2tree");
#    stag_from('xml', @_);
#}
#sub tree2xml {
#    warn("DEPRECATED: tree2xml");
#    stag_xml(@_);
#}

no strict 'refs';
sub AUTOLOAD {
    my @args = @_;

    my $name = $AUTOLOAD;
    $name =~ s/.*://;   # strip fully-qualified portion
    $name =~ s/^stag//;
    $name =~ s/_//g;

    # make it all lower case
    unless (UNIVERSAL::can($IMPL, $name)) {
        $name = lc($name);
    }
    my $meth = $IMPL.'::'.$name;
    
    &$meth(@args);
}

1;

__END__

=head1 NAME

  Data::Stag - Structured Tags datastructures

=head1 SYNOPSIS

  # PROCEDURAL USAGE
  use Data::Stag qw(:all);
  $doc = stag_parse($file);
  @persons = stag_find($doc, "person");
  foreach $p (@persons) {
    printf "%s, %s phone: %s\n",
      stag_sget($p, "family_name"),
      stag_sget($p, "given_name"),
      stag_sget($p, "phone_no"),
    ;
  } 

  # OBJECT-ORIENTED USAGE
  use Data::Stag;
  $doc = Data::Stag->parse($file);
  @persons = $doc->find("person");
  foreach $p (@person) {
    printf "%s, %s phone:%s\n",
      $p->sget("family_name"),
      $p->sget("given_name"),
      $p->sget("phone_no"),
    ;
  }

=cut

=head1 DESCRIPTION

This module is for manipulating data as hierarchical tag/value
pairs (Structured TAGs or Simple Tree AGgreggates). These
datastructures can be represented as nested arrays, which have the
advantage of being native to perl. A simple example is shown below:

  [ person=> [  [ family_name => $family_name ],
                [ given_name  => $given_name  ],
                [ phone_no    => $phone_no    ] ] ],

L<Data::Stag> uses a subset of XML for import and export. This
means the module can also be used as a general XML parser/writer (with
certain caveats).

The above set of structured tags can be represented in XML as
  
  <person>
    <family_name>...</family_name>
    <given_name>...</given_name>
    <phone_no>...</phone_no>
  </person>

This datastructure can be examined, manipulated and exported using
Stag functions or methods:

  $document = Data::Stag->parse($file);
  @persons = $document->find('person');
  foreach my $person (@person) {
    $person->set('full_name',
                 $person->sget('given_name') . ' ' .
                 $person->sget('family_name'));
  }

Advanced querying is performed by passing functions, for example:

  # get all people in dataset with name starting 'A'
  @persons = 
    $document->where('person',
                     sub {shift->sget('family_name') =~ /^A/});

One of the things that marks this module out against other XML modules
is this emphasis on a B<functional> approach as an obect-oriented or
procedural approach.

For full information on the stag project, see
L<http://stag.sourceforge.net>

=head2 PROCEDURAL VS OBJECT-ORIENTED USAGE

Depending on your preference, this module can be used a set of
procedural subroutine calls, or as method calls upon Data::Stag
objects, or both.

In procedural mode, all the subroutine calls are prefixed "stag_" to
avoid namespace clashes. The following three calls are equivalent:

  $person = stag_find($doc, "person");
  $person = $doc->find("person");
  $person = $doc->find_person;

In object mode, you can treat any tree element as if it is an object
with automatically defined methods for getting/setting the tag values.

=head2 USE OF XML

Nested arrays can be imported and exported as XML, as well as other
formats. XML can be slurped into memory all at once (using less memory
than an equivalent DOM tree), or a simplified SAX style event handling
model can be used. Similarly, data can be exported all at once, or as
a series of events.

Although this module can be used as a general XML tool, it is intended
primarily as a tool for manipulating hierarchical data using nested
tag/value pairs.

This module is more suited to dealing with data-oriented documents
than text-oriented documents.

By using a simpler subset of XML equivalent to a basic data tree
structure, we can write simpler, cleaner code.

This module is ideally suited to element-only XML (that is, XML
without attributes or mixed elements).

If you are using attributes or mixed elements, it is useful to know
what is going on under the hood.

All attributes are turned into elements; they are nested inside an
element with name B<'@'>.

For example, the following piece of XML

  <foo id="x">
    <bar>ugh</bar>
  </foo>

Gets represented internally as

  <foo>
    <@>
      <id>x</id>
    </@>
    <bar>ugh</bar>
  </foo>

Of course, this is not valid XML. However, it is just an internal
representation - when exporting back to XML it will look like normal
XML with attributes again.

Mixed content cannot be represented in a simple tree format, so this
is also expanded.

The following piece of XML

  <paragraph id="1" color="green">
    example of <bold>mixed</bold>content
  </paragraph>

gets parsed as if it were actually:

  <paragraph>
    <@>
      <id>1</id>
      <color>green</color>
    </@>
    <.>example of</.>
    <bold>mixed</bold>
    <.>content</.>
  </paragraph>

When using stag with attribute or mixed attribute xml, you can treat
B<'@'> and B<'.'> as normal elements

=head3 SAX

This module can also be used as part of a SAX-style event generation /
handling framework - see L<Data::Stag::BaseHandler>

=head3 PERL REPRESENTATION

Because nested arrays are native to perl, we can specify an XML
datastructure directly in perl without going through multiple object
calls.

For example, instead of using L<XML::Writer> for the lengthy

  $obj->startTag("record");
  $obj->startTag("field1");
  $obj->characters("foo");
  $obj->endTag("field1");
  $obj->startTag("field2");
  $obj->characters("bar");
  $obj->endTag("field2");
  $obj->end("record");

We can instead write

  $struct = [ record => [
              [ field1 => 'foo'],
              [ field2 => 'bar']]];

=head3 PARSING

The following example is for parsing out subsections of a tree and
changing sub-elements

  use Data::Stag qw(:all);
  my $tree = stag_parse($xmlfile);
  my ($subtree) = stag_findnode($tree, $element);
  stag_set($element, $sub_element, $new_val);
  print stag_xml($subtree);

=head3 OBJECT ORIENTED

The same can be done in a more OO fashion

  use Data::Stag qw(:all);
  my $tree = Data::Stag->parse($xmlfile);
  my ($subtree) = $tree->findnode($element);
  $element->set($sub_element, $new_val);
  print $subtree->xml;

=head3 IN A STREAM

Rather than parsing in a whole file into memory all at once (which may
not be suitable for very large files), you can take an B<event
handling> approach. The easiest way to do this to register which nodes
in the file you are interested in using the B<makehandler> method. The
parser will sweep through the file, building objects as it goes, and
handing the object to a subroutine that you specify.

For example:

  use Data::Stag;
  # catch the end of 'person' elements
  my $h = Data::Stag->makehandler( person=> sub {
                                               my ($self, $person) = @_;
                                               printf "name:%s phone:%s\n",
                                                 $person->get_name,
                                                 $person->get_phone;
                                               return;   # clear node
                                                });
  Data::Stag->parse(-handler=>$h,
                    -file=>$f);

see L<Data::Stag::BaseHandler> for writing handlers

See the Stag website at L<http://stag.sourceforge.net> for more examples.

=head2 STRUCTURED TAGS TREE DATA STRUCTURE

A tree of structured tags is represented as a recursively nested
array, the elements of the array represent nodes in the tree.

A node is a name/data pair, that can represent tags and values.  A
node is represented using a reference to an array, where the first
element of the array is the B<tagname>, or B<element>, and the second
element is the B<data>

This can be visualised as a box:

  +-----------+
  |Name | Data|
  +-----------+

In perl, we represent this pair as a reference to an array

  [ Name => $Data ]

The B<Data> can either be a list of child nodes (subtrees), or a data value.

The terminal nodes (leafs of the tree) contain data values; this is represented in perl
using primitive scalars.

For example:

  [ Name => 'Fred' ]

For non-terminal nodes, the Data is a reference to an array, where
each element of the the array is a new node.

  +-----------+
  |Name | Data|
  +-----------+
          |||   +-----------+
          ||+-->|Name | Data|
          ||    +-----------+
          ||    
          ||    +-----------+
          |+--->|Name | Data|
          |     +-----------+
          |     
          |     +-----------+
          +---->|Name | Data|
                +-----------+

In perl this would be:

  [ Name => [
              [Name1 => $Data1],
              [Name2 => $Data2],
              [Name3 => $Data3],
            ]
  ];

The extra level of nesting is required to be able to store any node in
the tree using a single variable. This representation has lots of
advantages over others, eg hashes and mixed hash/array structures.

=head2 MANIPULATION AND QUERYING

The following example is taken from biology; we have a list
of species (mouse, human, fly) and a list of genes found in that
species. These are cross-referenced by an identifier called
B<tax_id>. We can do a relational-style inner join on this
identifier, as follows -

  use Data::Stag qw(:all);
  my $tree =
  Data::Stag->new(
    'db' => [
    [ 'species_set' => [
      [ 'species' => [
        [ 'common_name' => 'house mouse' ],
        [ 'binomial' => 'Mus musculus' ],
        [ 'tax_id' => '10090' ]]],
      [ 'species' => [
        [ 'common_name' => 'fruit fly' ],
        [ 'binomial' => 'Drosophila melanogaster' ],
        [ 'tax_id' => '7227' ]]],
      [ 'species' => [
        [ 'common_name' => 'human' ],
        [ 'binomial' => 'Homo sapiens' ],
        [ 'tax_id' => '9606' ]]]]],
    [ 'gene_set' => [
      [ 'gene' => [
        [ 'symbol' => 'HGNC' ],
        [ 'tax_id' => '9606' ],
        [ 'phenotype' => 'Hemochromatosis' ],
        [ 'phenotype' => 'Porphyria variegata' ],
        [ 'GO_term' => 'iron homeostasis' ],
        [ 'map' => '6p21.3' ]]],
      [ 'gene' => [
        [ 'symbol' => 'Hfe' ],
        [ 'synonym' => 'MR2' ],
        [ 'tax_id' => '10090' ],
        [ 'GO_term' => 'integral membrane protein' ],
        [ 'map' => '13 A2-A4' ]]]]]]
   );

  # inner join of species and gene parts of tree,
  # based on 'tax_id' element
  my $gene_set = $tree->find("gene_set");       # get <gene_set> element
  my $species_set = $tree->find("species_set"); # get <species_set> element
  $gene_set->ijoin("gene", "tax_id", $species_set);   # INNER JOIN

  print "Reorganised data:\n";
  print $gene_set->xml;

  # find all genes starting with letter 'H' in where species/common_name=human
  my @genes =
    $gene_set->where('gene',
                     sub { my $g = shift;
                           $g->get_symbol =~ /^H/ &&
                           $g->findval("common_name") eq ('human')});

  print "Human genes beginning 'H'\n";
  print $_->xml foreach @genes;

=head2 S-Expression (Lisp) representation

The data represented using this module can be represented as
Lisp-style S-Expressions.

See L<Data::Stag::SxprParser> and  L<Data::Stag::SxprWriter>

If we execute this code on the XML from the example above

  $stag = Data::Stag->parse($xmlfile);
  print $stag->sxpr;

The following S-Expression will be printed:

  '(db
    (species_set
      (species
        (common_name "house mouse")
        (binomial "Mus musculus")
        (tax_id "10090"))
      (species
        (common_name "fruit fly")
        (binomial "Drosophila melanogaster")
        (tax_id "7227"))
      (species
        (common_name "human")
        (binomial "Homo sapiens")
        (tax_id "9606")))
    (gene_set
      (gene
        (symbol "HGNC")
        (tax_id "9606")
        (phenotype "Hemochromatosis")
        (phenotype "Porphyria variegata")
        (GO_term "iron homeostasis")
        (map
          (cytological
            (chromosome "6")
            (band "p21.3"))))
      (gene
        (symbol "Hfe")
        (synonym "MR2")
        (tax_id "10090")
        (GO_term "integral membrane protein")))
    (similarity_set
      (pair
        (symbol "HGNC")
        (symbol "Hfe"))
      (pair
        (symbol "WNT3A")
        (symbol "Wnt3a"))))

=head3 TIPS FOR EMACS USERS AND LISP PROGRAMMERS

If you use emacs, you can save this as a file with the ".el" suffix
and get syntax highlighting for editing this file. Quotes around the
terminal node data items are optional.

If you know emacs lisp or any other lisp, this also turns out to be a
very nice language for manipulating these datastructures. Try copying
and pasting the above s-expression to the emacs scratch buffer and
playing with it in lisp.

=cut

#'

=head2 INDENTED TEXT REPRESENTATION

Data::Stag has its own text format for writing data trees. Again,
this is only possible because we are working with a subset of XML (no
attributes, no mixed elements). The data structure above can be
written as follows -

  db:
    species_set:
      species:
        common_name: house mouse
        binomial: Mus musculus
        tax_id: 10090
      species:
        common_name: fruit fly
        binomial: Drosophila melanogaster
        tax_id: 7227
      species:
        common_name: human
        binomial: Homo sapiens
        tax_id: 9606
    gene_set:
      gene:
        symbol: HGNC
        tax_id: 9606
        phenotype: Hemochromatosis
        phenotype: Porphyria variegata
        GO_term: iron homeostasis
        map: 6p21.3
      gene:
        symbol: Hfe
        synonym: MR2
        tax_id: 10090
        GO_term: integral membrane protein
        map: 13 A2-A4
    similarity_set:
      pair:
        symbol: HGNC
        symbol: Hfe
      pair:
        symbol: WNT3A
        symbol: Wnt3a

See L<Data::Stag::ITextParser> and  L<Data::Stag::ITextWriter>

=head2 NESTED ARRAY SPECIFICATION II

To avoid excessive square bracket usage, you can specify a structure
like this:


  use Data::Stag qw(:all);
  
  *N = \&stag_new;
  my $tree =
    N(top=>[
            N('personset'=>[
                            N('person'=>[
                                         N('name'=>'davey'),
                                         N('address'=>'here'),
                                         N('description'=>[
                                                           N('hair'=>'green'),
                                                           N('eyes'=>'two'),
                                                           N('teeth'=>5),
                                                          ]
                                          ),
                                         N('pets'=>[
                                                    N('petname'=>'igor'),
                                                    N('petname'=>'ginger'),
                                                   ]
                                          ),
                                                                          
                                        ],
                             ),
                            N('person'=>[
                                         N('name'=>'shuggy'),
                                         N('address'=>'there'),
                                         N('description'=>[
                                                           N('hair'=>'red'),
                                                           N('eyes'=>'three'),
                                                           N('teeth'=>1),
                                                          ]
                                          ),
                                         N('pets'=>[
                                                    N('petname'=>'thud'),
                                                    N('petname'=>'spud'),
                                                   ]
                                          ),
                                        ]
                             ),
                           ]
             ),
            N('animalset'=>[
                            N('animal'=>[
                                         N('name'=>'igor'),
                                         N('class'=>'rat'),
                                         N('description'=>[
                                                           N('fur'=>'white'),
                                                           N('eyes'=>'red'),
                                                           N('teeth'=>50),
                                                          ],
                                          ),
                                        ],
                             ),
                           ]
             ),

           ]
     );

  # find all people
  my @persons = stag_find($tree, 'person');

  # write xml for all red haired people
  foreach my $p (@persons) {
    print stag_xml($p)
      if stag_tmatch($p, "hair", "red");
  } ;

  # find all people that have name == shuggy
  my @p =
    stag_qmatch($tree, 
                "person",
                "name",
                "shuggy");

=head1 NODES AS DATA OBJECTS

As well as the methods listed below, a node can be treated as if it is
a data object of a class determined by the element.

For example, the following are equivalent.

  $node->get_name;
  $node->get('name');

  $node->set_name('fred');
  $node->set('name', 'fred');

This is really just syntactic sugar. The autoloaded methods are not
checked against any schema, although this may be added in future.

=head1 INDEXING STAG TREES

A stag tree can be indexed as a hash for direct retrieval; see
L<Data::Stag::HashDB>

This index can be made persistent as a DB file; see
L<Data::Stag::StagDB>

If you wish to use Stag in conjunction with a relational database, you
should install L<DBIx::DBStag>

=head1 STAG METHODS

All method calls are also available as procedural subroutine calls;
unless otherwise noted, the subroutine call is the same as the method
call, but with the string B<stag_> prefixed to the method name. The
first argument should be a Data::Stag datastructure.

To import all subroutines into the current namespace, use this idiom:

  use Data::Stag qw(:all);
  $doc = stag_parse($file);
  @persons = stag_find($doc, 'person');

If you wish to use this module procedurally, and you are too lazy to
prefix all calls with B<stag_>, use this idiom:

  use Data::Stag qw(:lazy);
  $doc = parse($file);
  @persons = find($doc, 'person');

But beware of clashes!

Most method calls also have a handy short mnemonic. Use of these is
optional. Software engineering types prefer longer names, in the
belief that this leads to clearer code. Hacker types prefer shorter
names, as this requires less keystrokes, and leads to a more compact
representation of the code. It is expected that if you do use this
module, then its usage will be fairly ubiquitous within your code, and
the mnemonics will become familiar, much like the qw and s/ operators
in perl. As always with perl, the decision is yours.

Some methods take a single parameter or list of parameters; some have
large lists of parameters that can be passed in any order. If the
documentation states:
 
  Args: [x str], [y int], [z ANY]

Then the method can be called like this:

  $stag->foo("this is x", 55, $ref);

or like this:

  $stag->foo(-z=>$ref, -x=>"this is x", -y=>55);

=head2 INITIALIZATION METHODS


=head3 new 

       Title: new

        Args: element str, data STAG-DATA
     Returns: Data::Stag node
     Example: $node = stag_new();
     Example: $node = Data::Stag->new;
     Example: $node = Data::Stag->new(person => [[name=>$n], [phone=>$p]]);

creates a new instance of a Data::Stag node


=head3 stagify (nodify)

       Title: stagify
     Synonym: nodify
        Args: data ARRAY-REF
     Returns: Data::Stag node
     Example: $node = stag_stagify([person => [[name=>$n], [phone=>$p]]]);

turns a perl array reference into a Data::Stag node.

similar to B<new>


=head3 parse 

       Title: parse

        Args: [file str], [format str], [handler obj], [fh FileHandle]
     Returns: Data::Stag node
     Example: $node = stag_parse($fn);
     Example: $node = stag_parse(-fh=>$fh, -handler=>$h, -errhandler=>$eh);
     Example: $node = Data::Stag->parse(-file=>$fn, -handler=>$myhandler);

slurps a file or string into a Data::Stag node structure. Will guess
the format (xml, sxpr, itext, indent) from the suffix if it is not given.

The format can also be the name of a parsing module, or an actual
parser object; 

The handler is any object that can take nested Stag events
(start_event, end_event, evbody) which are generated from the
parse. If the handler is omitted, all events will be cached and the
resulting tree will be returned.

See L<Data::Stag::BaseHandler> for writing your own handlers

See L<Data::Stag::BaseGenerator> for details on parser classes, and
error handling

=head3 parsestr 

       Title: parsestr

        Args: [str str], [format str], [handler obj]
     Returns: Data::Stag node
     Example: $node = stag_parsestr('(a (b (c "1")))');
     Example: $node = Data::Stag->parsestr(-str=>$str, -handler=>$myhandler);

Similar to parse(), except the first argument is a string

=head3 from 

       Title: from

        Args: format str, source str
     Returns: Data::Stag node
     Example: $node = stag_from('xml', $fn);
     Example: $node = stag_from('xmlstr', q[<top><x>1</x></top>]);
     Example: $node = Data::Stag->from($parser, $fn);

Similar to B<parse>

slurps a file or string into a Data::Stag node structure.

The format can also be the name of a parsing module, or an actual
parser object



=head3 unflatten 

       Title: unflatten

        Args: data array
     Returns: Data::Stag node
     Example: $node = stag_unflatten(person=>[name=>$n, phone=>$p, address=>[street=>$s, city=>$c]]);

Creates a node structure from a semi-flattened representation, in
which children of a node are represented as a flat list of data rather
than a list of array references.

This means a structure can be specified as:

  person=>[name=>$n,
           phone=>$p, 
           address=>[street=>$s, 
                     city=>$c]]

Instead of:

  [person=>[ [name=>$n],
             [phone=>$p], 
             [address=>[ [street=>$s], 
                         [city=>$c] ] ]
           ]
  ]

The former gets converted into the latter for the internal representation


=head3 makehandler

       Title: makehandler

        Args: hash of CODEREFs keyed by element name
              OR a string containing the name of a module
     Returns: L<Data::Stag::BaseHandler>
     Example: $h = Data::Stag->makehandler(%subs);
     Example: $h = Data::Stag->makehandler("My::FooHandler");
     Example: $h = Data::Stag->makehandler('xml');

This creates a Stag event handler. The argument is a hash of
subroutines keyed by element/node name. After each node is fired by
the parser/generator, the subroutine is called, passing the handler
object and the stag node as arguments. whatever the subroutine returns
is placed back into the tree

For example, for a a parser/generator that fires events with the
following tree form

  <person>
    <name>foo</name>
    ...
  </person>

we can create a handler that writes person/name like this:

  $h = Data::Stag->makehandler(
                               person => sub { my ($self,$stag) = @_;
                                               print $stag->name;
                                               return $stag; # don't change tree
                                             });
  $stag = Data::Stag->parse(-str=>"(...)", -handler=>$h)

See L<Data::Stag::BaseHandler> for details on handlers
  
=head3 getformathandler

       Title: getformathandler

        Args: format str OR L<Data::Stag::BaseHandler>
     Returns: L<Data::Stag::BaseHandler>
     Example: $h = Data::Stag->getformathandler('xml');
              $h->file("my.xml");
              Data::Stag->parse(-fn=>$fn, -handler=>$h);

Creates a Stag event handler - this handler can be passed to an event
generator / parser. Built in handlers include:

=over

=item xml

Generates xml tags from events

=item sxpr

Generates S-Expressions from events

=item itext

Generates itext format from events

=item indent

Generates indent format from events

=back

All the above are kinds of L<Data::Stag::Writer>

=head3 chainhandler

       Title: chainhandler

        Args: blocked events - str or str[]
              initial handler - handler object
              final handler - handler object
     Returns: 
     Example: $h = Data::Stag->chainhandler('foo', $processor, 'xml')

chains handlers together - for example, you may want to make
transforms on an event stream, and then pass the event stream to
another handler - for example, and xml handler

  $processor = Data::Stag->makehandler(
				       a => sub { my ($self,$stag) = @_;
						  $stag->set_foo("bar");
                                                  return $stag
                                                },
				       b => sub { my ($self,$stag) = @_;
						  $stag->set_blah("eek");
                                                  return $stag
                                                },
                                       );
  $chainh = Data::Stag->chainhandler(['a', 'b'], $processor, 'xml');
  $stag = Data::Stag->parse(-str=>"(...)", -handler=>$chainh)

If the inner handler has a method CONSUMES(), this method will
determine the blocked events if none are specified.

see also the script B<stag-handle.pl>


=head2  RECURSIVE SEARCHING


=head3 find (f)

       Title: find
     Synonym: f

        Args: element str
     Returns: node[] or ANY
     Example: @persons = stag_find($struct, 'person');
     Example: @persons = $struct->find('person');

recursively searches tree for all elements of the given type, and
returns all nodes or data elements found.

if the element found is a non-terminal node, will return the node
if the element found is a terminal (leaf) node, will return the data value

the element argument can be a path

  @names = $struct->find('department/person/name');

will find name in the nested structure below:

  (department
   (person
    (name "foo")))


=head3 findnode (fn)

       Title: findnode
     Synonym: fn

        Args: element str
     Returns: node[]
     Example: @persons = stag_findnode($struct, 'person');
     Example: @persons = $struct->findnode('person');

recursively searches tree for all elements of the given type, and
returns all nodes found.

paths can also be used (see B<find>)

=head3 findval (fv)

       Title: findval
     Synonym: fv

        Args: element str
     Returns: ANY[] or ANY
     Example: @names = stag_findval($struct, 'name');
     Example: @names = $struct->findval('name');
     Example: $firstname = $struct->findval('name');

recursively searches tree for all elements of the given type, and
returns all data values found. the data values could be primitive
scalars or nodes.

paths can also be used (see B<find>)

=head3 sfindval (sfv)

       Title: sfindval
     Synonym: sfv

        Args: element str
     Returns: ANY
     Example: $name = stag_sfindval($struct, 'name');
     Example: $name = $struct->sfindval('name');

as findval, but returns the first value found

paths can also be used (see B<find>)

=head3 findvallist (fvl)

       Title: findvallist
     Synonym: fvl

        Args: element str[]
     Returns: ANY[]
     Example: ($name, $phone) = stag_findvallist($personstruct, 'name', 'phone');
     Example: ($name, $phone) = $personstruct->findvallist('name', 'phone');

recursively searches tree for all elements in the list

DEPRECATED


=head2 DATA ACCESSOR METHODS


these allow getting and setting of elements directly underneath the
current one



=head3 get (g)

       Title: get
     Synonym: g

        Args: element str
      Return: node[] or ANY
     Example: $name = $person->get('name');
     Example: @phone_nos = $person->get('phone_no');

gets the value of the named sub-element

if the sub-element is a non-terminal, will return a node(s)
if the sub-element is a terminal (leaf) it will return the data value(s)

the examples above would work on a data structure like this:

  [person => [ [name => 'fred'],
               [phone_no => '1-800-111-2222'],
               [phone_no => '1-415-555-5555']]]

will return an array or single value depending on the context

[equivalent to findval(), except that only direct children (as
opposed to all descendents) are checked]

paths can also be used, like this:

 @phones_nos = $struct->get('person/phone_no')

=head3 sget (sg)

       Title: sget
     Synonym: sg

        Args: element str
      Return: ANY
     Example: $name = $person->sget('name');
     Example: $phone = $person->sget('phone_no');
     Example: $phone = $person->sget('department/person/name');

as B<get> but always returns a single value

[equivalent to sfindval(), except that only direct children (as
opposed to all descendents) are checked]


=head3 getl (gl getlist)

       Title: gl
     Synonym: getl
     Synonym: getlist

        Args: element str[]
      Return: node[] or ANY[]
     Example: ($name, @phone) = $person->getl('name', 'phone_no');

returns the data values for a list of sub-elements of a node

[equivalent to findvallist(), except that only direct children (as
opposed to all descendents) are checked]


=head3 getn (gn getnode)

       Title: getn
     Synonym: gn
     Synonym: getnode

        Args: element str
      Return: node[]
     Example: $namestruct = $person->getn('name');
     Example: @pstructs = $person->getn('phone_no');

as B<get> but returns the whole node rather than just the data value

[equivalent to findnode(), except that only direct children (as
opposed to all descendents) are checked]

=head3 sgetmap (sgm)

       Title: sgetmap
     Synonym: sgm

        Args: hash
      Return: hash
     Example: %h = $person->sgetmap('social-security-no'=>'id', 
                                    'name'              =>'label',
                                    'job'               =>0,
                                    'address'           =>'location');

returns a hash of key/val pairs based on the values of the data values
of the subnodes in the current element; keys are mapped according to
the hash passed (a value of '' or 0 will map an identical key/val).

no multivalued data elements are allowed


=head3 set (s)

       Title: set
     Synonym: s

        Args: element str, datavalue ANY (list)
      Return: ANY
     Example: $person->set('name', 'fred');    # single val
     Example: $person->set('phone_no', $cellphone, $homephone);

sets the data value of an element for any node. if the element is
multivalued, all the old values will be replaced with the new ones
specified.

ordering will be preserved, unless the element specified does not
exist, in which case, the new tag/value pair will be placed at the
end.

for example, if we have a stag node $person

  person:
    name: shuggy
    job:  bus driver

if we do this

  $person->set('name', ());

we will end up with

  person:
    job:  bus driver

then if we do this

  $person->set('name', 'shuggy');

the 'name' node will be placed as the last attribute

  person:
    job:  bus driver
    name: shuggy

You can also use B<magic methods>, for example

  $person->set_name('shuggy');
  $person->set_job('bus driver', 'poet');
  print $person->itext;

will print

  person:
    name: shuggy
    job:  bus driver
    job:  poet

  
note that if the datavalue is a non-terminal node as opposed to a
primitive value, then you have to do it like this:

  $people  = Data::Stag->new(people=>[
                                      [person=>[[name=>'Sherlock Holmes']]],
                                      [person=>[[name=>'Moriarty']]],
                                     ]);
  $address = Data::Stag->new(address=>[
                                       [address_line=>"221B Baker Street"],
                                       [city=>"London"],
                                       [country=>"Great Britain"]]);
  ($person) = $people->qmatch('person', (name => "Sherlock Holmes"));
  $person->set("address", $address->data);

If you are using XML data, you can set attributes like this:

  $person->set('@'=>[[id=>$id],[foo=>$foo]]);

=head3 unset (u)

       Title: unset
     Synonym: u

        Args: element str, datavalue ANY
      Return: ANY
     Example: $person->unset('name');
     Example: $person->unset('phone_no');

prunes all nodes of the specified element from the current node

You can use B<magic methods>, like this

  $person->unset_name;
  $person->unset_phone_no;

=head3 free 

       Title: free
     Synonym: u

        Args: 
      Return: 
     Example: $person->free;

removes all data from a node. If that node is a subnode of another
node, it is removed altogether

for instance, if we had the data below:

  <person>
    <name>fred</name>
    <address>
    ..
    </address>
  </person>

and called

  $person->get_address->free

then the person node would look like this:

  <person>
    <name>fred</name>
  </person>

=head3 add (a)

       Title: add
     Synonym: a

        Args: element str, datavalues ANY[]
              OR
              Data::Stag
      Return: ANY
     Example: $person->add('phone_no', $cellphone, $homephone);
     Example: $person->add_phone_no('1-555-555-5555');
     Example: $dataset->add($person)

adds a datavalue or list of datavalues. appends if already existing,
creates new element value pairs if not already existing.

if the argument is a stag node, it will add this node under the
current one.

For example, if we have the following node in $dataset

 <dataset>
   <person>
     <name>jim</name>
   </person>
 </dataset>

And then we add data to it:

  ($person) = $dataset->qmatch('person', name=>'jim');
  $person->add('phone_no', '555-1111', '555-2222');

We will be left with:

 <dataset>
   <person>
     <name>jim</name>
     <phone_no>555-1111</phone_no>
     <phone_no>555-2222</phone_no>
   </person>
 </dataset>

The above call is equivalent to:

  $person->add_phone_no('555-1111', '555-2222');

As well as adding data values, we can add whole nodes:

  $dataset->add(person=>[[name=>"fred"],
                         [phone_no=>"555-3333"]]);

Which is equivalent to

  $dataset->add_person([[name=>"fred"],
                        [phone_no=>"555-3333"]]);

Remember, the value has to be specified as an array reference of
nodes. In general, you should use the addkid() method to add nodes and
used add() to add values

=head3 element (e name)

       Title: element
     Synonym: e
     Synonym: name

        Args:
      Return: element str
     Example: $element = $struct->element

returns the B<element name> of the current node.

This is illustrated in the different representation formats below

=over

=item sxpr

  (element "data")

or

  (element
   (sub_element "..."))

=item xml

  <element>data</element>

or

  <element>
    <sub_element>...</sub_element>
  </element>

=item perl

  [element => $data ]

or

  [element => [
                [sub_element => "..." ]]]

=item itext

  element: data

or

  element:
    sub_element: ...

=item indent

  element "data"

or

  element
    sub_element "..."

=back
 

=head3 kids (k children)

       Title: kids
     Synonym: k
     Synonym: children

        Args:
      Return: ANY or ANY[]
     Example: @nodes = $person->kids
     Example: $name = $namestruct->kids

returns the data value(s) of the current node; if it is a terminal
node, returns a single value which is the data. if it is non-terminal,
returns an array of nodes



=head3 addkid (ak addchild)

       Title: addkid
     Synonym: ak
     Synonym: addchild

        Args: kid node
      Return: ANY
     Example: $person->addkid($job);

adds a new child node to a non-terminal node, after all the existing
child nodes

You can use this method/procedure to add XML attribute data to a node:

  $person->addkid(['@'=>[[id=>$id]]]);

=head3 subnodes

       Title: subnodes

        Args: 
      Return: ANY[]
     Example: @nodes = $person->subnodes

returns the child nodes; returns empty list if this is a terminal node

=head3 ntnodes

       Title: ntnodes

        Args: 
      Return: ANY[]
     Example: @nodes = $person->ntnodes

returns all non-terminal children of current node

=head3 tnodes

       Title: tnodes

        Args: 
      Return: ANY[]
     Example: @nodes = $person->tnodes

returns all terminal children of current node

  

=head2 QUERYING AND ADVANCED DATA MANIPULATION




=head3 ijoin (j)

       Title: ijoin
     Synonym: j
     Synonym: ij

        Args: element str, key str, data Node
      Return: undef

does a relational style inner join - see previous example in this doc

key can either be a single node name that must be shared (analogous to
SQL INNER JOIN .. USING), or a key1=key2 equivalence relation
(analogous to SQL INNER JOIN ... ON)

=head3 qmatch (qm)

       Title: qmatch
     Synonym: qm

        Args: return-element str, match-element str, match-value str
      Return: node[]
     Example: @persons = $s->qmatch('person', 'name', 'fred');
     Example: @persons = $s->qmatch('person', (job=>'bus driver'));

queries the node tree for all elements that satisfy the specified
key=val match - see previous example in this doc

for those inclined to thinking relationally, this can be thought of
as a query that returns a stag object:

  SELECT <return-element> FROM <stag-node> WHERE <match-element> = <match-value>

this always returns an array; this means that calling in a scalar
context will return the number of elements; for example

  $n = $s->qmatch('person', (name=>'fred'));

the value of $n will be equal to the number of persons called fred

=head3 tmatch (tm)

       Title: tmatch
     Synonym: tm

        Args: element str, value str
      Return: bool
     Example: @persons = grep {$_->tmatch('name', 'fred')} @persons

returns true if the the value of the specified element matches - see
previous example in this doc



=head3 tmatchhash (tmh)

       Title: tmatchhash
     Synonym: tmh

        Args: match hashref
      Return: bool
     Example: @persons = grep {$_->tmatchhash({name=>'fred', hair_colour=>'green'})} @persons

returns true if the node matches a set of constraints, specified as
hash.



=head3 tmatchnode (tmn)

       Title: tmatchnode
     Synonym: tmn

        Args: match node
      Return: bool
     Example: @persons = grep {$_->tmatchnode([person=>[[name=>'fred'], [hair_colour=>'green']]])} @persons

returns true if the node matches a set of constraints, specified as node



=head3 cmatch (cm)

       Title: cmatch
     Synonym: cm

        Args: element str, value str
      Return: bool
     Example: $n_freds = $personset->cmatch('name', 'fred');

counts the number of matches



=head3 where (w)

       Title: where
     Synonym: w

        Args: element str, test CODE
      Return: Node[]
     Example: @rich_persons = $data->where('person', sub {shift->get_salary > 100000});

the tree is queried for all elements of the specified type that
satisfy the coderef (must return a boolean)

  my @rich_dog_or_cat_owners =
    $data->where('person',
                 sub {my $p = shift;
                      $p->get_salary > 100000 &&
                      $p->where('pet',
                                sub {shift->get_type =~ /(dog|cat)/})});





=head3 iterate (i)

       Title: iterate
     Synonym: i

        Args: CODE
      Return: Node[]
     Example: $data->iterate(sub {
				 my $stag = shift;
				 my $parent = shift;
				 if ($stag->element eq 'pet') {
				     $parent->set_pet_name($stag->get_name);
				 }
			     });

iterates through whole tree calling the specified subroutine.

the first arg passed to the subroutine is the stag node representing
the tree at that point; the second arg is for the parent.

for instance, the example code above would turn this

  (person
   (name "jim")
   (pet
    (name "fluffy")))

into this

  (person
   (name "jim")
   (pet_name "fluffy")
   (pet
    (name "fluffy")))

=head3 maptree

       Title: maptree

        Args: CODE
      Return: Node[]
     Example: $data->maptree(sub {
				 my $stag = shift;
				 my $parent = shift;
				 if ($stag->element eq 'pet') {
				     [pet=>$stag->sget_foo]
				 }
                                 else {
				     $stag
                                 }
			     });

=head2 MISCELLANEOUS METHODS



=head3 duplicate (d)

       Title: duplicate
     Synonym: d

        Args:
      Return: Node
     Example: $node2 = $node->duplicate;

does a deep copy of a stag structure

=head3 isanode

       Title: isanode

        Args:
      Return: bool
     Example: if (stag_isanode($node)) { ... }



=head3 hash

       Title: hash

        Args:
      Return: hash
     Example: $h = $node->hash;
 
turns a tree into a hash. all data values will be arrayrefs



=head3 pairs

       Title: pairs

turns a tree into a hash. all data values will be scalar (IMPORTANT:
this means duplicate values will be lost)




=head3 write

       Title: write

        Args: filename str, format str[optional]
      Return:
     Example: $node->write("myfile.xml");
     Example: $node->write("myfile", "itext");

will try and guess the format from the extension if not specified



=head3 xml

       Title: xml

        Args: filename str, format str[optional]
      Return:
     Example: $node->write("myfile.xml");
     Example: $node->write("myfile", "itext");


        Args:
      Return: xml str
     Example: print $node->xml;



=head2 XML METHODS



=head3 xslt

       Title: xslt

        Args: xslt_file str
      Return: Node
     Example: $new_stag = $stag->xslt('mytransform.xsl');

transforms a stag tree using XSLT

=head3 xsltstr

       Title: xsltstr

        Args: xslt_file str
      Return: str
     Example: print $stag->xsltstr('mytransform.xsl');

As above, but returns the string of the resulting transform, rather
than a stag tree

=head3 sax

       Title: sax

        Args: saxhandler SAX-CLASS
      Return:
     Example: $node->sax($mysaxhandler);

turns a tree into a series of SAX events



=head3 xpath (xp tree2xpath)

       Title: xpath
     Synonym: xp
     Synonym: tree2xpath

        Args:
      Return: xpath object
     Example: $xp = $node->xpath; $q = $xp->find($xpathquerystr);



=head3 xpquery (xpq xpathquery)

       Title: xpquery
     Synonym: xpq
     Synonym: xpathquery

        Args: xpathquery str
      Return: Node[]
     Example: @nodes = $node->xqp($xpathquerystr);

=head1 STAG SCRIPTS

The following scripts come with the stag module

=over

=item stag-autoschema.pl

writes the implicit stag-schema for a stag file

=item stag-db.pl

persistent storage and retrieval for stag data (xml, sxpr, itext)

=item stag-diff.pl

finds the difference between two stag files

=item stag-drawtree.pl

draws a stag file (xml, itext, sxpr) as a PNG diagram

=item stag-filter.pl

filters a stag file (xml, itext, sxpr) for nodes of interest

=item stag-findsubtree.pl

finds nodes in a stag file

=item stag-flatten.pl

turns stag data into a flat table

=item stag-grep.pl

filters a stag file (xml, itext, sxpr) for nodes of interest

=item stag-handle.pl

streams a stag file through a handler into a writer

=item stag-join.pl

joins two stag files together based around common key

=item stag-mogrify.pl

mangle stag files

=item stag-parse.pl

parses a file and fires events (e.g. sxpr to xml)

=item stag-query.pl

aggregare queries

=item stag-split.pl

splits a stag file (xml, itext, sxpr) into multiple files

=item stag-splitter.pl

splits a stag file into multiple files

=item stag-view.pl

draws an expandable Tk tree diagram showing stag data

=back

To get more documentation, type

  stag_<script> -h

=head1 BUGS

none known so far, possibly quite a few undocumented features!

Not a bug, but the underlying default datastructure of nested arrays
is more heavyweight than it needs to be. More lightweight
implementations are possible. Some time I will write a C
implementation.

=head1 WEBSITE

L<http://stag.sourceforge.net>

=head1 AUTHOR

Chris Mungall <F<cjm AT fruitfly DOT org>>

=head1 COPYRIGHT

Copyright (c) 2004 Chris Mungall

This module is free software.
You may distribute this module under the same terms as perl itself

=cut



1;