1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
|
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.1.1.1 2004/08/08 15:03:57 matt Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
** "Sorting And Searching", pages 473-480. Addison-Wesley
** Publishing Company, Reading, Massachusetts.
**
** The basic idea is that each page of the file contains N database
** entries and N+1 pointers to subpages.
**
** ----------------------------------------------------------------
** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
** ----------------------------------------------------------------
**
** All of the keys on the page that Ptr(0) points to have values less
** than Key(0). All of the keys on page Ptr(1) and its subpages have
** values greater than Key(0) and less than Key(1). All of the keys
** on Ptr(N+1) and its subpages have values greater than Key(N). And
** so forth.
**
** Finding a particular key requires reading O(log(M)) pages from the
** disk where M is the number of entries in the tree.
**
** In this implementation, a single file can hold one or more separate
** BTrees. Each BTree is identified by the index of its root page. The
** key and data for any entry are combined to form the "payload". Up to
** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
** then surplus bytes are stored on overflow pages. The payload for an
** entry and the preceding pointer are combined to form a "Cell". Each
** page has a small header which contains the Ptr(N+1) pointer.
**
** The first page of the file contains a magic string used to verify that
** the file really is a valid BTree database, a pointer to a list of unused
** pages in the file, and some meta information. The root of the first
** BTree begins on page 2 of the file. (Pages are numbered beginning with
** 1, not 0.) Thus a minimum database contains 2 pages.
*/
#include "sqliteInt.h"
#include "pager.h"
#include "btree.h"
#include <assert.h>
/* Forward declarations */
static BtOps sqliteBtreeOps;
static BtCursorOps sqliteBtreeCursorOps;
/*
** Macros used for byteswapping. B is a pointer to the Btree
** structure. This is needed to access the Btree.needSwab boolean
** in order to tell if byte swapping is needed or not.
** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer.
** SWAB32 byteswaps a 32-bit integer.
*/
#define SWAB16(B,X) ((B)->needSwab? swab16((u16)X) : ((u16)X))
#define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X))
#define SWAB_ADD(B,X,A) \
if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); }
/*
** The following global variable - available only if SQLITE_TEST is
** defined - is used to determine whether new databases are created in
** native byte order or in non-native byte order. Non-native byte order
** databases are created for testing purposes only. Under normal operation,
** only native byte-order databases should be created, but we should be
** able to read or write existing databases regardless of the byteorder.
*/
#ifdef SQLITE_TEST
int btree_native_byte_order = 1;
#else
# define btree_native_byte_order 1
#endif
/*
** Forward declarations of structures used only in this file.
*/
typedef struct PageOne PageOne;
typedef struct MemPage MemPage;
typedef struct PageHdr PageHdr;
typedef struct Cell Cell;
typedef struct CellHdr CellHdr;
typedef struct FreeBlk FreeBlk;
typedef struct OverflowPage OverflowPage;
typedef struct FreelistInfo FreelistInfo;
/*
** All structures on a database page are aligned to 4-byte boundries.
** This routine rounds up a number of bytes to the next multiple of 4.
**
** This might need to change for computer architectures that require
** and 8-byte alignment boundry for structures.
*/
#define ROUNDUP(X) ((X+3) & ~3)
/*
** This is a magic string that appears at the beginning of every
** SQLite database in order to identify the file as a real database.
*/
static const char zMagicHeader[] =
"** This file contains an SQLite 2.1 database **";
#define MAGIC_SIZE (sizeof(zMagicHeader))
/*
** This is a magic integer also used to test the integrity of the database
** file. This integer is used in addition to the string above so that
** if the file is written on a little-endian architecture and read
** on a big-endian architectures (or vice versa) we can detect the
** problem.
**
** The number used was obtained at random and has no special
** significance other than the fact that it represents a different
** integer on little-endian and big-endian machines.
*/
#define MAGIC 0xdae37528
/*
** The first page of the database file contains a magic header string
** to identify the file as an SQLite database file. It also contains
** a pointer to the first free page of the file. Page 2 contains the
** root of the principle BTree. The file might contain other BTrees
** rooted on pages above 2.
**
** The first page also contains SQLITE_N_BTREE_META integers that
** can be used by higher-level routines.
**
** Remember that pages are numbered beginning with 1. (See pager.c
** for additional information.) Page 0 does not exist and a page
** number of 0 is used to mean "no such page".
*/
struct PageOne {
char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
int iMagic; /* Integer to verify correct byte order */
Pgno freeList; /* First free page in a list of all free pages */
int nFree; /* Number of pages on the free list */
int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
};
/*
** Each database page has a header that is an instance of this
** structure.
**
** PageHdr.firstFree is 0 if there is no free space on this page.
** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
** FreeBlk structure that describes the first block of free space.
** All free space is defined by a linked list of FreeBlk structures.
**
** Data is stored in a linked list of Cell structures. PageHdr.firstCell
** is the index into MemPage.u.aDisk[] of the first cell on the page. The
** Cells are kept in sorted order.
**
** A Cell contains all information about a database entry and a pointer
** to a child page that contains other entries less than itself. In
** other words, the i-th Cell contains both Ptr(i) and Key(i). The
** right-most pointer of the page is contained in PageHdr.rightChild.
*/
struct PageHdr {
Pgno rightChild; /* Child page that comes after all cells on this page */
u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
};
/*
** Entries on a page of the database are called "Cells". Each Cell
** has a header and data. This structure defines the header. The
** key and data (collectively the "payload") follow this header on
** the database page.
**
** A definition of the complete Cell structure is given below. The
** header for the cell must be defined first in order to do some
** of the sizing #defines that follow.
*/
struct CellHdr {
Pgno leftChild; /* Child page that comes before this cell */
u16 nKey; /* Number of bytes in the key */
u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */
u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */
u16 nData; /* Number of bytes of data */
};
/*
** The key and data size are split into a lower 16-bit segment and an
** upper 8-bit segment in order to pack them together into a smaller
** space. The following macros reassembly a key or data size back
** into an integer.
*/
#define NKEY(b,h) (SWAB16(b,h.nKey) + h.nKeyHi*65536)
#define NDATA(b,h) (SWAB16(b,h.nData) + h.nDataHi*65536)
/*
** The minimum size of a complete Cell. The Cell must contain a header
** and at least 4 bytes of payload.
*/
#define MIN_CELL_SIZE (sizeof(CellHdr)+4)
/*
** The maximum number of database entries that can be held in a single
** page of the database.
*/
#define MX_CELL ((SQLITE_USABLE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
/*
** The amount of usable space on a single page of the BTree. This is the
** page size minus the overhead of the page header.
*/
#define USABLE_SPACE (SQLITE_USABLE_SIZE - sizeof(PageHdr))
/*
** The maximum amount of payload (in bytes) that can be stored locally for
** a database entry. If the entry contains more data than this, the
** extra goes onto overflow pages.
**
** This number is chosen so that at least 4 cells will fit on every page.
*/
#define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
/*
** Data on a database page is stored as a linked list of Cell structures.
** Both the key and the data are stored in aPayload[]. The key always comes
** first. The aPayload[] field grows as necessary to hold the key and data,
** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
** page number of the first overflow page.
**
** Though this structure is fixed in size, the Cell on the database
** page varies in size. Every cell has a CellHdr and at least 4 bytes
** of payload space. Additional payload bytes (up to the maximum of
** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
** needed.
*/
struct Cell {
CellHdr h; /* The cell header */
char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
Pgno ovfl; /* The first overflow page */
};
/*
** Free space on a page is remembered using a linked list of the FreeBlk
** structures. Space on a database page is allocated in increments of
** at least 4 bytes and is always aligned to a 4-byte boundry. The
** linked list of FreeBlks is always kept in order by address.
*/
struct FreeBlk {
u16 iSize; /* Number of bytes in this block of free space */
u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
};
/*
** The number of bytes of payload that will fit on a single overflow page.
*/
#define OVERFLOW_SIZE (SQLITE_USABLE_SIZE-sizeof(Pgno))
/*
** When the key and data for a single entry in the BTree will not fit in
** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
** then all extra bytes are written to a linked list of overflow pages.
** Each overflow page is an instance of the following structure.
**
** Unused pages in the database are also represented by instances of
** the OverflowPage structure. The PageOne.freeList field is the
** page number of the first page in a linked list of unused database
** pages.
*/
struct OverflowPage {
Pgno iNext;
char aPayload[OVERFLOW_SIZE];
};
/*
** The PageOne.freeList field points to a linked list of overflow pages
** hold information about free pages. The aPayload section of each
** overflow page contains an instance of the following structure. The
** aFree[] array holds the page number of nFree unused pages in the disk
** file.
*/
struct FreelistInfo {
int nFree;
Pgno aFree[(OVERFLOW_SIZE-sizeof(int))/sizeof(Pgno)];
};
/*
** For every page in the database file, an instance of the following structure
** is stored in memory. The u.aDisk[] array contains the raw bits read from
** the disk. The rest is auxiliary information held in memory only. The
** auxiliary info is only valid for regular database pages - it is not
** used for overflow pages and pages on the freelist.
**
** Of particular interest in the auxiliary info is the apCell[] entry. Each
** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
** put in this array so that they can be accessed in constant time, rather
** than in linear time which would be needed if we had to walk the linked
** list on every access.
**
** Note that apCell[] contains enough space to hold up to two more Cells
** than can possibly fit on one page. In the steady state, every apCell[]
** points to memory inside u.aDisk[]. But in the middle of an insert
** operation, some apCell[] entries may temporarily point to data space
** outside of u.aDisk[]. This is a transient situation that is quickly
** resolved. But while it is happening, it is possible for a database
** page to hold as many as two more cells than it might otherwise hold.
** The extra two entries in apCell[] are an allowance for this situation.
**
** The pParent field points back to the parent page. This allows us to
** walk up the BTree from any leaf to the root. Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
*/
struct MemPage {
union u_page_data {
char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
PageHdr hdr; /* Overlay page header */
} u;
u8 isInit; /* True if auxiliary data is initialized */
u8 idxShift; /* True if apCell[] indices have changed */
u8 isOverfull; /* Some apCell[] points outside u.aDisk[] */
MemPage *pParent; /* The parent of this page. NULL for root */
int idxParent; /* Index in pParent->apCell[] of this node */
int nFree; /* Number of free bytes in u.aDisk[] */
int nCell; /* Number of entries on this page */
Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
};
/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/
#define EXTRA_SIZE (sizeof(MemPage)-sizeof(union u_page_data))
/*
** Everything we need to know about an open database
*/
struct Btree {
BtOps *pOps; /* Function table */
Pager *pPager; /* The page cache */
BtCursor *pCursor; /* A list of all open cursors */
PageOne *page1; /* First page of the database */
u8 inTrans; /* True if a transaction is in progress */
u8 inCkpt; /* True if there is a checkpoint on the transaction */
u8 readOnly; /* True if the underlying file is readonly */
u8 needSwab; /* Need to byte-swapping */
};
typedef Btree Bt;
/*
** A cursor is a pointer to a particular entry in the BTree.
** The entry is identified by its MemPage and the index in
** MemPage.apCell[] of the entry.
*/
struct BtCursor {
BtCursorOps *pOps; /* Function table */
Btree *pBt; /* The Btree to which this cursor belongs */
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
BtCursor *pShared; /* Loop of cursors with the same root page */
Pgno pgnoRoot; /* The root page of this tree */
MemPage *pPage; /* Page that contains the entry */
int idx; /* Index of the entry in pPage->apCell[] */
u8 wrFlag; /* True if writable */
u8 eSkip; /* Determines if next step operation is a no-op */
u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
};
/*
** Legal values for BtCursor.eSkip.
*/
#define SKIP_NONE 0 /* Always step the cursor */
#define SKIP_NEXT 1 /* The next sqliteBtreeNext() is a no-op */
#define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */
#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
/* Forward declarations */
static int fileBtreeCloseCursor(BtCursor *pCur);
/*
** Routines for byte swapping.
*/
u16 swab16(u16 x){
return ((x & 0xff)<<8) | ((x>>8)&0xff);
}
u32 swab32(u32 x){
return ((x & 0xff)<<24) | ((x & 0xff00)<<8) |
((x>>8) & 0xff00) | ((x>>24)&0xff);
}
/*
** Compute the total number of bytes that a Cell needs on the main
** database page. The number returned includes the Cell header,
** local payload storage, and the pointer to overflow pages (if
** applicable). Additional space allocated on overflow pages
** is NOT included in the value returned from this routine.
*/
static int cellSize(Btree *pBt, Cell *pCell){
int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
if( n>MX_LOCAL_PAYLOAD ){
n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
}else{
n = ROUNDUP(n);
}
n += sizeof(CellHdr);
return n;
}
/*
** Defragment the page given. All Cells are moved to the
** beginning of the page and all free space is collected
** into one big FreeBlk at the end of the page.
*/
static void defragmentPage(Btree *pBt, MemPage *pPage){
int pc, i, n;
FreeBlk *pFBlk;
char newPage[SQLITE_USABLE_SIZE];
assert( sqlitepager_iswriteable(pPage) );
assert( pPage->isInit );
pc = sizeof(PageHdr);
pPage->u.hdr.firstCell = SWAB16(pBt, pc);
memcpy(newPage, pPage->u.aDisk, pc);
for(i=0; i<pPage->nCell; i++){
Cell *pCell = pPage->apCell[i];
/* This routine should never be called on an overfull page. The
** following asserts verify that constraint. */
assert( Addr(pCell) > Addr(pPage) );
assert( Addr(pCell) < Addr(pPage) + SQLITE_USABLE_SIZE );
n = cellSize(pBt, pCell);
pCell->h.iNext = SWAB16(pBt, pc + n);
memcpy(&newPage[pc], pCell, n);
pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
pc += n;
}
assert( pPage->nFree==SQLITE_USABLE_SIZE-pc );
memcpy(pPage->u.aDisk, newPage, pc);
if( pPage->nCell>0 ){
pPage->apCell[pPage->nCell-1]->h.iNext = 0;
}
pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
pFBlk->iSize = SWAB16(pBt, SQLITE_USABLE_SIZE - pc);
pFBlk->iNext = 0;
pPage->u.hdr.firstFree = SWAB16(pBt, pc);
memset(&pFBlk[1], 0, SQLITE_USABLE_SIZE - pc - sizeof(FreeBlk));
}
/*
** Allocate nByte bytes of space on a page. nByte must be a
** multiple of 4.
**
** Return the index into pPage->u.aDisk[] of the first byte of
** the new allocation. Or return 0 if there is not enough free
** space on the page to satisfy the allocation request.
**
** If the page contains nBytes of free space but does not contain
** nBytes of contiguous free space, then this routine automatically
** calls defragementPage() to consolidate all free space before
** allocating the new chunk.
*/
static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){
FreeBlk *p;
u16 *pIdx;
int start;
int iSize;
#ifndef NDEBUG
int cnt = 0;
#endif
assert( sqlitepager_iswriteable(pPage) );
assert( nByte==ROUNDUP(nByte) );
assert( pPage->isInit );
if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
pIdx = &pPage->u.hdr.firstFree;
p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
while( (iSize = SWAB16(pBt, p->iSize))<nByte ){
assert( cnt++ < SQLITE_USABLE_SIZE/4 );
if( p->iNext==0 ){
defragmentPage(pBt, pPage);
pIdx = &pPage->u.hdr.firstFree;
}else{
pIdx = &p->iNext;
}
p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
}
if( iSize==nByte ){
start = SWAB16(pBt, *pIdx);
*pIdx = p->iNext;
}else{
FreeBlk *pNew;
start = SWAB16(pBt, *pIdx);
pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
pNew->iNext = p->iNext;
pNew->iSize = SWAB16(pBt, iSize - nByte);
*pIdx = SWAB16(pBt, start + nByte);
}
pPage->nFree -= nByte;
return start;
}
/*
** Return a section of the MemPage.u.aDisk[] to the freelist.
** The first byte of the new free block is pPage->u.aDisk[start]
** and the size of the block is "size" bytes. Size must be
** a multiple of 4.
**
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
int end = start + size;
u16 *pIdx, idx;
FreeBlk *pFBlk;
FreeBlk *pNew;
FreeBlk *pNext;
int iSize;
assert( sqlitepager_iswriteable(pPage) );
assert( size == ROUNDUP(size) );
assert( start == ROUNDUP(start) );
assert( pPage->isInit );
pIdx = &pPage->u.hdr.firstFree;
idx = SWAB16(pBt, *pIdx);
while( idx!=0 && idx<start ){
pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
iSize = SWAB16(pBt, pFBlk->iSize);
if( idx + iSize == start ){
pFBlk->iSize = SWAB16(pBt, iSize + size);
if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
if( pBt->needSwab ){
pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size);
}else{
pFBlk->iSize += pNext->iSize;
}
pFBlk->iNext = pNext->iNext;
}
pPage->nFree += size;
return;
}
pIdx = &pFBlk->iNext;
idx = SWAB16(pBt, *pIdx);
}
pNew = (FreeBlk*)&pPage->u.aDisk[start];
if( idx != end ){
pNew->iSize = SWAB16(pBt, size);
pNew->iNext = SWAB16(pBt, idx);
}else{
pNext = (FreeBlk*)&pPage->u.aDisk[idx];
pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize));
pNew->iNext = pNext->iNext;
}
*pIdx = SWAB16(pBt, start);
pPage->nFree += size;
}
/*
** Initialize the auxiliary information for a disk block.
**
** The pParent parameter must be a pointer to the MemPage which
** is the parent of the page being initialized. The root of the
** BTree (usually page 2) has no parent and so for that page,
** pParent==NULL.
**
** Return SQLITE_OK on success. If we see that the page does
** not contain a well-formed database page, then return
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed. It only shows that
** we failed to detect any corruption.
*/
static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
int idx; /* An index into pPage->u.aDisk[] */
Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
int sz; /* The size of a Cell in bytes */
int freeSpace; /* Amount of free space on the page */
if( pPage->pParent ){
assert( pPage->pParent==pParent );
return SQLITE_OK;
}
if( pParent ){
pPage->pParent = pParent;
sqlitepager_ref(pParent);
}
if( pPage->isInit ) return SQLITE_OK;
pPage->isInit = 1;
pPage->nCell = 0;
freeSpace = USABLE_SPACE;
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx!=0 ){
if( idx>SQLITE_USABLE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
if( idx<sizeof(PageHdr) ) goto page_format_error;
if( idx!=ROUNDUP(idx) ) goto page_format_error;
pCell = (Cell*)&pPage->u.aDisk[idx];
sz = cellSize(pBt, pCell);
if( idx+sz > SQLITE_USABLE_SIZE ) goto page_format_error;
freeSpace -= sz;
pPage->apCell[pPage->nCell++] = pCell;
idx = SWAB16(pBt, pCell->h.iNext);
}
pPage->nFree = 0;
idx = SWAB16(pBt, pPage->u.hdr.firstFree);
while( idx!=0 ){
int iNext;
if( idx>SQLITE_USABLE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
if( idx<sizeof(PageHdr) ) goto page_format_error;
pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
pPage->nFree += SWAB16(pBt, pFBlk->iSize);
iNext = SWAB16(pBt, pFBlk->iNext);
if( iNext>0 && iNext <= idx ) goto page_format_error;
idx = iNext;
}
if( pPage->nCell==0 && pPage->nFree==0 ){
/* As a special case, an uninitialized root page appears to be
** an empty database */
return SQLITE_OK;
}
if( pPage->nFree!=freeSpace ) goto page_format_error;
return SQLITE_OK;
page_format_error:
return SQLITE_CORRUPT;
}
/*
** Set up a raw page so that it looks like a database page holding
** no entries.
*/
static void zeroPage(Btree *pBt, MemPage *pPage){
PageHdr *pHdr;
FreeBlk *pFBlk;
assert( sqlitepager_iswriteable(pPage) );
memset(pPage, 0, SQLITE_USABLE_SIZE);
pHdr = &pPage->u.hdr;
pHdr->firstCell = 0;
pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr));
pFBlk = (FreeBlk*)&pHdr[1];
pFBlk->iNext = 0;
pPage->nFree = SQLITE_USABLE_SIZE - sizeof(*pHdr);
pFBlk->iSize = SWAB16(pBt, pPage->nFree);
pPage->nCell = 0;
pPage->isOverfull = 0;
}
/*
** This routine is called when the reference count for a page
** reaches zero. We need to unref the pParent pointer when that
** happens.
*/
static void pageDestructor(void *pData){
MemPage *pPage = (MemPage*)pData;
if( pPage->pParent ){
MemPage *pParent = pPage->pParent;
pPage->pParent = 0;
sqlitepager_unref(pParent);
}
}
/*
** Open a new database.
**
** Actually, this routine just sets up the internal data structures
** for accessing the database. We do not open the database file
** until the first page is loaded.
**
** zFilename is the name of the database file. If zFilename is NULL
** a new database with a random name is created. This randomly named
** database file will be deleted when sqliteBtreeClose() is called.
*/
int sqliteBtreeOpen(
const char *zFilename, /* Name of the file containing the BTree database */
int omitJournal, /* if TRUE then do not journal this file */
int nCache, /* How many pages in the page cache */
Btree **ppBtree /* Pointer to new Btree object written here */
){
Btree *pBt;
int rc;
/*
** The following asserts make sure that structures used by the btree are
** the right size. This is to guard against size changes that result
** when compiling on a different architecture.
*/
assert( sizeof(u32)==4 );
assert( sizeof(u16)==2 );
assert( sizeof(Pgno)==4 );
assert( sizeof(PageHdr)==8 );
assert( sizeof(CellHdr)==12 );
assert( sizeof(FreeBlk)==4 );
assert( sizeof(OverflowPage)==SQLITE_USABLE_SIZE );
assert( sizeof(FreelistInfo)==OVERFLOW_SIZE );
assert( sizeof(ptr)==sizeof(char*) );
assert( sizeof(uptr)==sizeof(ptr) );
pBt = sqliteMalloc( sizeof(*pBt) );
if( pBt==0 ){
*ppBtree = 0;
return SQLITE_NOMEM;
}
if( nCache<10 ) nCache = 10;
rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
!omitJournal);
if( rc!=SQLITE_OK ){
if( pBt->pPager ) sqlitepager_close(pBt->pPager);
sqliteFree(pBt);
*ppBtree = 0;
return rc;
}
sqlitepager_set_destructor(pBt->pPager, pageDestructor);
pBt->pCursor = 0;
pBt->page1 = 0;
pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
pBt->pOps = &sqliteBtreeOps;
*ppBtree = pBt;
return SQLITE_OK;
}
/*
** Close an open database and invalidate all cursors.
*/
static int fileBtreeClose(Btree *pBt){
while( pBt->pCursor ){
fileBtreeCloseCursor(pBt->pCursor);
}
sqlitepager_close(pBt->pPager);
sqliteFree(pBt);
return SQLITE_OK;
}
/*
** Change the limit on the number of pages allowed in the cache.
**
** The maximum number of cache pages is set to the absolute
** value of mxPage. If mxPage is negative, the pager will
** operate asynchronously - it will not stop to do fsync()s
** to insure data is written to the disk surface before
** continuing. Transactions still work if synchronous is off,
** and the database cannot be corrupted if this program
** crashes. But if the operating system crashes or there is
** an abrupt power failure when synchronous is off, the database
** could be left in an inconsistent and unrecoverable state.
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){
sqlitepager_set_cachesize(pBt->pPager, mxPage);
return SQLITE_OK;
}
/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures. Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage) Level 2 is the default. There
** is a very low but non-zero probability of damage. Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
static int fileBtreeSetSafetyLevel(Btree *pBt, int level){
sqlitepager_set_safety_level(pBt->pPager, level);
return SQLITE_OK;
}
/*
** Get a reference to page1 of the database file. This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success. If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
** is returned if we run out of memory. SQLITE_PROTOCOL is returned
** if there is a locking protocol violation.
*/
static int lockBtree(Btree *pBt){
int rc;
if( pBt->page1 ) return SQLITE_OK;
rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
if( rc!=SQLITE_OK ) return rc;
/* Do some checking to help insure the file we opened really is
** a valid database file.
*/
if( sqlitepager_pagecount(pBt->pPager)>0 ){
PageOne *pP1 = pBt->page1;
if( strcmp(pP1->zMagic,zMagicHeader)!=0 ||
(pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){
rc = SQLITE_NOTADB;
goto page1_init_failed;
}
pBt->needSwab = pP1->iMagic!=MAGIC;
}
return rc;
page1_init_failed:
sqlitepager_unref(pBt->page1);
pBt->page1 = 0;
return rc;
}
/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which
** has the effect of releasing the read lock.
**
** If there are any outstanding cursors, this routine is a no-op.
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(Btree *pBt){
if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
sqlitepager_unref(pBt->page1);
pBt->page1 = 0;
pBt->inTrans = 0;
pBt->inCkpt = 0;
}
}
/*
** Create a new database by initializing the first two pages of the
** file.
*/
static int newDatabase(Btree *pBt){
MemPage *pRoot;
PageOne *pP1;
int rc;
if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
pP1 = pBt->page1;
rc = sqlitepager_write(pBt->page1);
if( rc ) return rc;
rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
if( rc ) return rc;
rc = sqlitepager_write(pRoot);
if( rc ){
sqlitepager_unref(pRoot);
return rc;
}
strcpy(pP1->zMagic, zMagicHeader);
if( btree_native_byte_order ){
pP1->iMagic = MAGIC;
pBt->needSwab = 0;
}else{
pP1->iMagic = swab32(MAGIC);
pBt->needSwab = 1;
}
zeroPage(pBt, pRoot);
sqlitepager_unref(pRoot);
return SQLITE_OK;
}
/*
** Attempt to start a new transaction.
**
** A transaction must be started before attempting any changes
** to the database. None of the following routines will work
** unless a transaction is started first:
**
** sqliteBtreeCreateTable()
** sqliteBtreeCreateIndex()
** sqliteBtreeClearTable()
** sqliteBtreeDropTable()
** sqliteBtreeInsert()
** sqliteBtreeDelete()
** sqliteBtreeUpdateMeta()
*/
static int fileBtreeBeginTrans(Btree *pBt){
int rc;
if( pBt->inTrans ) return SQLITE_ERROR;
if( pBt->readOnly ) return SQLITE_READONLY;
if( pBt->page1==0 ){
rc = lockBtree(pBt);
if( rc!=SQLITE_OK ){
return rc;
}
}
rc = sqlitepager_begin(pBt->page1);
if( rc==SQLITE_OK ){
rc = newDatabase(pBt);
}
if( rc==SQLITE_OK ){
pBt->inTrans = 1;
pBt->inCkpt = 0;
}else{
unlockBtreeIfUnused(pBt);
}
return rc;
}
/*
** Commit the transaction currently in progress.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
static int fileBtreeCommit(Btree *pBt){
int rc;
rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
pBt->inTrans = 0;
pBt->inCkpt = 0;
unlockBtreeIfUnused(pBt);
return rc;
}
/*
** Rollback the transaction in progress. All cursors will be
** invalided by this operation. Any attempt to use a cursor
** that was open at the beginning of this operation will result
** in an error.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
static int fileBtreeRollback(Btree *pBt){
int rc;
BtCursor *pCur;
if( pBt->inTrans==0 ) return SQLITE_OK;
pBt->inTrans = 0;
pBt->inCkpt = 0;
rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( pCur->pPage && pCur->pPage->isInit==0 ){
sqlitepager_unref(pCur->pPage);
pCur->pPage = 0;
}
}
unlockBtreeIfUnused(pBt);
return rc;
}
/*
** Set the checkpoint for the current transaction. The checkpoint serves
** as a sub-transaction that can be rolled back independently of the
** main transaction. You must start a transaction before starting a
** checkpoint. The checkpoint is ended automatically if the transaction
** commits or rolls back.
**
** Only one checkpoint may be active at a time. It is an error to try
** to start a new checkpoint if another checkpoint is already active.
*/
static int fileBtreeBeginCkpt(Btree *pBt){
int rc;
if( !pBt->inTrans || pBt->inCkpt ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager);
pBt->inCkpt = 1;
return rc;
}
/*
** Commit a checkpoint to transaction currently in progress. If no
** checkpoint is active, this is a no-op.
*/
static int fileBtreeCommitCkpt(Btree *pBt){
int rc;
if( pBt->inCkpt && !pBt->readOnly ){
rc = sqlitepager_ckpt_commit(pBt->pPager);
}else{
rc = SQLITE_OK;
}
pBt->inCkpt = 0;
return rc;
}
/*
** Rollback the checkpoint to the current transaction. If there
** is no active checkpoint or transaction, this routine is a no-op.
**
** All cursors will be invalided by this operation. Any attempt
** to use a cursor that was open at the beginning of this operation
** will result in an error.
*/
static int fileBtreeRollbackCkpt(Btree *pBt){
int rc;
BtCursor *pCur;
if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
rc = sqlitepager_ckpt_rollback(pBt->pPager);
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( pCur->pPage && pCur->pPage->isInit==0 ){
sqlitepager_unref(pCur->pPage);
pCur->pPage = 0;
}
}
pBt->inCkpt = 0;
return rc;
}
/*
** Create a new cursor for the BTree whose root is on the page
** iTable. The act of acquiring a cursor gets a read lock on
** the database file.
**
** If wrFlag==0, then the cursor can only be used for reading.
** If wrFlag==1, then the cursor can be used for reading or for
** writing if other conditions for writing are also met. These
** are the conditions that must be met in order for writing to
** be allowed:
**
** 1: The cursor must have been opened with wrFlag==1
**
** 2: No other cursors may be open with wrFlag==0 on the same table
**
** 3: The database must be writable (not on read-only media)
**
** 4: There must be an active transaction.
**
** Condition 2 warrants further discussion. If any cursor is opened
** on a table with wrFlag==0, that prevents all other cursors from
** writing to that table. This is a kind of "read-lock". When a cursor
** is opened with wrFlag==0 it is guaranteed that the table will not
** change as long as the cursor is open. This allows the cursor to
** do a sequential scan of the table without having to worry about
** entries being inserted or deleted during the scan. Cursors should
** be opened with wrFlag==0 only if this read-lock property is needed.
** That is to say, cursors should be opened with wrFlag==0 only if they
** intend to use the sqliteBtreeNext() system call. All other cursors
** should be opened with wrFlag==1 even if they never really intend
** to write.
**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree. If it is not, then the cursor acquired
** will not work correctly.
*/
static
int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
int rc;
BtCursor *pCur, *pRing;
if( pBt->readOnly && wrFlag ){
*ppCur = 0;
return SQLITE_READONLY;
}
if( pBt->page1==0 ){
rc = lockBtree(pBt);
if( rc!=SQLITE_OK ){
*ppCur = 0;
return rc;
}
}
pCur = sqliteMalloc( sizeof(*pCur) );
if( pCur==0 ){
rc = SQLITE_NOMEM;
goto create_cursor_exception;
}
pCur->pgnoRoot = (Pgno)iTable;
rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
if( rc!=SQLITE_OK ){
goto create_cursor_exception;
}
rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
if( rc!=SQLITE_OK ){
goto create_cursor_exception;
}
pCur->pOps = &sqliteBtreeCursorOps;
pCur->pBt = pBt;
pCur->wrFlag = wrFlag;
pCur->idx = 0;
pCur->eSkip = SKIP_INVALID;
pCur->pNext = pBt->pCursor;
if( pCur->pNext ){
pCur->pNext->pPrev = pCur;
}
pCur->pPrev = 0;
pRing = pBt->pCursor;
while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
if( pRing ){
pCur->pShared = pRing->pShared;
pRing->pShared = pCur;
}else{
pCur->pShared = pCur;
}
pBt->pCursor = pCur;
*ppCur = pCur;
return SQLITE_OK;
create_cursor_exception:
*ppCur = 0;
if( pCur ){
if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
sqliteFree(pCur);
}
unlockBtreeIfUnused(pBt);
return rc;
}
/*
** Close a cursor. The read lock on the database file is released
** when the last cursor is closed.
*/
static int fileBtreeCloseCursor(BtCursor *pCur){
Btree *pBt = pCur->pBt;
if( pCur->pPrev ){
pCur->pPrev->pNext = pCur->pNext;
}else{
pBt->pCursor = pCur->pNext;
}
if( pCur->pNext ){
pCur->pNext->pPrev = pCur->pPrev;
}
if( pCur->pPage ){
sqlitepager_unref(pCur->pPage);
}
if( pCur->pShared!=pCur ){
BtCursor *pRing = pCur->pShared;
while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
pRing->pShared = pCur->pShared;
}
unlockBtreeIfUnused(pBt);
sqliteFree(pCur);
return SQLITE_OK;
}
/*
** Make a temporary cursor by filling in the fields of pTempCur.
** The temporary cursor is not on the cursor list for the Btree.
*/
static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
memcpy(pTempCur, pCur, sizeof(*pCur));
pTempCur->pNext = 0;
pTempCur->pPrev = 0;
if( pTempCur->pPage ){
sqlitepager_ref(pTempCur->pPage);
}
}
/*
** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
** function above.
*/
static void releaseTempCursor(BtCursor *pCur){
if( pCur->pPage ){
sqlitepager_unref(pCur->pPage);
}
}
/*
** Set *pSize to the number of bytes of key in the entry the
** cursor currently points to. Always return SQLITE_OK.
** Failure is not possible. If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
Cell *pCell;
MemPage *pPage;
pPage = pCur->pPage;
assert( pPage!=0 );
if( pCur->idx >= pPage->nCell ){
*pSize = 0;
}else{
pCell = pPage->apCell[pCur->idx];
*pSize = NKEY(pCur->pBt, pCell->h);
}
return SQLITE_OK;
}
/*
** Read payload information from the entry that the pCur cursor is
** pointing to. Begin reading the payload at "offset" and read
** a total of "amt" bytes. Put the result in zBuf.
**
** This routine does not make a distinction between key and data.
** It just reads bytes from the payload area.
*/
static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
char *aPayload;
Pgno nextPage;
int rc;
Btree *pBt = pCur->pBt;
assert( pCur!=0 && pCur->pPage!=0 );
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
if( offset<MX_LOCAL_PAYLOAD ){
int a = amt;
if( a+offset>MX_LOCAL_PAYLOAD ){
a = MX_LOCAL_PAYLOAD - offset;
}
memcpy(zBuf, &aPayload[offset], a);
if( a==amt ){
return SQLITE_OK;
}
offset = 0;
zBuf += a;
amt -= a;
}else{
offset -= MX_LOCAL_PAYLOAD;
}
if( amt>0 ){
nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl);
}
while( amt>0 && nextPage ){
OverflowPage *pOvfl;
rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
if( rc!=0 ){
return rc;
}
nextPage = SWAB32(pBt, pOvfl->iNext);
if( offset<OVERFLOW_SIZE ){
int a = amt;
if( a + offset > OVERFLOW_SIZE ){
a = OVERFLOW_SIZE - offset;
}
memcpy(zBuf, &pOvfl->aPayload[offset], a);
offset = 0;
amt -= a;
zBuf += a;
}else{
offset -= OVERFLOW_SIZE;
}
sqlitepager_unref(pOvfl);
}
if( amt>0 ){
return SQLITE_CORRUPT;
}
return SQLITE_OK;
}
/*
** Read part of the key associated with cursor pCur. A maximum
** of "amt" bytes will be transfered into zBuf[]. The transfer
** begins at "offset". The number of bytes actually read is
** returned.
**
** Change: It used to be that the amount returned will be smaller
** than the amount requested if there are not enough bytes in the key
** to satisfy the request. But now, it must be the case that there
** is enough data available to satisfy the request. If not, an exception
** is raised. The change was made in an effort to boost performance
** by eliminating unneeded tests.
*/
static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
MemPage *pPage;
assert( amt>=0 );
assert( offset>=0 );
assert( pCur->pPage!=0 );
pPage = pCur->pPage;
if( pCur->idx >= pPage->nCell ){
return 0;
}
assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
getPayload(pCur, offset, amt, zBuf);
return amt;
}
/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to. Always return SQLITE_OK.
** Failure is not possible. If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
Cell *pCell;
MemPage *pPage;
pPage = pCur->pPage;
assert( pPage!=0 );
if( pCur->idx >= pPage->nCell ){
*pSize = 0;
}else{
pCell = pPage->apCell[pCur->idx];
*pSize = NDATA(pCur->pBt, pCell->h);
}
return SQLITE_OK;
}
/*
** Read part of the data associated with cursor pCur. A maximum
** of "amt" bytes will be transfered into zBuf[]. The transfer
** begins at "offset". The number of bytes actually read is
** returned. The amount returned will be smaller than the
** amount requested if there are not enough bytes in the data
** to satisfy the request.
*/
static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
Cell *pCell;
MemPage *pPage;
assert( amt>=0 );
assert( offset>=0 );
assert( pCur->pPage!=0 );
pPage = pCur->pPage;
if( pCur->idx >= pPage->nCell ){
return 0;
}
pCell = pPage->apCell[pCur->idx];
assert( amt+offset <= NDATA(pCur->pBt, pCell->h) );
getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf);
return amt;
}
/*
** Compare an external key against the key on the entry that pCur points to.
**
** The external key is pKey and is nKey bytes long. The last nIgnore bytes
** of the key associated with pCur are ignored, as if they do not exist.
** (The normal case is for nIgnore to be zero in which case the entire
** internal key is used in the comparison.)
**
** The comparison result is written to *pRes as follows:
**
** *pRes<0 This means pCur<pKey
**
** *pRes==0 This means pCur==pKey for all nKey bytes
**
** *pRes>0 This means pCur>pKey
**
** When one key is an exact prefix of the other, the shorter key is
** considered less than the longer one. In order to be equal the
** keys must be exactly the same length. (The length of the pCur key
** is the actual key length minus nIgnore bytes.)
*/
static int fileBtreeKeyCompare(
BtCursor *pCur, /* Pointer to entry to compare against */
const void *pKey, /* Key to compare against entry that pCur points to */
int nKey, /* Number of bytes in pKey */
int nIgnore, /* Ignore this many bytes at the end of pCur */
int *pResult /* Write the result here */
){
Pgno nextPage;
int n, c, rc, nLocal;
Cell *pCell;
Btree *pBt = pCur->pBt;
const char *zKey = (const char*)pKey;
assert( pCur->pPage );
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
pCell = pCur->pPage->apCell[pCur->idx];
nLocal = NKEY(pBt, pCell->h) - nIgnore;
if( nLocal<0 ) nLocal = 0;
n = nKey<nLocal ? nKey : nLocal;
if( n>MX_LOCAL_PAYLOAD ){
n = MX_LOCAL_PAYLOAD;
}
c = memcmp(pCell->aPayload, zKey, n);
if( c!=0 ){
*pResult = c;
return SQLITE_OK;
}
zKey += n;
nKey -= n;
nLocal -= n;
nextPage = SWAB32(pBt, pCell->ovfl);
while( nKey>0 && nLocal>0 ){
OverflowPage *pOvfl;
if( nextPage==0 ){
return SQLITE_CORRUPT;
}
rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
if( rc ){
return rc;
}
nextPage = SWAB32(pBt, pOvfl->iNext);
n = nKey<nLocal ? nKey : nLocal;
if( n>OVERFLOW_SIZE ){
n = OVERFLOW_SIZE;
}
c = memcmp(pOvfl->aPayload, zKey, n);
sqlitepager_unref(pOvfl);
if( c!=0 ){
*pResult = c;
return SQLITE_OK;
}
nKey -= n;
nLocal -= n;
zKey += n;
}
if( c==0 ){
c = nLocal - nKey;
}
*pResult = c;
return SQLITE_OK;
}
/*
** Move the cursor down to a new child page. The newPgno argument is the
** page number of the child page in the byte order of the disk image.
*/
static int moveToChild(BtCursor *pCur, int newPgno){
int rc;
MemPage *pNewPage;
Btree *pBt = pCur->pBt;
newPgno = SWAB32(pBt, newPgno);
rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
if( rc ) return rc;
rc = initPage(pBt, pNewPage, newPgno, pCur->pPage);
if( rc ) return rc;
assert( pCur->idx>=pCur->pPage->nCell
|| pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) );
assert( pCur->idx<pCur->pPage->nCell
|| pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) );
pNewPage->idxParent = pCur->idx;
pCur->pPage->idxShift = 0;
sqlitepager_unref(pCur->pPage);
pCur->pPage = pNewPage;
pCur->idx = 0;
if( pNewPage->nCell<1 ){
return SQLITE_CORRUPT;
}
return SQLITE_OK;
}
/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from. If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
Pgno oldPgno;
MemPage *pParent;
MemPage *pPage;
int idxParent;
pPage = pCur->pPage;
assert( pPage!=0 );
pParent = pPage->pParent;
assert( pParent!=0 );
idxParent = pPage->idxParent;
sqlitepager_ref(pParent);
sqlitepager_unref(pPage);
pCur->pPage = pParent;
assert( pParent->idxShift==0 );
if( pParent->idxShift==0 ){
pCur->idx = idxParent;
#ifndef NDEBUG
/* Verify that pCur->idx is the correct index to point back to the child
** page we just came from
*/
oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
if( pCur->idx<pParent->nCell ){
assert( pParent->apCell[idxParent]->h.leftChild==oldPgno );
}else{
assert( pParent->u.hdr.rightChild==oldPgno );
}
#endif
}else{
/* The MemPage.idxShift flag indicates that cell indices might have
** changed since idxParent was set and hence idxParent might be out
** of date. So recompute the parent cell index by scanning all cells
** and locating the one that points to the child we just came from.
*/
int i;
pCur->idx = pParent->nCell;
oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
for(i=0; i<pParent->nCell; i++){
if( pParent->apCell[i]->h.leftChild==oldPgno ){
pCur->idx = i;
break;
}
}
}
}
/*
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
MemPage *pNew;
int rc;
Btree *pBt = pCur->pBt;
rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
if( rc ) return rc;
rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
if( rc ) return rc;
sqlitepager_unref(pCur->pPage);
pCur->pPage = pNew;
pCur->idx = 0;
return SQLITE_OK;
}
/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
*/
static int moveToLeftmost(BtCursor *pCur){
Pgno pgno;
int rc;
while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
rc = moveToChild(pCur, pgno);
if( rc ) return rc;
}
return SQLITE_OK;
}
/*
** Move the cursor down to the right-most leaf entry beneath the
** page to which it is currently pointing. Notice the difference
** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
** finds the right-most entry beneath the *page*.
*/
static int moveToRightmost(BtCursor *pCur){
Pgno pgno;
int rc;
while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
pCur->idx = pCur->pPage->nCell;
rc = moveToChild(pCur, pgno);
if( rc ) return rc;
}
pCur->idx = pCur->pPage->nCell - 1;
return SQLITE_OK;
}
/* Move the cursor to the first entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
static int fileBtreeFirst(BtCursor *pCur, int *pRes){
int rc;
if( pCur->pPage==0 ) return SQLITE_ABORT;
rc = moveToRoot(pCur);
if( rc ) return rc;
if( pCur->pPage->nCell==0 ){
*pRes = 1;
return SQLITE_OK;
}
*pRes = 0;
rc = moveToLeftmost(pCur);
pCur->eSkip = SKIP_NONE;
return rc;
}
/* Move the cursor to the last entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
static int fileBtreeLast(BtCursor *pCur, int *pRes){
int rc;
if( pCur->pPage==0 ) return SQLITE_ABORT;
rc = moveToRoot(pCur);
if( rc ) return rc;
assert( pCur->pPage->isInit );
if( pCur->pPage->nCell==0 ){
*pRes = 1;
return SQLITE_OK;
}
*pRes = 0;
rc = moveToRightmost(pCur);
pCur->eSkip = SKIP_NONE;
return rc;
}
/* Move the cursor so that it points to an entry near pKey.
** Return a success code.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present. The cursor might point to an entry that comes
** before or after the key.
**
** The result of comparing the key with the entry to which the
** cursor is left pointing is stored in pCur->iMatch. The same
** value is also written to *pRes if pRes!=NULL. The meaning of
** this value is as follows:
**
** *pRes<0 The cursor is left pointing at an entry that
** is smaller than pKey or if the table is empty
** and the cursor is therefore left point to nothing.
**
** *pRes==0 The cursor is left pointing at an entry that
** exactly matches pKey.
**
** *pRes>0 The cursor is left pointing at an entry that
** is larger than pKey.
*/
static
int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
int rc;
if( pCur->pPage==0 ) return SQLITE_ABORT;
pCur->eSkip = SKIP_NONE;
rc = moveToRoot(pCur);
if( rc ) return rc;
for(;;){
int lwr, upr;
Pgno chldPg;
MemPage *pPage = pCur->pPage;
int c = -1; /* pRes return if table is empty must be -1 */
lwr = 0;
upr = pPage->nCell-1;
while( lwr<=upr ){
pCur->idx = (lwr+upr)/2;
rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
if( rc ) return rc;
if( c==0 ){
pCur->iMatch = c;
if( pRes ) *pRes = 0;
return SQLITE_OK;
}
if( c<0 ){
lwr = pCur->idx+1;
}else{
upr = pCur->idx-1;
}
}
assert( lwr==upr+1 );
assert( pPage->isInit );
if( lwr>=pPage->nCell ){
chldPg = pPage->u.hdr.rightChild;
}else{
chldPg = pPage->apCell[lwr]->h.leftChild;
}
if( chldPg==0 ){
pCur->iMatch = c;
if( pRes ) *pRes = c;
return SQLITE_OK;
}
pCur->idx = lwr;
rc = moveToChild(pCur, chldPg);
if( rc ) return rc;
}
/* NOT REACHED */
}
/*
** Advance the cursor to the next entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
static int fileBtreeNext(BtCursor *pCur, int *pRes){
int rc;
MemPage *pPage = pCur->pPage;
assert( pRes!=0 );
if( pPage==0 ){
*pRes = 1;
return SQLITE_ABORT;
}
assert( pPage->isInit );
assert( pCur->eSkip!=SKIP_INVALID );
if( pPage->nCell==0 ){
*pRes = 1;
return SQLITE_OK;
}
assert( pCur->idx<pPage->nCell );
if( pCur->eSkip==SKIP_NEXT ){
pCur->eSkip = SKIP_NONE;
*pRes = 0;
return SQLITE_OK;
}
pCur->eSkip = SKIP_NONE;
pCur->idx++;
if( pCur->idx>=pPage->nCell ){
if( pPage->u.hdr.rightChild ){
rc = moveToChild(pCur, pPage->u.hdr.rightChild);
if( rc ) return rc;
rc = moveToLeftmost(pCur);
*pRes = 0;
return rc;
}
do{
if( pPage->pParent==0 ){
*pRes = 1;
return SQLITE_OK;
}
moveToParent(pCur);
pPage = pCur->pPage;
}while( pCur->idx>=pPage->nCell );
*pRes = 0;
return SQLITE_OK;
}
*pRes = 0;
if( pPage->u.hdr.rightChild==0 ){
return SQLITE_OK;
}
rc = moveToLeftmost(pCur);
return rc;
}
/*
** Step the cursor to the back to the previous entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
static int fileBtreePrevious(BtCursor *pCur, int *pRes){
int rc;
Pgno pgno;
MemPage *pPage;
pPage = pCur->pPage;
if( pPage==0 ){
*pRes = 1;
return SQLITE_ABORT;
}
assert( pPage->isInit );
assert( pCur->eSkip!=SKIP_INVALID );
if( pPage->nCell==0 ){
*pRes = 1;
return SQLITE_OK;
}
if( pCur->eSkip==SKIP_PREV ){
pCur->eSkip = SKIP_NONE;
*pRes = 0;
return SQLITE_OK;
}
pCur->eSkip = SKIP_NONE;
assert( pCur->idx>=0 );
if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
rc = moveToChild(pCur, pgno);
if( rc ) return rc;
rc = moveToRightmost(pCur);
}else{
while( pCur->idx==0 ){
if( pPage->pParent==0 ){
if( pRes ) *pRes = 1;
return SQLITE_OK;
}
moveToParent(pCur);
pPage = pCur->pPage;
}
pCur->idx--;
rc = SQLITE_OK;
}
*pRes = 0;
return rc;
}
/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty. (In other words, sqlitepager_write()
** has already been called on the new page.) The new page has also
** been referenced and the calling routine is responsible for calling
** sqlitepager_unref() on the new page when it is done.
**
** SQLITE_OK is returned on success. Any other return value indicates
** an error. *ppPage and *pPgno are undefined in the event of an error.
** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
**
** If the "nearby" parameter is not 0, then a (feeble) effort is made to
** locate a page close to the page number "nearby". This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
*/
static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
PageOne *pPage1 = pBt->page1;
int rc;
if( pPage1->freeList ){
OverflowPage *pOvfl;
FreelistInfo *pInfo;
rc = sqlitepager_write(pPage1);
if( rc ) return rc;
SWAB_ADD(pBt, pPage1->nFree, -1);
rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
(void**)&pOvfl);
if( rc ) return rc;
rc = sqlitepager_write(pOvfl);
if( rc ){
sqlitepager_unref(pOvfl);
return rc;
}
pInfo = (FreelistInfo*)pOvfl->aPayload;
if( pInfo->nFree==0 ){
*pPgno = SWAB32(pBt, pPage1->freeList);
pPage1->freeList = pOvfl->iNext;
*ppPage = (MemPage*)pOvfl;
}else{
int closest, n;
n = SWAB32(pBt, pInfo->nFree);
if( n>1 && nearby>0 ){
int i, dist;
closest = 0;
dist = SWAB32(pBt, pInfo->aFree[0]) - nearby;
if( dist<0 ) dist = -dist;
for(i=1; i<n; i++){
int d2 = SWAB32(pBt, pInfo->aFree[i]) - nearby;
if( d2<0 ) d2 = -d2;
if( d2<dist ) closest = i;
}
}else{
closest = 0;
}
SWAB_ADD(pBt, pInfo->nFree, -1);
*pPgno = SWAB32(pBt, pInfo->aFree[closest]);
pInfo->aFree[closest] = pInfo->aFree[n-1];
rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
sqlitepager_unref(pOvfl);
if( rc==SQLITE_OK ){
sqlitepager_dont_rollback(*ppPage);
rc = sqlitepager_write(*ppPage);
}
}
}else{
*pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
if( rc ) return rc;
rc = sqlitepager_write(*ppPage);
}
return rc;
}
/*
** Add a page of the database file to the freelist. Either pgno or
** pPage but not both may be 0.
**
** sqlitepager_unref() is NOT called for pPage.
*/
static int freePage(Btree *pBt, void *pPage, Pgno pgno){
PageOne *pPage1 = pBt->page1;
OverflowPage *pOvfl = (OverflowPage*)pPage;
int rc;
int needUnref = 0;
MemPage *pMemPage;
if( pgno==0 ){
assert( pOvfl!=0 );
pgno = sqlitepager_pagenumber(pOvfl);
}
assert( pgno>2 );
assert( sqlitepager_pagenumber(pOvfl)==pgno );
pMemPage = (MemPage*)pPage;
pMemPage->isInit = 0;
if( pMemPage->pParent ){
sqlitepager_unref(pMemPage->pParent);
pMemPage->pParent = 0;
}
rc = sqlitepager_write(pPage1);
if( rc ){
return rc;
}
SWAB_ADD(pBt, pPage1->nFree, 1);
if( pPage1->nFree!=0 && pPage1->freeList!=0 ){
OverflowPage *pFreeIdx;
rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
(void**)&pFreeIdx);
if( rc==SQLITE_OK ){
FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload;
int n = SWAB32(pBt, pInfo->nFree);
if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){
rc = sqlitepager_write(pFreeIdx);
if( rc==SQLITE_OK ){
pInfo->aFree[n] = SWAB32(pBt, pgno);
SWAB_ADD(pBt, pInfo->nFree, 1);
sqlitepager_unref(pFreeIdx);
sqlitepager_dont_write(pBt->pPager, pgno);
return rc;
}
}
sqlitepager_unref(pFreeIdx);
}
}
if( pOvfl==0 ){
assert( pgno>0 );
rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
if( rc ) return rc;
needUnref = 1;
}
rc = sqlitepager_write(pOvfl);
if( rc ){
if( needUnref ) sqlitepager_unref(pOvfl);
return rc;
}
pOvfl->iNext = pPage1->freeList;
pPage1->freeList = SWAB32(pBt, pgno);
memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
if( needUnref ) rc = sqlitepager_unref(pOvfl);
return rc;
}
/*
** Erase all the data out of a cell. This involves returning overflow
** pages back the freelist.
*/
static int clearCell(Btree *pBt, Cell *pCell){
Pager *pPager = pBt->pPager;
OverflowPage *pOvfl;
Pgno ovfl, nextOvfl;
int rc;
if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){
return SQLITE_OK;
}
ovfl = SWAB32(pBt, pCell->ovfl);
pCell->ovfl = 0;
while( ovfl ){
rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
if( rc ) return rc;
nextOvfl = SWAB32(pBt, pOvfl->iNext);
rc = freePage(pBt, pOvfl, ovfl);
if( rc ) return rc;
sqlitepager_unref(pOvfl);
ovfl = nextOvfl;
}
return SQLITE_OK;
}
/*
** Create a new cell from key and data. Overflow pages are allocated as
** necessary and linked to this cell.
*/
static int fillInCell(
Btree *pBt, /* The whole Btree. Needed to allocate pages */
Cell *pCell, /* Populate this Cell structure */
const void *pKey, int nKey, /* The key */
const void *pData,int nData /* The data */
){
OverflowPage *pOvfl, *pPrior;
Pgno *pNext;
int spaceLeft;
int n, rc;
int nPayload;
const char *pPayload;
char *pSpace;
Pgno nearby = 0;
pCell->h.leftChild = 0;
pCell->h.nKey = SWAB16(pBt, nKey & 0xffff);
pCell->h.nKeyHi = nKey >> 16;
pCell->h.nData = SWAB16(pBt, nData & 0xffff);
pCell->h.nDataHi = nData >> 16;
pCell->h.iNext = 0;
pNext = &pCell->ovfl;
pSpace = pCell->aPayload;
spaceLeft = MX_LOCAL_PAYLOAD;
pPayload = pKey;
pKey = 0;
nPayload = nKey;
pPrior = 0;
while( nPayload>0 ){
if( spaceLeft==0 ){
rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby);
if( rc ){
*pNext = 0;
}else{
nearby = *pNext;
}
if( pPrior ) sqlitepager_unref(pPrior);
if( rc ){
clearCell(pBt, pCell);
return rc;
}
if( pBt->needSwab ) *pNext = swab32(*pNext);
pPrior = pOvfl;
spaceLeft = OVERFLOW_SIZE;
pSpace = pOvfl->aPayload;
pNext = &pOvfl->iNext;
}
n = nPayload;
if( n>spaceLeft ) n = spaceLeft;
memcpy(pSpace, pPayload, n);
nPayload -= n;
if( nPayload==0 && pData ){
pPayload = pData;
nPayload = nData;
pData = 0;
}else{
pPayload += n;
}
spaceLeft -= n;
pSpace += n;
}
*pNext = 0;
if( pPrior ){
sqlitepager_unref(pPrior);
}
return SQLITE_OK;
}
/*
** Change the MemPage.pParent pointer on the page whose number is
** given in the second argument so that MemPage.pParent holds the
** pointer in the third argument.
*/
static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){
MemPage *pThis;
if( pgno==0 ) return;
assert( pPager!=0 );
pThis = sqlitepager_lookup(pPager, pgno);
if( pThis && pThis->isInit ){
if( pThis->pParent!=pNewParent ){
if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
pThis->pParent = pNewParent;
if( pNewParent ) sqlitepager_ref(pNewParent);
}
pThis->idxParent = idx;
sqlitepager_unref(pThis);
}
}
/*
** Reparent all children of the given page to be the given page.
** In other words, for every child of pPage, invoke reparentPage()
** to make sure that each child knows that pPage is its parent.
**
** This routine gets called after you memcpy() one page into
** another.
*/
static void reparentChildPages(Btree *pBt, MemPage *pPage){
int i;
Pager *pPager = pBt->pPager;
for(i=0; i<pPage->nCell; i++){
reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i);
}
reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i);
pPage->idxShift = 0;
}
/*
** Remove the i-th cell from pPage. This routine effects pPage only.
** The cell content is not freed or deallocated. It is assumed that
** the cell content has been copied someplace else. This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
**
** Do not bother maintaining the integrity of the linked list of Cells.
** Only the pPage->apCell[] array is important. The relinkCellList()
** routine will be called soon after this routine in order to rebuild
** the linked list.
*/
static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){
int j;
assert( idx>=0 && idx<pPage->nCell );
assert( sz==cellSize(pBt, pPage->apCell[idx]) );
assert( sqlitepager_iswriteable(pPage) );
freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
for(j=idx; j<pPage->nCell-1; j++){
pPage->apCell[j] = pPage->apCell[j+1];
}
pPage->nCell--;
pPage->idxShift = 1;
}
/*
** Insert a new cell on pPage at cell index "i". pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there. If it
** will not fit, then just make pPage->apCell[i] point to the content
** and set pPage->isOverfull.
**
** Do not bother maintaining the integrity of the linked list of Cells.
** Only the pPage->apCell[] array is important. The relinkCellList()
** routine will be called soon after this routine in order to rebuild
** the linked list.
*/
static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){
int idx, j;
assert( i>=0 && i<=pPage->nCell );
assert( sz==cellSize(pBt, pCell) );
assert( sqlitepager_iswriteable(pPage) );
idx = allocateSpace(pBt, pPage, sz);
for(j=pPage->nCell; j>i; j--){
pPage->apCell[j] = pPage->apCell[j-1];
}
pPage->nCell++;
if( idx<=0 ){
pPage->isOverfull = 1;
pPage->apCell[i] = pCell;
}else{
memcpy(&pPage->u.aDisk[idx], pCell, sz);
pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
}
pPage->idxShift = 1;
}
/*
** Rebuild the linked list of cells on a page so that the cells
** occur in the order specified by the pPage->apCell[] array.
** Invoke this routine once to repair damage after one or more
** invocations of either insertCell() or dropCell().
*/
static void relinkCellList(Btree *pBt, MemPage *pPage){
int i;
u16 *pIdx;
assert( sqlitepager_iswriteable(pPage) );
pIdx = &pPage->u.hdr.firstCell;
for(i=0; i<pPage->nCell; i++){
int idx = Addr(pPage->apCell[i]) - Addr(pPage);
assert( idx>0 && idx<SQLITE_USABLE_SIZE );
*pIdx = SWAB16(pBt, idx);
pIdx = &pPage->apCell[i]->h.iNext;
}
*pIdx = 0;
}
/*
** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
** pointers that point into pFrom->u.aDisk[] must be adjusted to point
** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
** not point to pFrom->u.aDisk[]. Those are unchanged.
*/
static void copyPage(MemPage *pTo, MemPage *pFrom){
uptr from, to;
int i;
memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_USABLE_SIZE);
pTo->pParent = 0;
pTo->isInit = 1;
pTo->nCell = pFrom->nCell;
pTo->nFree = pFrom->nFree;
pTo->isOverfull = pFrom->isOverfull;
to = Addr(pTo);
from = Addr(pFrom);
for(i=0; i<pTo->nCell; i++){
uptr x = Addr(pFrom->apCell[i]);
if( x>from && x<from+SQLITE_USABLE_SIZE ){
*((uptr*)&pTo->apCell[i]) = x + to - from;
}else{
pTo->apCell[i] = pFrom->apCell[i];
}
}
}
/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation. NN is the number of neighbors on either side
** of the page that participate in the balancing operation. NB is the
** total number of pages that participate, including the target page and
** NN neighbors on either side.
**
** The minimum value of NN is 1 (of course). Increasing NN above 1
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
** in exchange for a larger degradation in INSERT and UPDATE performance.
** The value of NN appears to give the best results overall.
*/
#define NN 1 /* Number of neighbors on either side of pPage */
#define NB (NN*2+1) /* Total pages involved in the balance */
/*
** This routine redistributes Cells on pPage and up to two siblings
** of pPage so that all pages have about the same amount of free space.
** Usually one sibling on either side of pPage is used in the balancing,
** though both siblings might come from one side if pPage is the first
** or last child of its parent. If pPage has fewer than two siblings
** (something which can only happen if pPage is the root page or a
** child of root) then all available siblings participate in the balancing.
**
** The number of siblings of pPage might be increased or decreased by
** one in an effort to keep pages between 66% and 100% full. The root page
** is special and is allowed to be less than 66% full. If pPage is
** the root page, then the depth of the tree might be increased
** or decreased by one, as necessary, to keep the root page from being
** overfull or empty.
**
** This routine calls relinkCellList() on its input page regardless of
** whether or not it does any real balancing. Client routines will typically
** invoke insertCell() or dropCell() before calling this routine, so we
** need to call relinkCellList() to clean up the mess that those other
** routines left behind.
**
** pCur is left pointing to the same cell as when this routine was called
** even if that cell gets moved to a different page. pCur may be NULL.
** Set the pCur parameter to NULL if you do not care about keeping track
** of a cell as that will save this routine the work of keeping track of it.
**
** Note that when this routine is called, some of the Cells on pPage
** might not actually be stored in pPage->u.aDisk[]. This can happen
** if the page is overfull. Part of the job of this routine is to
** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
**
** In the course of balancing the siblings of pPage, the parent of pPage
** might become overfull or underfull. If that happens, then this routine
** is called recursively on the parent.
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state. So if this routine fails, the database should
** be rolled back.
*/
static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
MemPage *pParent; /* The parent of pPage */
int nCell; /* Number of cells in apCell[] */
int nOld; /* Number of pages in apOld[] */
int nNew; /* Number of pages in apNew[] */
int nDiv; /* Number of cells in apDiv[] */
int i, j, k; /* Loop counters */
int idx; /* Index of pPage in pParent->apCell[] */
int nxDiv; /* Next divider slot in pParent->apCell[] */
int rc; /* The return code */
int iCur; /* apCell[iCur] is the cell of the cursor */
MemPage *pOldCurPage; /* The cursor originally points to this page */
int subtotal; /* Subtotal of bytes in cells on one page */
MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
MemPage *apOld[NB]; /* pPage and up to two siblings */
Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
int idxDiv[NB]; /* Indices of divider cells in pParent */
Cell *apDiv[NB]; /* Divider cells in pParent */
Cell aTemp[NB]; /* Temporary holding area for apDiv[] */
int cntNew[NB+1]; /* Index in apCell[] of cell after i-th page */
int szNew[NB+1]; /* Combined size of cells place on i-th page */
MemPage aOld[NB]; /* Temporary copies of pPage and its siblings */
Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
/*
** Return without doing any work if pPage is neither overfull nor
** underfull.
*/
assert( sqlitepager_iswriteable(pPage) );
if( !pPage->isOverfull && pPage->nFree<SQLITE_USABLE_SIZE/2
&& pPage->nCell>=2){
relinkCellList(pBt, pPage);
return SQLITE_OK;
}
/*
** Find the parent of the page to be balanceed.
** If there is no parent, it means this page is the root page and
** special rules apply.
*/
pParent = pPage->pParent;
if( pParent==0 ){
Pgno pgnoChild;
MemPage *pChild;
assert( pPage->isInit );
if( pPage->nCell==0 ){
if( pPage->u.hdr.rightChild ){
/*
** The root page is empty. Copy the one child page
** into the root page and return. This reduces the depth
** of the BTree by one.
*/
pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild);
rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
if( rc ) return rc;
memcpy(pPage, pChild, SQLITE_USABLE_SIZE);
pPage->isInit = 0;
rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0);
assert( rc==SQLITE_OK );
reparentChildPages(pBt, pPage);
if( pCur && pCur->pPage==pChild ){
sqlitepager_unref(pChild);
pCur->pPage = pPage;
sqlitepager_ref(pPage);
}
freePage(pBt, pChild, pgnoChild);
sqlitepager_unref(pChild);
}else{
relinkCellList(pBt, pPage);
}
return SQLITE_OK;
}
if( !pPage->isOverfull ){
/* It is OK for the root page to be less than half full.
*/
relinkCellList(pBt, pPage);
return SQLITE_OK;
}
/*
** If we get to here, it means the root page is overfull.
** When this happens, Create a new child page and copy the
** contents of the root into the child. Then make the root
** page an empty page with rightChild pointing to the new
** child. Then fall thru to the code below which will cause
** the overfull child page to be split.
*/
rc = sqlitepager_write(pPage);
if( rc ) return rc;
rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage));
if( rc ) return rc;
assert( sqlitepager_iswriteable(pChild) );
copyPage(pChild, pPage);
pChild->pParent = pPage;
pChild->idxParent = 0;
sqlitepager_ref(pPage);
pChild->isOverfull = 1;
if( pCur && pCur->pPage==pPage ){
sqlitepager_unref(pPage);
pCur->pPage = pChild;
}else{
extraUnref = pChild;
}
zeroPage(pBt, pPage);
pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild);
pParent = pPage;
pPage = pChild;
}
rc = sqlitepager_write(pParent);
if( rc ) return rc;
assert( pParent->isInit );
/*
** Find the Cell in the parent page whose h.leftChild points back
** to pPage. The "idx" variable is the index of that cell. If pPage
** is the rightmost child of pParent then set idx to pParent->nCell
*/
if( pParent->idxShift ){
Pgno pgno, swabPgno;
pgno = sqlitepager_pagenumber(pPage);
swabPgno = SWAB32(pBt, pgno);
for(idx=0; idx<pParent->nCell; idx++){
if( pParent->apCell[idx]->h.leftChild==swabPgno ){
break;
}
}
assert( idx<pParent->nCell || pParent->u.hdr.rightChild==swabPgno );
}else{
idx = pPage->idxParent;
}
/*
** Initialize variables so that it will be safe to jump
** directly to balance_cleanup at any moment.
*/
nOld = nNew = 0;
sqlitepager_ref(pParent);
/*
** Find sibling pages to pPage and the Cells in pParent that divide
** the siblings. An attempt is made to find NN siblings on either
** side of pPage. More siblings are taken from one side, however, if
** pPage there are fewer than NN siblings on the other side. If pParent
** has NB or fewer children then all children of pParent are taken.
*/
nxDiv = idx - NN;
if( nxDiv + NB > pParent->nCell ){
nxDiv = pParent->nCell - NB + 1;
}
if( nxDiv<0 ){
nxDiv = 0;
}
nDiv = 0;
for(i=0, k=nxDiv; i<NB; i++, k++){
if( k<pParent->nCell ){
idxDiv[i] = k;
apDiv[i] = pParent->apCell[k];
nDiv++;
pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild);
}else if( k==pParent->nCell ){
pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild);
}else{
break;
}
rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
if( rc ) goto balance_cleanup;
rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
if( rc ) goto balance_cleanup;
apOld[i]->idxParent = k;
nOld++;
}
/*
** Set iCur to be the index in apCell[] of the cell that the cursor
** is pointing to. We will need this later on in order to keep the
** cursor pointing at the same cell. If pCur points to a page that
** has no involvement with this rebalancing, then set iCur to a large
** number so that the iCur==j tests always fail in the main cell
** distribution loop below.
*/
if( pCur ){
iCur = 0;
for(i=0; i<nOld; i++){
if( pCur->pPage==apOld[i] ){
iCur += pCur->idx;
break;
}
iCur += apOld[i]->nCell;
if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
break;
}
iCur++;
}
pOldCurPage = pCur->pPage;
}
/*
** Make copies of the content of pPage and its siblings into aOld[].
** The rest of this function will use data from the copies rather
** that the original pages since the original pages will be in the
** process of being overwritten.
*/
for(i=0; i<nOld; i++){
copyPage(&aOld[i], apOld[i]);
}
/*
** Load pointers to all cells on sibling pages and the divider cells
** into the local apCell[] array. Make copies of the divider cells
** into aTemp[] and remove the the divider Cells from pParent.
*/
nCell = 0;
for(i=0; i<nOld; i++){
MemPage *pOld = &aOld[i];
for(j=0; j<pOld->nCell; j++){
apCell[nCell] = pOld->apCell[j];
szCell[nCell] = cellSize(pBt, apCell[nCell]);
nCell++;
}
if( i<nOld-1 ){
szCell[nCell] = cellSize(pBt, apDiv[i]);
memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
apCell[nCell] = &aTemp[i];
dropCell(pBt, pParent, nxDiv, szCell[nCell]);
assert( SWAB32(pBt, apCell[nCell]->h.leftChild)==pgnoOld[i] );
apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
nCell++;
}
}
/*
** Figure out the number of pages needed to hold all nCell cells.
** Store this number in "k". Also compute szNew[] which is the total
** size of all cells on the i-th page and cntNew[] which is the index
** in apCell[] of the cell that divides path i from path i+1.
** cntNew[k] should equal nCell.
**
** This little patch of code is critical for keeping the tree
** balanced.
*/
for(subtotal=k=i=0; i<nCell; i++){
subtotal += szCell[i];
if( subtotal > USABLE_SPACE ){
szNew[k] = subtotal - szCell[i];
cntNew[k] = i;
subtotal = 0;
k++;
}
}
szNew[k] = subtotal;
cntNew[k] = nCell;
k++;
for(i=k-1; i>0; i--){
while( szNew[i]<USABLE_SPACE/2 ){
cntNew[i-1]--;
assert( cntNew[i-1]>0 );
szNew[i] += szCell[cntNew[i-1]];
szNew[i-1] -= szCell[cntNew[i-1]-1];
}
}
assert( cntNew[0]>0 );
/*
** Allocate k new pages. Reuse old pages where possible.
*/
for(i=0; i<k; i++){
if( i<nOld ){
apNew[i] = apOld[i];
pgnoNew[i] = pgnoOld[i];
apOld[i] = 0;
sqlitepager_write(apNew[i]);
}else{
rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]);
if( rc ) goto balance_cleanup;
}
nNew++;
zeroPage(pBt, apNew[i]);
apNew[i]->isInit = 1;
}
/* Free any old pages that were not reused as new pages.
*/
while( i<nOld ){
rc = freePage(pBt, apOld[i], pgnoOld[i]);
if( rc ) goto balance_cleanup;
sqlitepager_unref(apOld[i]);
apOld[i] = 0;
i++;
}
/*
** Put the new pages in accending order. This helps to
** keep entries in the disk file in order so that a scan
** of the table is a linear scan through the file. That
** in turn helps the operating system to deliver pages
** from the disk more rapidly.
**
** An O(n^2) insertion sort algorithm is used, but since
** n is never more than NB (a small constant), that should
** not be a problem.
**
** When NB==3, this one optimization makes the database
** about 25% faster for large insertions and deletions.
*/
for(i=0; i<k-1; i++){
int minV = pgnoNew[i];
int minI = i;
for(j=i+1; j<k; j++){
if( pgnoNew[j]<(unsigned)minV ){
minI = j;
minV = pgnoNew[j];
}
}
if( minI>i ){
int t;
MemPage *pT;
t = pgnoNew[i];
pT = apNew[i];
pgnoNew[i] = pgnoNew[minI];
apNew[i] = apNew[minI];
pgnoNew[minI] = t;
apNew[minI] = pT;
}
}
/*
** Evenly distribute the data in apCell[] across the new pages.
** Insert divider cells into pParent as necessary.
*/
j = 0;
for(i=0; i<nNew; i++){
MemPage *pNew = apNew[i];
while( j<cntNew[i] ){
assert( pNew->nFree>=szCell[j] );
if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]);
j++;
}
assert( pNew->nCell>0 );
assert( !pNew->isOverfull );
relinkCellList(pBt, pNew);
if( i<nNew-1 && j<nCell ){
pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]);
if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]);
j++;
nxDiv++;
}
}
assert( j==nCell );
apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild;
if( nxDiv==pParent->nCell ){
pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]);
}else{
pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]);
}
if( pCur ){
if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
assert( pCur->pPage==pOldCurPage );
pCur->idx += nNew - nOld;
}else{
assert( pOldCurPage!=0 );
sqlitepager_ref(pCur->pPage);
sqlitepager_unref(pOldCurPage);
}
}
/*
** Reparent children of all cells.
*/
for(i=0; i<nNew; i++){
reparentChildPages(pBt, apNew[i]);
}
reparentChildPages(pBt, pParent);
/*
** balance the parent page.
*/
rc = balance(pBt, pParent, pCur);
/*
** Cleanup before returning.
*/
balance_cleanup:
if( extraUnref ){
sqlitepager_unref(extraUnref);
}
for(i=0; i<nOld; i++){
if( apOld[i]!=0 && apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
}
for(i=0; i<nNew; i++){
sqlitepager_unref(apNew[i]);
}
if( pCur && pCur->pPage==0 ){
pCur->pPage = pParent;
pCur->idx = 0;
}else{
sqlitepager_unref(pParent);
}
return rc;
}
/*
** This routine checks all cursors that point to the same table
** as pCur points to. If any of those cursors were opened with
** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
** cursors point to the same table were opened with wrFlag==1
** then this routine returns SQLITE_OK.
**
** In addition to checking for read-locks (where a read-lock
** means a cursor opened with wrFlag==0) this routine also moves
** all cursors other than pCur so that they are pointing to the
** first Cell on root page. This is necessary because an insert
** or delete might change the number of cells on a page or delete
** a page entirely and we do not want to leave any cursors
** pointing to non-existant pages or cells.
*/
static int checkReadLocks(BtCursor *pCur){
BtCursor *p;
assert( pCur->wrFlag );
for(p=pCur->pShared; p!=pCur; p=p->pShared){
assert( p );
assert( p->pgnoRoot==pCur->pgnoRoot );
if( p->wrFlag==0 ) return SQLITE_LOCKED;
if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
moveToRoot(p);
}
}
return SQLITE_OK;
}
/*
** Insert a new record into the BTree. The key is given by (pKey,nKey)
** and the data is given by (pData,nData). The cursor is used only to
** define what database the record should be inserted into. The cursor
** is left pointing at the new record.
*/
static int fileBtreeInsert(
BtCursor *pCur, /* Insert data into the table of this cursor */
const void *pKey, int nKey, /* The key of the new record */
const void *pData, int nData /* The data of the new record */
){
Cell newCell;
int rc;
int loc;
int szNew;
MemPage *pPage;
Btree *pBt = pCur->pBt;
if( pCur->pPage==0 ){
return SQLITE_ABORT; /* A rollback destroyed this cursor */
}
if( !pBt->inTrans || nKey+nData==0 ){
/* Must start a transaction before doing an insert */
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
assert( !pBt->readOnly );
if( !pCur->wrFlag ){
return SQLITE_PERM; /* Cursor not open for writing */
}
if( checkReadLocks(pCur) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
rc = fileBtreeMoveto(pCur, pKey, nKey, &loc);
if( rc ) return rc;
pPage = pCur->pPage;
assert( pPage->isInit );
rc = sqlitepager_write(pPage);
if( rc ) return rc;
rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
if( rc ) return rc;
szNew = cellSize(pBt, &newCell);
if( loc==0 ){
newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
rc = clearCell(pBt, pPage->apCell[pCur->idx]);
if( rc ) return rc;
dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx]));
}else if( loc<0 && pPage->nCell>0 ){
assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
pCur->idx++;
}else{
assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
}
insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
rc = balance(pCur->pBt, pPage, pCur);
/* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
/* fflush(stdout); */
pCur->eSkip = SKIP_INVALID;
return rc;
}
/*
** Delete the entry that the cursor is pointing to.
**
** The cursor is left pointing at either the next or the previous
** entry. If the cursor is left pointing to the next entry, then
** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
** sqliteBtreeNext() to be a no-op. That way, you can always call
** sqliteBtreeNext() after a delete and the cursor will be left
** pointing to the first entry after the deleted entry. Similarly,
** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
** the entry prior to the deleted entry so that a subsequent call to
** sqliteBtreePrevious() will always leave the cursor pointing at the
** entry immediately before the one that was deleted.
*/
static int fileBtreeDelete(BtCursor *pCur){
MemPage *pPage = pCur->pPage;
Cell *pCell;
int rc;
Pgno pgnoChild;
Btree *pBt = pCur->pBt;
assert( pPage->isInit );
if( pCur->pPage==0 ){
return SQLITE_ABORT; /* A rollback destroyed this cursor */
}
if( !pBt->inTrans ){
/* Must start a transaction before doing a delete */
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
assert( !pBt->readOnly );
if( pCur->idx >= pPage->nCell ){
return SQLITE_ERROR; /* The cursor is not pointing to anything */
}
if( !pCur->wrFlag ){
return SQLITE_PERM; /* Did not open this cursor for writing */
}
if( checkReadLocks(pCur) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
rc = sqlitepager_write(pPage);
if( rc ) return rc;
pCell = pPage->apCell[pCur->idx];
pgnoChild = SWAB32(pBt, pCell->h.leftChild);
clearCell(pBt, pCell);
if( pgnoChild ){
/*
** The entry we are about to delete is not a leaf so if we do not
** do something we will leave a hole on an internal page.
** We have to fill the hole by moving in a cell from a leaf. The
** next Cell after the one to be deleted is guaranteed to exist and
** to be a leaf so we can use it.
*/
BtCursor leafCur;
Cell *pNext;
int szNext;
int notUsed;
getTempCursor(pCur, &leafCur);
rc = fileBtreeNext(&leafCur, ¬Used);
if( rc!=SQLITE_OK ){
if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
return rc;
}
rc = sqlitepager_write(leafCur.pPage);
if( rc ) return rc;
dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
pNext = leafCur.pPage->apCell[leafCur.idx];
szNext = cellSize(pBt, pNext);
pNext->h.leftChild = SWAB32(pBt, pgnoChild);
insertCell(pBt, pPage, pCur->idx, pNext, szNext);
rc = balance(pBt, pPage, pCur);
if( rc ) return rc;
pCur->eSkip = SKIP_NEXT;
dropCell(pBt, leafCur.pPage, leafCur.idx, szNext);
rc = balance(pBt, leafCur.pPage, pCur);
releaseTempCursor(&leafCur);
}else{
dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
if( pCur->idx>=pPage->nCell ){
pCur->idx = pPage->nCell-1;
if( pCur->idx<0 ){
pCur->idx = 0;
pCur->eSkip = SKIP_NEXT;
}else{
pCur->eSkip = SKIP_PREV;
}
}else{
pCur->eSkip = SKIP_NEXT;
}
rc = balance(pBt, pPage, pCur);
}
return rc;
}
/*
** Create a new BTree table. Write into *piTable the page
** number for the root page of the new table.
**
** In the current implementation, BTree tables and BTree indices are the
** the same. In the future, we may change this so that BTree tables
** are restricted to having a 4-byte integer key and arbitrary data and
** BTree indices are restricted to having an arbitrary key and no data.
** But for now, this routine also serves to create indices.
*/
static int fileBtreeCreateTable(Btree *pBt, int *piTable){
MemPage *pRoot;
Pgno pgnoRoot;
int rc;
if( !pBt->inTrans ){
/* Must start a transaction first */
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
if( pBt->readOnly ){
return SQLITE_READONLY;
}
rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0);
if( rc ) return rc;
assert( sqlitepager_iswriteable(pRoot) );
zeroPage(pBt, pRoot);
sqlitepager_unref(pRoot);
*piTable = (int)pgnoRoot;
return SQLITE_OK;
}
/*
** Erase the given database page and all its children. Return
** the page to the freelist.
*/
static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
MemPage *pPage;
int rc;
Cell *pCell;
int idx;
rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
if( rc ) return rc;
rc = sqlitepager_write(pPage);
if( rc ) return rc;
rc = initPage(pBt, pPage, pgno, 0);
if( rc ) return rc;
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx>0 ){
pCell = (Cell*)&pPage->u.aDisk[idx];
idx = SWAB16(pBt, pCell->h.iNext);
if( pCell->h.leftChild ){
rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
if( rc ) return rc;
}
rc = clearCell(pBt, pCell);
if( rc ) return rc;
}
if( pPage->u.hdr.rightChild ){
rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
if( rc ) return rc;
}
if( freePageFlag ){
rc = freePage(pBt, pPage, pgno);
}else{
zeroPage(pBt, pPage);
}
sqlitepager_unref(pPage);
return rc;
}
/*
** Delete all information from a single table in the database.
*/
static int fileBtreeClearTable(Btree *pBt, int iTable){
int rc;
BtCursor *pCur;
if( !pBt->inTrans ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( pCur->pgnoRoot==(Pgno)iTable ){
if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
moveToRoot(pCur);
}
}
rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
if( rc ){
fileBtreeRollback(pBt);
}
return rc;
}
/*
** Erase all information in a table and add the root of the table to
** the freelist. Except, the root of the principle table (the one on
** page 2) is never added to the freelist.
*/
static int fileBtreeDropTable(Btree *pBt, int iTable){
int rc;
MemPage *pPage;
BtCursor *pCur;
if( !pBt->inTrans ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( pCur->pgnoRoot==(Pgno)iTable ){
return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
}
}
rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
if( rc ) return rc;
rc = fileBtreeClearTable(pBt, iTable);
if( rc ) return rc;
if( iTable>2 ){
rc = freePage(pBt, pPage, iTable);
}else{
zeroPage(pBt, pPage);
}
sqlitepager_unref(pPage);
return rc;
}
#if 0 /* UNTESTED */
/*
** Copy all cell data from one database file into another.
** pages back the freelist.
*/
static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){
Pager *pFromPager = pBtFrom->pPager;
OverflowPage *pOvfl;
Pgno ovfl, nextOvfl;
Pgno *pPrev;
int rc = SQLITE_OK;
MemPage *pNew, *pPrevPg;
Pgno new;
if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){
return SQLITE_OK;
}
pPrev = &pCell->ovfl;
pPrevPg = 0;
ovfl = SWAB32(pBtTo, pCell->ovfl);
while( ovfl && rc==SQLITE_OK ){
rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl);
if( rc ) return rc;
nextOvfl = SWAB32(pBtFrom, pOvfl->iNext);
rc = allocatePage(pBtTo, &pNew, &new, 0);
if( rc==SQLITE_OK ){
rc = sqlitepager_write(pNew);
if( rc==SQLITE_OK ){
memcpy(pNew, pOvfl, SQLITE_USABLE_SIZE);
*pPrev = SWAB32(pBtTo, new);
if( pPrevPg ){
sqlitepager_unref(pPrevPg);
}
pPrev = &pOvfl->iNext;
pPrevPg = pNew;
}
}
sqlitepager_unref(pOvfl);
ovfl = nextOvfl;
}
if( pPrevPg ){
sqlitepager_unref(pPrevPg);
}
return rc;
}
#endif
#if 0 /* UNTESTED */
/*
** Copy a page of data from one database over to another.
*/
static int copyDatabasePage(
Btree *pBtFrom,
Pgno pgnoFrom,
Btree *pBtTo,
Pgno *pTo
){
MemPage *pPageFrom, *pPage;
Pgno to;
int rc;
Cell *pCell;
int idx;
rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom);
if( rc ) return rc;
rc = allocatePage(pBt, &pPage, pTo, 0);
if( rc==SQLITE_OK ){
rc = sqlitepager_write(pPage);
}
if( rc==SQLITE_OK ){
memcpy(pPage, pPageFrom, SQLITE_USABLE_SIZE);
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx>0 ){
pCell = (Cell*)&pPage->u.aDisk[idx];
idx = SWAB16(pBt, pCell->h.iNext);
if( pCell->h.leftChild ){
Pgno newChld;
rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild),
pBtTo, &newChld);
if( rc ) return rc;
pCell->h.leftChild = SWAB32(pBtFrom, newChld);
}
rc = copyCell(pBtFrom, pBtTo, pCell);
if( rc ) return rc;
}
if( pPage->u.hdr.rightChild ){
Pgno newChld;
rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild),
pBtTo, &newChld);
if( rc ) return rc;
pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild);
}
}
sqlitepager_unref(pPage);
return rc;
}
#endif
/*
** Read the meta-information out of a database file.
*/
static int fileBtreeGetMeta(Btree *pBt, int *aMeta){
PageOne *pP1;
int rc;
int i;
rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
if( rc ) return rc;
aMeta[0] = SWAB32(pBt, pP1->nFree);
for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]);
}
sqlitepager_unref(pP1);
return SQLITE_OK;
}
/*
** Write meta-information back into the database.
*/
static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){
PageOne *pP1;
int rc, i;
if( !pBt->inTrans ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
pP1 = pBt->page1;
rc = sqlitepager_write(pP1);
if( rc ) return rc;
for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]);
}
return SQLITE_OK;
}
/******************************************************************************
** The complete implementation of the BTree subsystem is above this line.
** All the code the follows is for testing and troubleshooting the BTree
** subsystem. None of the code that follows is used during normal operation.
******************************************************************************/
/*
** Print a disassembly of the given page on standard output. This routine
** is used for debugging and testing only.
*/
#ifdef SQLITE_TEST
static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){
int rc;
MemPage *pPage;
int i, j;
int nFree;
u16 idx;
char range[20];
unsigned char payload[20];
rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
if( rc ){
return rc;
}
if( recursive ) printf("PAGE %d:\n", pgno);
i = 0;
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx>0 && idx<=SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
int sz = cellSize(pBt, pCell);
sprintf(range,"%d..%d", idx, idx+sz-1);
sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
memcpy(payload, pCell->aPayload, sz);
for(j=0; j<sz; j++){
if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
}
payload[sz] = 0;
printf(
"cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
i, range, (int)pCell->h.leftChild,
NKEY(pBt, pCell->h), NDATA(pBt, pCell->h),
payload
);
if( pPage->isInit && pPage->apCell[i]!=pCell ){
printf("**** apCell[%d] does not match on prior entry ****\n", i);
}
i++;
idx = SWAB16(pBt, pCell->h.iNext);
}
if( idx!=0 ){
printf("ERROR: next cell index out of range: %d\n", idx);
}
printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild));
nFree = 0;
i = 0;
idx = SWAB16(pBt, pPage->u.hdr.firstFree);
while( idx>0 && idx<SQLITE_USABLE_SIZE ){
FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
sprintf(range,"%d..%d", idx, idx+p->iSize-1);
nFree += SWAB16(pBt, p->iSize);
printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
i, range, SWAB16(pBt, p->iSize), nFree);
idx = SWAB16(pBt, p->iNext);
i++;
}
if( idx!=0 ){
printf("ERROR: next freeblock index out of range: %d\n", idx);
}
if( recursive && pPage->u.hdr.rightChild!=0 ){
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx>0 && idx<SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
idx = SWAB16(pBt, pCell->h.iNext);
}
fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
}
sqlitepager_unref(pPage);
return SQLITE_OK;
}
#endif
#ifdef SQLITE_TEST
/*
** Fill aResult[] with information about the entry and page that the
** cursor is pointing to.
**
** aResult[0] = The page number
** aResult[1] = The entry number
** aResult[2] = Total number of entries on this page
** aResult[3] = Size of this entry
** aResult[4] = Number of free bytes on this page
** aResult[5] = Number of free blocks on the page
** aResult[6] = Page number of the left child of this entry
** aResult[7] = Page number of the right child for the whole page
**
** This routine is used for testing and debugging only.
*/
static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){
int cnt, idx;
MemPage *pPage = pCur->pPage;
Btree *pBt = pCur->pBt;
aResult[0] = sqlitepager_pagenumber(pPage);
aResult[1] = pCur->idx;
aResult[2] = pPage->nCell;
if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]);
aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild);
}else{
aResult[3] = 0;
aResult[6] = 0;
}
aResult[4] = pPage->nFree;
cnt = 0;
idx = SWAB16(pBt, pPage->u.hdr.firstFree);
while( idx>0 && idx<SQLITE_USABLE_SIZE ){
cnt++;
idx = SWAB16(pBt, ((FreeBlk*)&pPage->u.aDisk[idx])->iNext);
}
aResult[5] = cnt;
aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild);
return SQLITE_OK;
}
#endif
/*
** Return the pager associated with a BTree. This routine is used for
** testing and debugging only.
*/
static Pager *fileBtreePager(Btree *pBt){
return pBt->pPager;
}
/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
Btree *pBt; /* The tree being checked out */
Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
int nPage; /* Number of pages in the database */
int *anRef; /* Number of times each page is referenced */
char *zErrMsg; /* An error message. NULL of no errors seen. */
};
/*
** Append a message to the error message string.
*/
static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
if( pCheck->zErrMsg ){
char *zOld = pCheck->zErrMsg;
pCheck->zErrMsg = 0;
sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
sqliteFree(zOld);
}else{
sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
}
}
/*
** Add 1 to the reference count for page iPage. If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
if( iPage==0 ) return 1;
if( iPage>pCheck->nPage || iPage<0 ){
char zBuf[100];
sprintf(zBuf, "invalid page number %d", iPage);
checkAppendMsg(pCheck, zContext, zBuf);
return 1;
}
if( pCheck->anRef[iPage]==1 ){
char zBuf[100];
sprintf(zBuf, "2nd reference to page %d", iPage);
checkAppendMsg(pCheck, zContext, zBuf);
return 1;
}
return (pCheck->anRef[iPage]++)>1;
}
/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
IntegrityCk *pCheck, /* Integrity checking context */
int isFreeList, /* True for a freelist. False for overflow page list */
int iPage, /* Page number for first page in the list */
int N, /* Expected number of pages in the list */
char *zContext /* Context for error messages */
){
int i;
char zMsg[100];
while( N-- > 0 ){
OverflowPage *pOvfl;
if( iPage<1 ){
sprintf(zMsg, "%d pages missing from overflow list", N+1);
checkAppendMsg(pCheck, zContext, zMsg);
break;
}
if( checkRef(pCheck, iPage, zContext) ) break;
if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
sprintf(zMsg, "failed to get page %d", iPage);
checkAppendMsg(pCheck, zContext, zMsg);
break;
}
if( isFreeList ){
FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
int n = SWAB32(pCheck->pBt, pInfo->nFree);
for(i=0; i<n; i++){
checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zContext);
}
N -= n;
}
iPage = SWAB32(pCheck->pBt, pOvfl->iNext);
sqlitepager_unref(pOvfl);
}
}
/*
** Return negative if zKey1<zKey2.
** Return zero if zKey1==zKey2.
** Return positive if zKey1>zKey2.
*/
static int keyCompare(
const char *zKey1, int nKey1,
const char *zKey2, int nKey2
){
int min = nKey1>nKey2 ? nKey2 : nKey1;
int c = memcmp(zKey1, zKey2, min);
if( c==0 ){
c = nKey1 - nKey2;
}
return c;
}
/*
** Do various sanity checks on a single page of a tree. Return
** the tree depth. Root pages return 0. Parents of root pages
** return 1, and so forth.
**
** These checks are done:
**
** 1. Make sure that cells and freeblocks do not overlap
** but combine to completely cover the page.
** 2. Make sure cell keys are in order.
** 3. Make sure no key is less than or equal to zLowerBound.
** 4. Make sure no key is greater than or equal to zUpperBound.
** 5. Check the integrity of overflow pages.
** 6. Recursively call checkTreePage on all children.
** 7. Verify that the depth of all children is the same.
** 8. Make sure this page is at least 33% full or else it is
** the root of the tree.
*/
static int checkTreePage(
IntegrityCk *pCheck, /* Context for the sanity check */
int iPage, /* Page number of the page to check */
MemPage *pParent, /* Parent page */
char *zParentContext, /* Parent context */
char *zLowerBound, /* All keys should be greater than this, if not NULL */
int nLower, /* Number of characters in zLowerBound */
char *zUpperBound, /* All keys should be less than this, if not NULL */
int nUpper /* Number of characters in zUpperBound */
){
MemPage *pPage;
int i, rc, depth, d2, pgno;
char *zKey1, *zKey2;
int nKey1, nKey2;
BtCursor cur;
Btree *pBt;
char zMsg[100];
char zContext[100];
char hit[SQLITE_USABLE_SIZE];
/* Check that the page exists
*/
cur.pBt = pBt = pCheck->pBt;
if( iPage==0 ) return 0;
if( checkRef(pCheck, iPage, zParentContext) ) return 0;
sprintf(zContext, "On tree page %d: ", iPage);
if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
sprintf(zMsg, "unable to get the page. error code=%d", rc);
checkAppendMsg(pCheck, zContext, zMsg);
return 0;
}
if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){
sprintf(zMsg, "initPage() returns error code %d", rc);
checkAppendMsg(pCheck, zContext, zMsg);
sqlitepager_unref(pPage);
return 0;
}
/* Check out all the cells.
*/
depth = 0;
if( zLowerBound ){
zKey1 = sqliteMalloc( nLower+1 );
memcpy(zKey1, zLowerBound, nLower);
zKey1[nLower] = 0;
}else{
zKey1 = 0;
}
nKey1 = nLower;
cur.pPage = pPage;
for(i=0; i<pPage->nCell; i++){
Cell *pCell = pPage->apCell[i];
int sz;
/* Check payload overflow pages
*/
nKey2 = NKEY(pBt, pCell->h);
sz = nKey2 + NDATA(pBt, pCell->h);
sprintf(zContext, "On page %d cell %d: ", iPage, i);
if( sz>MX_LOCAL_PAYLOAD ){
int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext);
}
/* Check that keys are in the right order
*/
cur.idx = i;
zKey2 = sqliteMallocRaw( nKey2+1 );
getPayload(&cur, 0, nKey2, zKey2);
if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){
checkAppendMsg(pCheck, zContext, "Key is out of order");
}
/* Check sanity of left child page.
*/
pgno = SWAB32(pBt, pCell->h.leftChild);
d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2);
if( i>0 && d2!=depth ){
checkAppendMsg(pCheck, zContext, "Child page depth differs");
}
depth = d2;
sqliteFree(zKey1);
zKey1 = zKey2;
nKey1 = nKey2;
}
pgno = SWAB32(pBt, pPage->u.hdr.rightChild);
sprintf(zContext, "On page %d at right child: ", iPage);
checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper);
sqliteFree(zKey1);
/* Check for complete coverage of the page
*/
memset(hit, 0, sizeof(hit));
memset(hit, 1, sizeof(PageHdr));
for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && i<SQLITE_USABLE_SIZE; ){
Cell *pCell = (Cell*)&pPage->u.aDisk[i];
int j;
for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++;
i = SWAB16(pBt, pCell->h.iNext);
}
for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && i<SQLITE_USABLE_SIZE; ){
FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
int j;
for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++;
i = SWAB16(pBt,pFBlk->iNext);
}
for(i=0; i<SQLITE_USABLE_SIZE; i++){
if( hit[i]==0 ){
sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
checkAppendMsg(pCheck, zMsg, 0);
break;
}else if( hit[i]>1 ){
sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
checkAppendMsg(pCheck, zMsg, 0);
break;
}
}
/* Check that free space is kept to a minimum
*/
#if 0
if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_USABLE_SIZE/4 ){
sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
SQLITE_USABLE_SIZE/3);
checkAppendMsg(pCheck, zContext, zMsg);
}
#endif
sqlitepager_unref(pPage);
return depth;
}
/*
** This routine does a complete check of the given BTree file. aRoot[] is
** an array of pages numbers were each page number is the root page of
** a table. nRoot is the number of entries in aRoot.
**
** If everything checks out, this routine returns NULL. If something is
** amiss, an error message is written into memory obtained from malloc()
** and a pointer to that error message is returned. The calling function
** is responsible for freeing the error message when it is done.
*/
char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
int i;
int nRef;
IntegrityCk sCheck;
nRef = *sqlitepager_stats(pBt->pPager);
if( lockBtree(pBt)!=SQLITE_OK ){
return sqliteStrDup("Unable to acquire a read lock on the database");
}
sCheck.pBt = pBt;
sCheck.pPager = pBt->pPager;
sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
if( sCheck.nPage==0 ){
unlockBtreeIfUnused(pBt);
return 0;
}
sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
sCheck.anRef[1] = 1;
for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
sCheck.zErrMsg = 0;
/* Check the integrity of the freelist
*/
checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList),
SWAB32(pBt, pBt->page1->nFree), "Main freelist: ");
/* Check all the tables.
*/
for(i=0; i<nRoot; i++){
if( aRoot[i]==0 ) continue;
checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
}
/* Make sure every page in the file is referenced
*/
for(i=1; i<=sCheck.nPage; i++){
if( sCheck.anRef[i]==0 ){
char zBuf[100];
sprintf(zBuf, "Page %d is never used", i);
checkAppendMsg(&sCheck, zBuf, 0);
}
}
/* Make sure this analysis did not leave any unref() pages
*/
unlockBtreeIfUnused(pBt);
if( nRef != *sqlitepager_stats(pBt->pPager) ){
char zBuf[100];
sprintf(zBuf,
"Outstanding page count goes from %d to %d during this analysis",
nRef, *sqlitepager_stats(pBt->pPager)
);
checkAppendMsg(&sCheck, zBuf, 0);
}
/* Clean up and report errors.
*/
sqliteFree(sCheck.anRef);
return sCheck.zErrMsg;
}
/*
** Return the full pathname of the underlying database file.
*/
static const char *fileBtreeGetFilename(Btree *pBt){
assert( pBt->pPager!=0 );
return sqlitepager_filename(pBt->pPager);
}
/*
** Copy the complete content of pBtFrom into pBtTo. A transaction
** must be active for both files.
**
** The size of file pBtFrom may be reduced by this operation.
** If anything goes wrong, the transaction on pBtFrom is rolled back.
*/
static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
int rc = SQLITE_OK;
Pgno i, nPage, nToPage;
if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR;
if( pBtTo->pCursor ) return SQLITE_BUSY;
memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_USABLE_SIZE);
rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1);
nToPage = sqlitepager_pagecount(pBtTo->pPager);
nPage = sqlitepager_pagecount(pBtFrom->pPager);
for(i=2; rc==SQLITE_OK && i<=nPage; i++){
void *pPage;
rc = sqlitepager_get(pBtFrom->pPager, i, &pPage);
if( rc ) break;
rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage);
if( rc ) break;
sqlitepager_unref(pPage);
}
for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
void *pPage;
rc = sqlitepager_get(pBtTo->pPager, i, &pPage);
if( rc ) break;
rc = sqlitepager_write(pPage);
sqlitepager_unref(pPage);
sqlitepager_dont_write(pBtTo->pPager, i);
}
if( !rc && nPage<nToPage ){
rc = sqlitepager_truncate(pBtTo->pPager, nPage);
}
if( rc ){
fileBtreeRollback(pBtTo);
}
return rc;
}
/*
** The following tables contain pointers to all of the interface
** routines for this implementation of the B*Tree backend. To
** substitute a different implemention of the backend, one has merely
** to provide pointers to alternative functions in similar tables.
*/
static BtOps sqliteBtreeOps = {
fileBtreeClose,
fileBtreeSetCacheSize,
fileBtreeSetSafetyLevel,
fileBtreeBeginTrans,
fileBtreeCommit,
fileBtreeRollback,
fileBtreeBeginCkpt,
fileBtreeCommitCkpt,
fileBtreeRollbackCkpt,
fileBtreeCreateTable,
fileBtreeCreateTable, /* Really sqliteBtreeCreateIndex() */
fileBtreeDropTable,
fileBtreeClearTable,
fileBtreeCursor,
fileBtreeGetMeta,
fileBtreeUpdateMeta,
fileBtreeIntegrityCheck,
fileBtreeGetFilename,
fileBtreeCopyFile,
fileBtreePager,
#ifdef SQLITE_TEST
fileBtreePageDump,
#endif
};
static BtCursorOps sqliteBtreeCursorOps = {
fileBtreeMoveto,
fileBtreeDelete,
fileBtreeInsert,
fileBtreeFirst,
fileBtreeLast,
fileBtreeNext,
fileBtreePrevious,
fileBtreeKeySize,
fileBtreeKey,
fileBtreeKeyCompare,
fileBtreeDataSize,
fileBtreeData,
fileBtreeCloseCursor,
#ifdef SQLITE_TEST
fileBtreeCursorDump,
#endif
};
|