1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
|
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.
**
** $Id: where.c,v 1.1.1.1 2004/08/08 15:03:58 matt Exp $
*/
#include "sqliteInt.h"
/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause. Each WHERE
** clause subexpression is separated from the others by an AND operator.
*/
typedef struct ExprInfo ExprInfo;
struct ExprInfo {
Expr *p; /* Pointer to the subexpression */
u8 indexable; /* True if this subexprssion is usable by an index */
short int idxLeft; /* p->pLeft is a column in this table number. -1 if
** p->pLeft is not the column of any table */
short int idxRight; /* p->pRight is a column in this table number. -1 if
** p->pRight is not the column of any table */
unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */
unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */
unsigned prereqAll; /* Bitmask of tables referenced by p */
};
/*
** An instance of the following structure keeps track of a mapping
** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers
** are small integers contained in SrcList_item.iCursor and Expr.iTable
** fields. For any given WHERE clause, we want to track which cursors
** are being used, so we assign a single bit in a 32-bit word to track
** that cursor. Then a 32-bit integer is able to show the set of all
** cursors being used.
*/
typedef struct ExprMaskSet ExprMaskSet;
struct ExprMaskSet {
int n; /* Number of assigned cursor values */
int ix[31]; /* Cursor assigned to each bit */
};
/*
** Determine the number of elements in an array.
*/
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
/*
** This routine is used to divide the WHERE expression into subexpressions
** separated by the AND operator.
**
** aSlot[] is an array of subexpressions structures.
** There are nSlot spaces left in this array. This routine attempts to
** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
** The return value is the number of slots filled.
*/
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
int cnt = 0;
if( pExpr==0 || nSlot<1 ) return 0;
if( nSlot==1 || pExpr->op!=TK_AND ){
aSlot[0].p = pExpr;
return 1;
}
if( pExpr->pLeft->op!=TK_AND ){
aSlot[0].p = pExpr->pLeft;
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
}else{
cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
}
return cnt;
}
/*
** Initialize an expression mask set
*/
#define initMaskSet(P) memset(P, 0, sizeof(*P))
/*
** Return the bitmask for the given cursor. Assign a new bitmask
** if this is the first time the cursor has been seen.
*/
static int getMask(ExprMaskSet *pMaskSet, int iCursor){
int i;
for(i=0; i<pMaskSet->n; i++){
if( pMaskSet->ix[i]==iCursor ) return 1<<i;
}
if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
pMaskSet->n++;
pMaskSet->ix[i] = iCursor;
return 1<<i;
}
return 0;
}
/*
** Destroy an expression mask set
*/
#define freeMaskSet(P) /* NO-OP */
/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
**
** In order for this routine to work, the calling function must have
** previously invoked sqliteExprResolveIds() on the expression. See
** the header comment on that routine for additional information.
** The sqliteExprResolveIds() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table.
*/
static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
unsigned int mask = 0;
if( p==0 ) return 0;
if( p->op==TK_COLUMN ){
mask = getMask(pMaskSet, p->iTable);
if( mask==0 ) mask = -1;
return mask;
}
if( p->pRight ){
mask = exprTableUsage(pMaskSet, p->pRight);
}
if( p->pLeft ){
mask |= exprTableUsage(pMaskSet, p->pLeft);
}
if( p->pList ){
int i;
for(i=0; i<p->pList->nExpr; i++){
mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
}
}
return mask;
}
/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause. The allowed operators are
** "=", "<", ">", "<=", ">=", and "IN".
*/
static int allowedOp(int op){
switch( op ){
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_EQ:
case TK_IN:
return 1;
default:
return 0;
}
}
/*
** The input to this routine is an ExprInfo structure with only the
** "p" field filled in. The job of this routine is to analyze the
** subexpression and populate all the other fields of the ExprInfo
** structure.
*/
static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){
Expr *pExpr = pInfo->p;
pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
pInfo->indexable = 0;
pInfo->idxLeft = -1;
pInfo->idxRight = -1;
if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
pInfo->idxRight = pExpr->pRight->iTable;
pInfo->indexable = 1;
}
if( pExpr->pLeft->op==TK_COLUMN ){
pInfo->idxLeft = pExpr->pLeft->iTable;
pInfo->indexable = 1;
}
}
}
/*
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
** left-most table in the FROM clause of that same SELECT statement and
** the table has a cursor number of "base".
**
** This routine attempts to find an index for pTab that generates the
** correct record sequence for the given ORDER BY clause. The return value
** is a pointer to an index that does the job. NULL is returned if the
** table has no index that will generate the correct sort order.
**
** If there are two or more indices that generate the correct sort order
** and pPreferredIdx is one of those indices, then return pPreferredIdx.
**
** nEqCol is the number of columns of pPreferredIdx that are used as
** equality constraints. Any index returned must have exactly this same
** set of columns. The ORDER BY clause only matches index columns beyond the
** the first nEqCol columns.
**
** All terms of the ORDER BY clause must be either ASC or DESC. The
** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
** set to 0 if the ORDER BY clause is all ASC.
*/
static Index *findSortingIndex(
Table *pTab, /* The table to be sorted */
int base, /* Cursor number for pTab */
ExprList *pOrderBy, /* The ORDER BY clause */
Index *pPreferredIdx, /* Use this index, if possible and not NULL */
int nEqCol, /* Number of index columns used with == constraints */
int *pbRev /* Set to 1 if ORDER BY is DESC */
){
int i, j;
Index *pMatch;
Index *pIdx;
int sortOrder;
assert( pOrderBy!=0 );
assert( pOrderBy->nExpr>0 );
sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
for(i=0; i<pOrderBy->nExpr; i++){
Expr *p;
if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
/* Indices can only be used if all ORDER BY terms are either
** DESC or ASC. Indices cannot be used on a mixture. */
return 0;
}
if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
/* Do not sort by index if there is a COLLATE clause */
return 0;
}
p = pOrderBy->a[i].pExpr;
if( p->op!=TK_COLUMN || p->iTable!=base ){
/* Can not use an index sort on anything that is not a column in the
** left-most table of the FROM clause */
return 0;
}
}
/* If we get this far, it means the ORDER BY clause consists only of
** ascending columns in the left-most table of the FROM clause. Now
** check for a matching index.
*/
pMatch = 0;
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int nExpr = pOrderBy->nExpr;
if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
for(i=j=0; i<nEqCol; i++){
if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
}
if( i<nEqCol ) continue;
for(i=0; i+j<nExpr; i++){
if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
}
if( i+j>=nExpr ){
pMatch = pIdx;
if( pIdx==pPreferredIdx ) break;
}
}
if( pMatch && pbRev ){
*pbRev = sortOrder==SQLITE_SO_DESC;
}
return pMatch;
}
/*
** Disable a term in the WHERE clause. Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
**
** The t2.z='ok' is disabled in the in (2) because it did not originate
** in the ON clause. The term is disabled in (3) because it is not part
** of a LEFT OUTER JOIN. In (1), the term is not disabled.
**
** Disabling a term causes that term to not be tested in the inner loop
** of the join. Disabling is an optimization. We would get the correct
** results if nothing were ever disabled, but joins might run a little
** slower. The trick is to disable as much as we can without disabling
** too much. If we disabled in (1), we'd get the wrong answer.
** See ticket #813.
*/
static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
Expr *pExpr = *ppExpr;
if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
*ppExpr = 0;
}
}
/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an (opaque) structure that contains
** information needed to terminate the loop. Later, the calling routine
** should invoke sqliteWhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
**
** If an error occurs, this routine returns NULL.
**
** The basic idea is to do a nested loop, one loop for each table in
** the FROM clause of a select. (INSERT and UPDATE statements are the
** same as a SELECT with only a single table in the FROM clause.) For
** example, if the SQL is this:
**
** SELECT * FROM t1, t2, t3 WHERE ...;
**
** Then the code generated is conceptually like the following:
**
** foreach row1 in t1 do \ Code generated
** foreach row2 in t2 do |-- by sqliteWhereBegin()
** foreach row3 in t3 do /
** ...
** end \ Code generated
** end |-- by sqliteWhereEnd()
** end /
**
** There are Btree cursors associated with each table. t1 uses cursor
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
** And so forth. This routine generates code to open those VDBE cursors
** and sqliteWhereEnd() generates the code to close them.
**
** If the WHERE clause is empty, the foreach loops must each scan their
** entire tables. Thus a three-way join is an O(N^3) operation. But if
** the tables have indices and there are terms in the WHERE clause that
** refer to those indices, a complete table scan can be avoided and the
** code will run much faster. Most of the work of this routine is checking
** to see if there are indices that can be used to speed up the loop.
**
** Terms of the WHERE clause are also used to limit which rows actually
** make it to the "..." in the middle of the loop. After each "foreach",
** terms of the WHERE clause that use only terms in that loop and outer
** loops are evaluated and if false a jump is made around all subsequent
** inner loops (or around the "..." if the test occurs within the inner-
** most loop)
**
** OUTER JOINS
**
** An outer join of tables t1 and t2 is conceptally coded as follows:
**
** foreach row1 in t1 do
** flag = 0
** foreach row2 in t2 do
** start:
** ...
** flag = 1
** end
** if flag==0 then
** move the row2 cursor to a null row
** goto start
** fi
** end
**
** ORDER BY CLAUSE PROCESSING
**
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
** if there is one. If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
**
** If an index can be used so that the natural output order of the table
** scan is correct for the ORDER BY clause, then that index is used and
** *ppOrderBy is set to NULL. This is an optimization that prevents an
** unnecessary sort of the result set if an index appropriate for the
** ORDER BY clause already exists.
**
** If the where clause loops cannot be arranged to provide the correct
** output order, then the *ppOrderBy is unchanged.
*/
WhereInfo *sqliteWhereBegin(
Parse *pParse, /* The parser context */
SrcList *pTabList, /* A list of all tables to be scanned */
Expr *pWhere, /* The WHERE clause */
int pushKey, /* If TRUE, leave the table key on the stack */
ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
){
int i; /* Loop counter */
WhereInfo *pWInfo; /* Will become the return value of this function */
Vdbe *v = pParse->pVdbe; /* The virtual database engine */
int brk, cont = 0; /* Addresses used during code generation */
int nExpr; /* Number of subexpressions in the WHERE clause */
int loopMask; /* One bit set for each outer loop */
int haveKey; /* True if KEY is on the stack */
ExprMaskSet maskSet; /* The expression mask set */
int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
/* pushKey is only allowed if there is a single table (as in an INSERT or
** UPDATE statement)
*/
assert( pushKey==0 || pTabList->nSrc==1 );
/* Split the WHERE clause into separate subexpressions where each
** subexpression is separated by an AND operator. If the aExpr[]
** array fills up, the last entry might point to an expression which
** contains additional unfactored AND operators.
*/
initMaskSet(&maskSet);
memset(aExpr, 0, sizeof(aExpr));
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
if( nExpr==ARRAYSIZE(aExpr) ){
sqliteErrorMsg(pParse, "WHERE clause too complex - no more "
"than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
return 0;
}
/* Allocate and initialize the WhereInfo structure that will become the
** return value.
*/
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
if( sqlite_malloc_failed ){
sqliteFree(pWInfo);
return 0;
}
pWInfo->pParse = pParse;
pWInfo->pTabList = pTabList;
pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
pWInfo->iBreak = sqliteVdbeMakeLabel(v);
/* Special case: a WHERE clause that is constant. Evaluate the
** expression and either jump over all of the code or fall thru.
*/
if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
pWhere = 0;
}
/* Analyze all of the subexpressions.
*/
for(i=0; i<nExpr; i++){
exprAnalyze(&maskSet, &aExpr[i]);
/* If we are executing a trigger body, remove all references to
** new.* and old.* tables from the prerequisite masks.
*/
if( pParse->trigStack ){
int x;
if( (x = pParse->trigStack->newIdx) >= 0 ){
int mask = ~getMask(&maskSet, x);
aExpr[i].prereqRight &= mask;
aExpr[i].prereqLeft &= mask;
aExpr[i].prereqAll &= mask;
}
if( (x = pParse->trigStack->oldIdx) >= 0 ){
int mask = ~getMask(&maskSet, x);
aExpr[i].prereqRight &= mask;
aExpr[i].prereqLeft &= mask;
aExpr[i].prereqAll &= mask;
}
}
}
/* Figure out what index to use (if any) for each nested loop.
** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
** loop.
**
** If terms exist that use the ROWID of any table, then set the
** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
** to the index of the term containing the ROWID. We always prefer
** to use a ROWID which can directly access a table rather than an
** index which requires reading an index first to get the rowid then
** doing a second read of the actual database table.
**
** Actually, if there are more than 32 tables in the join, only the
** first 32 tables are candidates for indices. This is (again) due
** to the limit of 32 bits in an integer bitmask.
*/
loopMask = 0;
for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
int j;
int iCur = pTabList->a[i].iCursor; /* The cursor for this table */
int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
Table *pTab = pTabList->a[i].pTab;
Index *pIdx;
Index *pBestIdx = 0;
int bestScore = 0;
/* Check to see if there is an expression that uses only the
** ROWID field of this table. For terms of the form ROWID==expr
** set iDirectEq[i] to the index of the term. For terms of the
** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
**
** (Added:) Treat ROWID IN expr like ROWID=expr.
*/
pWInfo->a[i].iCur = -1;
iDirectEq[i] = -1;
iDirectLt[i] = -1;
iDirectGt[i] = -1;
for(j=0; j<nExpr; j++){
if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
switch( aExpr[j].p->op ){
case TK_IN:
case TK_EQ: iDirectEq[i] = j; break;
case TK_LE:
case TK_LT: iDirectLt[i] = j; break;
case TK_GE:
case TK_GT: iDirectGt[i] = j; break;
}
}
if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
switch( aExpr[j].p->op ){
case TK_EQ: iDirectEq[i] = j; break;
case TK_LE:
case TK_LT: iDirectGt[i] = j; break;
case TK_GE:
case TK_GT: iDirectLt[i] = j; break;
}
}
}
if( iDirectEq[i]>=0 ){
loopMask |= mask;
pWInfo->a[i].pIdx = 0;
continue;
}
/* Do a search for usable indices. Leave pBestIdx pointing to
** the "best" index. pBestIdx is left set to NULL if no indices
** are usable.
**
** The best index is determined as follows. For each of the
** left-most terms that is fixed by an equality operator, add
** 8 to the score. The right-most term of the index may be
** constrained by an inequality. Add 1 if for an "x<..." constraint
** and add 2 for an "x>..." constraint. Chose the index that
** gives the best score.
**
** This scoring system is designed so that the score can later be
** used to determine how the index is used. If the score&7 is 0
** then all constraints are equalities. If score&1 is not 0 then
** there is an inequality used as a termination key. (ex: "x<...")
** If score&2 is not 0 then there is an inequality used as the
** start key. (ex: "x>..."). A score or 4 is the special case
** of an IN operator constraint. (ex: "x IN ...").
**
** The IN operator (as in "<expr> IN (...)") is treated the same as
** an equality comparison except that it can only be used on the
** left-most column of an index and other terms of the WHERE clause
** cannot be used in conjunction with the IN operator to help satisfy
** other columns of the index.
*/
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int eqMask = 0; /* Index columns covered by an x=... term */
int ltMask = 0; /* Index columns covered by an x<... term */
int gtMask = 0; /* Index columns covered by an x>... term */
int inMask = 0; /* Index columns covered by an x IN .. term */
int nEq, m, score;
if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
for(j=0; j<nExpr; j++){
if( aExpr[j].idxLeft==iCur
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
int iColumn = aExpr[j].p->pLeft->iColumn;
int k;
for(k=0; k<pIdx->nColumn; k++){
if( pIdx->aiColumn[k]==iColumn ){
switch( aExpr[j].p->op ){
case TK_IN: {
if( k==0 ) inMask |= 1;
break;
}
case TK_EQ: {
eqMask |= 1<<k;
break;
}
case TK_LE:
case TK_LT: {
ltMask |= 1<<k;
break;
}
case TK_GE:
case TK_GT: {
gtMask |= 1<<k;
break;
}
default: {
/* CANT_HAPPEN */
assert( 0 );
break;
}
}
break;
}
}
}
if( aExpr[j].idxRight==iCur
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
int iColumn = aExpr[j].p->pRight->iColumn;
int k;
for(k=0; k<pIdx->nColumn; k++){
if( pIdx->aiColumn[k]==iColumn ){
switch( aExpr[j].p->op ){
case TK_EQ: {
eqMask |= 1<<k;
break;
}
case TK_LE:
case TK_LT: {
gtMask |= 1<<k;
break;
}
case TK_GE:
case TK_GT: {
ltMask |= 1<<k;
break;
}
default: {
/* CANT_HAPPEN */
assert( 0 );
break;
}
}
break;
}
}
}
}
/* The following loop ends with nEq set to the number of columns
** on the left of the index with == constraints.
*/
for(nEq=0; nEq<pIdx->nColumn; nEq++){
m = (1<<(nEq+1))-1;
if( (m & eqMask)!=m ) break;
}
score = nEq*8; /* Base score is 8 times number of == constraints */
m = 1<<nEq;
if( m & ltMask ) score++; /* Increase score for a < constraint */
if( m & gtMask ) score+=2; /* Increase score for a > constraint */
if( score==0 && inMask ) score = 4; /* Default score for IN constraint */
if( score>bestScore ){
pBestIdx = pIdx;
bestScore = score;
}
}
pWInfo->a[i].pIdx = pBestIdx;
pWInfo->a[i].score = bestScore;
pWInfo->a[i].bRev = 0;
loopMask |= mask;
if( pBestIdx ){
pWInfo->a[i].iCur = pParse->nTab++;
pWInfo->peakNTab = pParse->nTab;
}
}
/* Check to see if the ORDER BY clause is or can be satisfied by the
** use of an index on the first table.
*/
if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
Index *pSortIdx;
Index *pIdx;
Table *pTab;
int bRev = 0;
pTab = pTabList->a[0].pTab;
pIdx = pWInfo->a[0].pIdx;
if( pIdx && pWInfo->a[0].score==4 ){
/* If there is already an IN index on the left-most table,
** it will not give the correct sort order.
** So, pretend that no suitable index is found.
*/
pSortIdx = 0;
}else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
/* If the left-most column is accessed using its ROWID, then do
** not try to sort by index.
*/
pSortIdx = 0;
}else{
int nEqCol = (pWInfo->a[0].score+4)/8;
pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor,
*ppOrderBy, pIdx, nEqCol, &bRev);
}
if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
if( pIdx==0 ){
pWInfo->a[0].pIdx = pSortIdx;
pWInfo->a[0].iCur = pParse->nTab++;
pWInfo->peakNTab = pParse->nTab;
}
pWInfo->a[0].bRev = bRev;
*ppOrderBy = 0;
}
}
/* Open all tables in the pTabList and all indices used by those tables.
*/
for(i=0; i<pTabList->nSrc; i++){
Table *pTab;
Index *pIx;
pTab = pTabList->a[i].pTab;
if( pTab->isTransient || pTab->pSelect ) continue;
sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
pTab->zName, P3_STATIC);
sqliteCodeVerifySchema(pParse, pTab->iDb);
if( (pIx = pWInfo->a[i].pIdx)!=0 ){
sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0);
sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0);
}
}
/* Generate the code to do the search
*/
loopMask = 0;
for(i=0; i<pTabList->nSrc; i++){
int j, k;
int iCur = pTabList->a[i].iCursor;
Index *pIdx;
WhereLevel *pLevel = &pWInfo->a[i];
/* If this is the right table of a LEFT OUTER JOIN, allocate and
** initialize a memory cell that records if this table matches any
** row of the left table of the join.
*/
if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
if( !pParse->nMem ) pParse->nMem++;
pLevel->iLeftJoin = pParse->nMem++;
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
}
pIdx = pLevel->pIdx;
pLevel->inOp = OP_Noop;
if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
/* Case 1: We can directly reference a single row using an
** equality comparison against the ROWID field. Or
** we reference multiple rows using a "rowid IN (...)"
** construct.
*/
k = iDirectEq[i];
assert( k<nExpr );
assert( aExpr[k].p!=0 );
assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
if( aExpr[k].idxLeft==iCur ){
Expr *pX = aExpr[k].p;
if( pX->op!=TK_IN ){
sqliteExprCode(pParse, aExpr[k].p->pRight);
}else if( pX->pList ){
sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
pLevel->inOp = OP_SetNext;
pLevel->inP1 = pX->iTable;
pLevel->inP2 = sqliteVdbeCurrentAddr(v);
}else{
assert( pX->pSelect );
sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
pLevel->inOp = OP_Next;
pLevel->inP1 = pX->iTable;
}
}else{
sqliteExprCode(pParse, aExpr[k].p->pLeft);
}
disableTerm(pLevel, &aExpr[k].p);
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
haveKey = 0;
sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
pLevel->op = OP_Noop;
}else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
/* Case 2: There is an index and all terms of the WHERE clause that
** refer to the index use the "==" or "IN" operators.
*/
int start;
int testOp;
int nColumn = (pLevel->score+4)/8;
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
for(j=0; j<nColumn; j++){
for(k=0; k<nExpr; k++){
Expr *pX = aExpr[k].p;
if( pX==0 ) continue;
if( aExpr[k].idxLeft==iCur
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
&& pX->pLeft->iColumn==pIdx->aiColumn[j]
){
if( pX->op==TK_EQ ){
sqliteExprCode(pParse, pX->pRight);
disableTerm(pLevel, &aExpr[k].p);
break;
}
if( pX->op==TK_IN && nColumn==1 ){
if( pX->pList ){
sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
pLevel->inOp = OP_SetNext;
pLevel->inP1 = pX->iTable;
pLevel->inP2 = sqliteVdbeCurrentAddr(v);
}else{
assert( pX->pSelect );
sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
pLevel->inOp = OP_Next;
pLevel->inP1 = pX->iTable;
}
disableTerm(pLevel, &aExpr[k].p);
break;
}
}
if( aExpr[k].idxRight==iCur
&& aExpr[k].p->op==TK_EQ
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, aExpr[k].p->pLeft);
disableTerm(pLevel, &aExpr[k].p);
break;
}
}
}
pLevel->iMem = pParse->nMem++;
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3);
sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, brk);
sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
sqliteAddIdxKeyType(v, pIdx);
if( nColumn==pIdx->nColumn || pLevel->bRev ){
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
testOp = OP_IdxGT;
}else{
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
testOp = OP_IdxGE;
}
if( pLevel->bRev ){
/* Scan in reverse order */
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
pLevel->op = OP_Prev;
}else{
/* Scan in the forward order */
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
pLevel->op = OP_Next;
}
sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
if( i==pTabList->nSrc-1 && pushKey ){
haveKey = 1;
}else{
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
haveKey = 0;
}
pLevel->p1 = pLevel->iCur;
pLevel->p2 = start;
}else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
/* Case 3: We have an inequality comparison against the ROWID field.
*/
int testOp = OP_Noop;
int start;
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
if( iDirectGt[i]>=0 ){
k = iDirectGt[i];
assert( k<nExpr );
assert( aExpr[k].p!=0 );
assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
if( aExpr[k].idxLeft==iCur ){
sqliteExprCode(pParse, aExpr[k].p->pRight);
}else{
sqliteExprCode(pParse, aExpr[k].p->pLeft);
}
sqliteVdbeAddOp(v, OP_ForceInt,
aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk);
sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
disableTerm(pLevel, &aExpr[k].p);
}else{
sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
}
if( iDirectLt[i]>=0 ){
k = iDirectLt[i];
assert( k<nExpr );
assert( aExpr[k].p!=0 );
assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
if( aExpr[k].idxLeft==iCur ){
sqliteExprCode(pParse, aExpr[k].p->pRight);
}else{
sqliteExprCode(pParse, aExpr[k].p->pLeft);
}
/* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
pLevel->iMem = pParse->nMem++;
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
testOp = OP_Ge;
}else{
testOp = OP_Gt;
}
disableTerm(pLevel, &aExpr[k].p);
}
start = sqliteVdbeCurrentAddr(v);
pLevel->op = OP_Next;
pLevel->p1 = iCur;
pLevel->p2 = start;
if( testOp!=OP_Noop ){
sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqliteVdbeAddOp(v, testOp, 0, brk);
}
haveKey = 0;
}else if( pIdx==0 ){
/* Case 4: There is no usable index. We must do a complete
** scan of the entire database table.
*/
int start;
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
start = sqliteVdbeCurrentAddr(v);
pLevel->op = OP_Next;
pLevel->p1 = iCur;
pLevel->p2 = start;
haveKey = 0;
}else{
/* Case 5: The WHERE clause term that refers to the right-most
** column of the index is an inequality. For example, if
** the index is on (x,y,z) and the WHERE clause is of the
** form "x=5 AND y<10" then this case is used. Only the
** right-most column can be an inequality - the rest must
** use the "==" operator.
**
** This case is also used when there are no WHERE clause
** constraints but an index is selected anyway, in order
** to force the output order to conform to an ORDER BY.
*/
int score = pLevel->score;
int nEqColumn = score/8;
int start;
int leFlag, geFlag;
int testOp;
/* Evaluate the equality constraints
*/
for(j=0; j<nEqColumn; j++){
for(k=0; k<nExpr; k++){
if( aExpr[k].p==0 ) continue;
if( aExpr[k].idxLeft==iCur
&& aExpr[k].p->op==TK_EQ
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
&& aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, aExpr[k].p->pRight);
disableTerm(pLevel, &aExpr[k].p);
break;
}
if( aExpr[k].idxRight==iCur
&& aExpr[k].p->op==TK_EQ
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, aExpr[k].p->pLeft);
disableTerm(pLevel, &aExpr[k].p);
break;
}
}
}
/* Duplicate the equality term values because they will all be
** used twice: once to make the termination key and once to make the
** start key.
*/
for(j=0; j<nEqColumn; j++){
sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
}
/* Labels for the beginning and end of the loop
*/
cont = pLevel->cont = sqliteVdbeMakeLabel(v);
brk = pLevel->brk = sqliteVdbeMakeLabel(v);
/* Generate the termination key. This is the key value that
** will end the search. There is no termination key if there
** are no equality terms and no "X<..." term.
**
** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
** key computed here really ends up being the start key.
*/
if( (score & 1)!=0 ){
for(k=0; k<nExpr; k++){
Expr *pExpr = aExpr[k].p;
if( pExpr==0 ) continue;
if( aExpr[k].idxLeft==iCur
&& (pExpr->op==TK_LT || pExpr->op==TK_LE)
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
&& pExpr->pLeft->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, pExpr->pRight);
leFlag = pExpr->op==TK_LE;
disableTerm(pLevel, &aExpr[k].p);
break;
}
if( aExpr[k].idxRight==iCur
&& (pExpr->op==TK_GT || pExpr->op==TK_GE)
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
&& pExpr->pRight->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, pExpr->pLeft);
leFlag = pExpr->op==TK_GE;
disableTerm(pLevel, &aExpr[k].p);
break;
}
}
testOp = OP_IdxGE;
}else{
testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
leFlag = 1;
}
if( testOp!=OP_Noop ){
int nCol = nEqColumn + (score & 1);
pLevel->iMem = pParse->nMem++;
sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, brk);
sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
sqliteAddIdxKeyType(v, pIdx);
if( leFlag ){
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
}
if( pLevel->bRev ){
sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
}else{
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
}
}else if( pLevel->bRev ){
sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
}
/* Generate the start key. This is the key that defines the lower
** bound on the search. There is no start key if there are no
** equality terms and if there is no "X>..." term. In
** that case, generate a "Rewind" instruction in place of the
** start key search.
**
** 2002-Dec-04: In the case of a reverse-order search, the so-called
** "start" key really ends up being used as the termination key.
*/
if( (score & 2)!=0 ){
for(k=0; k<nExpr; k++){
Expr *pExpr = aExpr[k].p;
if( pExpr==0 ) continue;
if( aExpr[k].idxLeft==iCur
&& (pExpr->op==TK_GT || pExpr->op==TK_GE)
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
&& pExpr->pLeft->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, pExpr->pRight);
geFlag = pExpr->op==TK_GE;
disableTerm(pLevel, &aExpr[k].p);
break;
}
if( aExpr[k].idxRight==iCur
&& (pExpr->op==TK_LT || pExpr->op==TK_LE)
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
&& pExpr->pRight->iColumn==pIdx->aiColumn[j]
){
sqliteExprCode(pParse, pExpr->pLeft);
geFlag = pExpr->op==TK_LE;
disableTerm(pLevel, &aExpr[k].p);
break;
}
}
}else{
geFlag = 1;
}
if( nEqColumn>0 || (score&2)!=0 ){
int nCol = nEqColumn + ((score&2)!=0);
sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, brk);
sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
sqliteAddIdxKeyType(v, pIdx);
if( !geFlag ){
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
}
if( pLevel->bRev ){
pLevel->iMem = pParse->nMem++;
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
testOp = OP_IdxLT;
}else{
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
}
}else if( pLevel->bRev ){
testOp = OP_Noop;
}else{
sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
}
/* Generate the the top of the loop. If there is a termination
** key we have to test for that key and abort at the top of the
** loop.
*/
start = sqliteVdbeCurrentAddr(v);
if( testOp!=OP_Noop ){
sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
}
sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
if( i==pTabList->nSrc-1 && pushKey ){
haveKey = 1;
}else{
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
haveKey = 0;
}
/* Record the instruction used to terminate the loop.
*/
pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
pLevel->p1 = pLevel->iCur;
pLevel->p2 = start;
}
loopMask |= getMask(&maskSet, iCur);
/* Insert code to test every subexpression that can be completely
** computed using the current set of tables.
*/
for(j=0; j<nExpr; j++){
if( aExpr[j].p==0 ) continue;
if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
continue;
}
if( haveKey ){
haveKey = 0;
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
}
sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
aExpr[j].p = 0;
}
brk = cont;
/* For a LEFT OUTER JOIN, generate code that will record the fact that
** at least one row of the right table has matched the left table.
*/
if( pLevel->iLeftJoin ){
pLevel->top = sqliteVdbeCurrentAddr(v);
sqliteVdbeAddOp(v, OP_Integer, 1, 0);
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
for(j=0; j<nExpr; j++){
if( aExpr[j].p==0 ) continue;
if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
if( haveKey ){
/* Cannot happen. "haveKey" can only be true if pushKey is true
** an pushKey can only be true for DELETE and UPDATE and there are
** no outer joins with DELETE and UPDATE.
*/
haveKey = 0;
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
}
sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
aExpr[j].p = 0;
}
}
}
pWInfo->iContinue = cont;
if( pushKey && !haveKey ){
sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
}
freeMaskSet(&maskSet);
return pWInfo;
}
/*
** Generate the end of the WHERE loop. See comments on
** sqliteWhereBegin() for additional information.
*/
void sqliteWhereEnd(WhereInfo *pWInfo){
Vdbe *v = pWInfo->pParse->pVdbe;
int i;
WhereLevel *pLevel;
SrcList *pTabList = pWInfo->pTabList;
for(i=pTabList->nSrc-1; i>=0; i--){
pLevel = &pWInfo->a[i];
sqliteVdbeResolveLabel(v, pLevel->cont);
if( pLevel->op!=OP_Noop ){
sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
}
sqliteVdbeResolveLabel(v, pLevel->brk);
if( pLevel->inOp!=OP_Noop ){
sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
}
if( pLevel->iLeftJoin ){
int addr;
addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
if( pLevel->iCur>=0 ){
sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
}
sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
}
}
sqliteVdbeResolveLabel(v, pWInfo->iBreak);
for(i=0; i<pTabList->nSrc; i++){
Table *pTab = pTabList->a[i].pTab;
assert( pTab!=0 );
if( pTab->isTransient || pTab->pSelect ) continue;
pLevel = &pWInfo->a[i];
sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
if( pLevel->pIdx!=0 ){
sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
}
}
#if 0 /* Never reuse a cursor */
if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
pWInfo->pParse->nTab = pWInfo->savedNTab;
}
#endif
sqliteFree(pWInfo);
return;
}
|