1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
use strict;
use warnings;
use lib "t/lib";
use SQLiteTest;
use Test::More;
use if -d ".git", "Test::FailWarnings";
# The following snippets are copied from Cookbook.pod by hand.
# Don't forget to update here when the pod is updated.
# Or, use/coin something like Test::Snippets for better synching.
SCOPE: {
package variance;
sub new { bless [], shift; }
sub step {
my ( $self, $value ) = @_;
push @$self, $value;
}
sub finalize {
my $self = $_[0];
my $n = @$self;
# Variance is NULL unless there is more than one row
return undef unless $n || $n == 1;
my $mu = 0;
foreach my $v ( @$self ) {
$mu += $v;
}
$mu /= $n;
my $sigma = 0;
foreach my $v ( @$self ) {
$sigma += ($v - $mu)**2;
}
$sigma = $sigma / ($n - 1);
return $sigma;
}
}
SCOPE2: {
package variance2;
sub new { bless {sum => 0, count=>0, hash=> {} }, shift; }
sub step {
my ( $self, $value ) = @_;
my $hash = $self->{hash};
# by truncating and hashing, we can comsume many more data points
$value = int($value); # change depending on need for precision
# use sprintf for arbitrary fp precision
if (exists $hash->{$value}) {
$hash->{$value}++;
} else {
$hash->{$value} = 1;
}
$self->{sum} += $value;
$self->{count}++;
}
sub finalize {
my $self = $_[0];
# Variance is NULL unless there is more than one row
return undef unless $self->{count} > 1;
# calculate avg
my $mu = $self->{sum} / $self->{count};
my $sigma = 0;
while (my ($h, $v) = each %{$self->{hash}}) {
$sigma += (($h - $mu)**2) * $v;
}
$sigma = $sigma / ($self->{count} - 1);
return $sigma;
}
}
SCOPE3: {
package variance3;
sub new { bless {mu=>0, count=>0, S=>0}, shift; }
sub step {
my ( $self, $value ) = @_;
$self->{count}++;
my $delta = $value - $self->{mu};
$self->{mu} += $delta/$self->{count};
$self->{S} += $delta*($value - $self->{mu});
}
sub finalize {
my $self = $_[0];
return $self->{S} / ($self->{count} - 1);
}
}
foreach my $variance (qw/variance variance2 variance3/) {
foreach my $call_func (@CALL_FUNCS) {
my $dbh = connect_ok( PrintError => 0 );
$dbh->do('CREATE TABLE results (group_name, score)');
my $sth = $dbh->prepare('INSERT INTO results VALUES (?,?)');
$sth->execute('foo', 100);
$sth->execute('foo', 50);
$sth->finish;
$dbh->$call_func($variance, 1, $variance, "create_aggregate");
my $result = $dbh->selectrow_arrayref(<<"END_SQL");
SELECT group_name, ${variance}(score)
FROM results
GROUP BY group_name;
END_SQL
is $result->[0] => 'foo';
is $result->[1] => 1250;
}
}
done_testing;
|