File: idealized.sage

package info (click to toggle)
libdecaf 1.0.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,280 kB
  • sloc: ansic: 8,294; cpp: 2,606; python: 421; makefile: 21
file content (273 lines) | stat: -rw-r--r-- 8,439 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
class Unique(object):
    def __init__(self,name):
        self.name = name
    
    def __str__(self):
        return self.name
    
    def __repr__(self):
        return "Unique(\"%s\")" % self.name

class Idealized(object):
    UNION = ["UNION"]
    
    def __init__(self, R, idealMap = 0, vars = {}):
        self.varnames = vars
        if not isinstance(idealMap,dict):
            idealMap = {()*R:idealMap}
        self.idealMap = idealMap
        self.R = R
        self._sqrt = None
        self._isqrt = None
    
    @staticmethod
    def uvar(x):
        return Idealized.var(Unique(x))
    
    @staticmethod
    def var(x):
        name = str(x)
        R = PolynomialRing(QQ,[name])
        rx = R.gens()[0]
        return Idealized(R,rx,{x:(name,rx)})
    
    @staticmethod
    def vars(xs):
        return tuple((Idealized.var(x) for x in xs))
    
    @staticmethod
    def uvars(xs):
        return tuple((Idealized.uvar(x) for x in xs))
    
    def __str__(self):
        def rep(I,x):
            x = str(x)
            gs = I.gens()
            gs = [g for g in gs if g != 0]
            if len(gs) == 0: return x
            else:
                g = ", ".join(["(%s)" % str(gen) for gen in gs])
                return g + ": " + x
        return "\n".join([rep(I,self.idealMap[I]) for I in self.idealMap])
    
    def __repr__(self):
        # HACK!
        if len(self.idealMap) == 0:
            return "undef"
        if len(self.idealMap) > 1:
            return str(self)
        for _,v in self.idealMap.iteritems():
            return str(v)
        
    def prune(self):
        self.idealMap = {I:v for I,v in self.idealMap.iteritems() if not (I*self.R).is_one()}
        return self
        
    def __add__(self,other):
        def f(x,y): return x+y
        return self.op(other,f)
        
    def __radd__(self,other):
        def f(x,y): return y+x
        return self.op(other,f)
        
    def __rsub__(self,other):
        def f(x,y): return y-x
        return self.op(other,f)
        
    def __neg__(self):
        def f(x,y): return y-x
        return self.op(0,f)
        
    def __sub__(self,other):
        def f(x,y): return x-y
        return self.op(other,f)
        
    def is_square(self):
        for _,v in self.idealMap.iteritems():
            if not is_square(v): return False
        return True
        
    def sqrt(self):
        if self._sqrt is None:
            s = Idealized.uvar("s")
            self._sqrt = s.assuming(s^2 - self)
        return self._sqrt
        
    def isqrt(self):
        if self._isqrt is None:
            s = Idealized.uvar("s")
            z = Idealized(0).assuming(Self)
            self._isqrt = s.assuming(s^2*self-1).union(z)
        return self._isqrt
        
    def __mul__(self,other):
        def f(x,y): return x*y
        return self.op(other,f)
        
    def __rmul__(self,other):
        def f(x,y): return y*x
        return self.op(other,f)
    
    def __pow__(self,n):
        if n < 0: return 1/self^(-n)
        if n == 0: return 1
        if n == 1: return self
        if is_even(n): return (self*self)^(n//2)
        if is_odd(n): return (self*self)^(n//2) * self
        
    def __div__(self,other):
        def f(x,y): return x/y
        return self.op(other,f)
        
    def __rdiv__(self,other):
        def f(x,y): return y/x
        return self.op(other,f)
        
    def union(self,other):
        return self.op(other,Idealized.UNION)
        
    def __eq__(self,other):
        return (self - other).is_zero()
        
    def __ne__(self,other):
        return not (self==other)
        
    def __hash__(self):
        return 0

    def assume_zero(self):
        out = {}
        for I,J in self.idealMap.iteritems():
            IJ = I+J.numerator()
            if IJ.is_one(): continue
            out[IJ] = self.R(0)
        
        if len(out) == 0:
            raise Exception("Inconsistent assumption")
        
        return Idealized(self.R,out,self.varnames)
    
    def assuming(self,other):
        return self + other.assume_zero()
    
    def is_zero(self):
        for I,v in self.idealMap.iteritems():
            if v.denominator() in I: return False
            if v.numerator() not in I: return False
        return True
    
    def op(self,other,f):
        if not isinstance(other,Idealized):
            other = Idealized(self.R,other,self.varnames)
        
        bad = False
        for v in self.varnames:
            if v not in other.varnames or self.varnames[v] != other.varnames[v]:
                bad = True
                break
        for v in other.varnames:
            if v not in self.varnames or self.varnames[v] != other.varnames[v]:
                bad = True
                break
                
        if bad:
            def incrVar(v):
                if v[-1] not in "0123456789": return v + "1"
                elif v[-1] == 9: return incrVar(v[:-1]) + "0"
                else: return v[:-1] + str(int(v[-1])+1)
        
            vars = {}
            names = set()
            for v,(name,_) in self.varnames.iteritems():
                assert(name not in names)
                names.add(name)
                vars[v] = name
            subMe = {n:n for n in names}
            subThem = {}
            for v,(name,_) in other.varnames.iteritems():
                if v in self.varnames:
                    subThem[name] = self.varnames[v][0]
                else:
                    oname = name
                    while name in names:
                        name = incrVar(name)
                    names.add(name)
                    subThem[oname] = name
                    vars[v] = name
            
            R = PolynomialRing(QQ,sorted(list(names)),order="degrevlex")
            gd = R.gens_dict()
            subMe = {m:gd[n] for m,n in subMe.iteritems()}
            subThem = {m:gd[n] for m,n in subThem.iteritems()}
        
            vars = {v:(n,gd[n]) for v,n in vars.iteritems()}
        
            def subIdeal(I,sub):
                return [g(**sub) for g in I.gens()]*R
            idealMe = {subIdeal(I,subMe):v(**subMe) for I,v in self.idealMap.iteritems()}
            idealThem = {subIdeal(I,subThem):v(**subThem) for I,v in other.idealMap.iteritems()}
        else:
            R = self.R
            idealMe = self.idealMap
            idealThem = other.idealMap
            vars = self.varnames
        
        def consist(I,x,y):
            if (x-y).numerator() not in I:
                raise Exception("Inconsistent: %s != %s in ideal %s" %
                    (str(x),str(y),str(I)))
            
        out = {}
        if f is Idealized.UNION:
            for I,v in idealMe.iteritems():
                if I in idealThem:
                    consist(I,v,idealThem[I])
                out[I] = v
            for I,v in idealThem.iteritems():
                if I in idealMe:
                    consist(I,v,idealMe[I])
                out[I] = v
        
        else:
            for I,v in idealMe.iteritems():
                if I in idealThem:
                    x = f(v,idealThem[I])
                    if I in out:
                        consist(I,x,out[I])
                    else: out[I] = x
                else:
                    for J,w in idealThem.iteritems():
                        IJ = I+J
                        if not IJ.is_one():
                            x = f(v,w)
                            if IJ in out:
                                consist(IJ,x,out[IJ])
                            else:
                                out[IJ] = x
        
        def gb(I):
            II = [0]*R
            for g in I.gens():
                if g not in II: II = II+[g]*R
            return II

        def red(I,v):
            if I.is_zero(): return v
            return I.reduce(R(v.numerator())) / I.reduce(R(v.denominator()))
            
        out = {gb(I):v for I,v in out.iteritems()}
        out = {I:red(I,v) for I,v in out.iteritems()}
        
        return Idealized(R,out,vars)
    
    def reduce(self):
        def red(I,v):
            if I.is_zero(): return v
            return I.reduce(R(v.numerator())) / I.reduce(R(v.denominator()))
        out = {I:red(I,v) for I,v in self.idealMap.iteritems()}
        return Idealized(self.R,out,self.vars)

Idealized.INF = Idealized.uvar("inf")
Idealized.ZOZ = Idealized.uvar("zoz")