1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/**
* @file ristretto.cxx
* @author Mike Hamburg
*
* @copyright
* Copyright (c) 2015 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
*
* @brief Ristretto implementation widget
*/
#include <decaf.hxx>
#include <stdio.h>
using namespace decaf;
static inline int hexi(char c) {
if (c >= '0' && c <= '9') return c-'0';
if (c >= 'a' && c <= 'f') return c-'a'+0xa;
if (c >= 'A' && c <= 'F') return c-'A'+0xa;
return -1;
}
static int parsehex(uint8_t *out, size_t sizeof_out, const char *hex) {
size_t l = strlen(hex);
if (l%2 != 0) {
fprintf(stderr,"String should be hex, but has odd length\n: %s\n", hex);
return -1;
} else if (l/2 > sizeof_out) {
fprintf(stderr,"Argument is too long: %s\n", hex);
return -1;
}
memset(out,0,sizeof_out);
int ret1,ret2;
for (size_t i=0; i<l/2; i++) {
if ( (ret1 = hexi(hex[2*i ])) < 0
|| (ret2 = hexi(hex[2*i+1])) < 0) {
fprintf(stderr,"Invalid hex %s\n",hex);
return -1;
}
out[i] = ret1*16+ret2;
}
return 0;
}
static void printhex(const uint8_t *in, size_t sizeof_in) {
for (; sizeof_in > 0; in++,sizeof_in--) {
printf("%02x",*in);
}
}
static int g_argc = 0;
static char **g_argv = NULL;
static int error = 0;
static int done = 0;
static void usage() {
const char *me=g_argv[0];
if (!me) me = "ristretto";
for (unsigned i=0; g_argv[0][i]; i++) {
if (g_argv[0][i] == '/' && g_argv[0][i+1] != 0 && g_argv[0][i+1] != '/') {
me = &g_argv[0][i];
}
}
fprintf(stderr,"Usage: %s [points] [operations] ...\n", me);
fprintf(stderr," -b 255|448: Set which group to use (sometimes inferred from lengths)\n");
fprintf(stderr," -E: Display output as Elligator inverses\n");
fprintf(stderr," -D: Display output in EdDSA format (times clearing ratio)\n");
fprintf(stderr," -R: Display raw xyzt\n");
fprintf(stderr," -C: Display output in X[25519|448] format\n");
fprintf(stderr," -H: ... divide by encoding ratio first\n");
fprintf(stderr,"\n");
fprintf(stderr," Ways to create points:\n");
fprintf(stderr," [hex]: Point from point data as hex\n");
fprintf(stderr," -e [hex]: Create point by hashing to curve using elligator\n");
fprintf(stderr," base: Base point of curve\n");
fprintf(stderr," identity: Identity point of curve\n");
fprintf(stderr,"\n");
fprintf(stderr," Operations:\n");
fprintf(stderr," -n [point]: negative of point\n");
fprintf(stderr," -s [scalar] * [point]: Hash to curve using elligator\n");
fprintf(stderr," [point] + [point]: Add two points\n");
fprintf(stderr,"\n");
fprintf(stderr," NB: this is a debugging widget. It doesn't yet have order of operations.\n");
fprintf(stderr," *** DON'T USE THIS UTILITY FOR ACTUAL CRYPTO! ***\n");
fprintf(stderr," It's only for debugging!\n");
fprintf(stderr,"\n");
exit(-2);
}
template<typename Group> class Run {
public:
static void run() {
uint8_t tmp[Group::Point::SER_BYTES];
typename Group::Point a,b;
typename Group::Scalar s;
bool plus=false, empty=true, elligator=false, mul=false, scalar=false, div=false, torque=false,
scalarempty=true, neg=false, einv=false, like_eddsa=false, like_x=false, decoeff=false, raw=false;
if (done || error) return;
for (int i=1; i<g_argc && !error; i++) {
bool point = false;
if (!strcmp(g_argv[i],"-b") && ++i<g_argc) {
if (atoi(g_argv[i]) == Group::bits()) continue;
else return;
} else if (!strcmp(g_argv[i],"+")) {
if (elligator || scalar || empty) usage();
plus = true;
} else if (!strcmp(g_argv[i],"-n")) {
neg = !neg;
} else if (!strcmp(g_argv[i],"-E")) {
einv = true;
} else if (!strcmp(g_argv[i],"-R")) {
raw = true;
} else if (!strcmp(g_argv[i],"-D")) {
like_eddsa = true;
} else if (!strcmp(g_argv[i],"-C")) {
like_x = true;
} else if (!strcmp(g_argv[i],"-H")) {
decoeff = true;
} else if (!strcmp(g_argv[i],"-T")) {
torque = true;
} else if (!strcmp(g_argv[i],"*")) {
if (elligator || scalar || scalarempty || div) usage();
mul = true;
} else if (!strcmp(g_argv[i],"/")) {
if (elligator || scalar || scalarempty || mul) usage();
div = true;
} else if (!strcmp(g_argv[i],"-s")) {
if (elligator || scalar || !scalarempty) usage();
scalar = true;
} else if (!strcmp(g_argv[i],"-e")) {
if (elligator || scalar) usage();
elligator = true;
} else if (!strcmp(g_argv[i],"base")) {
if (elligator || scalar) usage();
b = b.base();
point = true;
} else if (!strcmp(g_argv[i],"identity")) {
if (elligator || scalar) usage();
b = b.identity();
point = true;
} else if ((strlen(g_argv[i]) == 2*sizeof(tmp)
|| ((scalar || elligator) && strlen(g_argv[i]) <= 2*sizeof(tmp)))
&& !(error=parsehex(tmp,sizeof(tmp),g_argv[i]))) {
if (scalar) {
s = Block(tmp,sizeof(tmp)); scalar=false; scalarempty=false;
} else if (elligator) {
point = true;
b.set_to_hash(Block(tmp,sizeof(tmp))); elligator=false;
} else if (DECAF_SUCCESS != b.decode(Block(tmp,sizeof(tmp)))) {
fprintf(stderr,"Error: %s isn't in the group\n",g_argv[i]);
error = -1;
} else {
point = true;
}
} else if (error || !empty) usage();
if (point) {
if (neg) { b = -b; neg = false; }
if (div) { b /= s; div=false; }
if (torque) { b = b.debugging_torque(); torque=false; }
if (mul) { b *= s; mul=false; }
if (empty) { a = b; empty=false; }
else if (plus) { a += b; plus=false; }
else usage();
}
}
if (!error && !empty) {
if (einv) {
uint8_t buffer[Group::Point::HASH_BYTES];
for (int h=0; h<1<<Group::Point::INVERT_ELLIGATOR_WHICH_BITS; h++) {
if (DECAF_SUCCESS == a.invert_elligator(
Buffer(buffer,sizeof(buffer)), h
)) {
printhex(buffer,sizeof(buffer));
printf("\n");
}
}
} else if (raw) {
printhex((const uint8_t *)&a, sizeof(a));
printf("\n");
} else if (like_eddsa) {
if (decoeff) a /= (Group::Point::EDDSA_ENCODE_RATIO);
SecureBuffer b = a.mul_by_ratio_and_encode_like_eddsa();
printhex(b.data(),b.size());
printf("\n");
} else if (like_x) {
if (decoeff) a /= (Group::Point::LADDER_ENCODE_RATIO);
SecureBuffer b = a.mul_by_ratio_and_encode_like_ladder();
printhex(b.data(),b.size());
printf("\n");
} else {
a.serialize_into(tmp);
printhex(tmp,sizeof(tmp));
printf("\n");
}
done = true;
}
}
};
int main(int argc, char **argv) {
g_argc = argc;
g_argv = argv;
run_for_all_curves<Run>();
if (!done) usage();
return (error<0) ? -error : error;
}
|