1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
|
/**
* @file test_decaf.cxx
* @author Mike Hamburg
*
* @copyright
* Copyright (c) 2015 Cryptography Research, Inc. \n
* Released under the MIT License. See LICENSE.txt for license information.
*
* @brief C++ tests, because that's easier.
*/
#include <decaf.hxx>
#include <decaf/spongerng.hxx>
#include <decaf/eddsa.hxx>
#include <decaf/shake.hxx>
#include <stdio.h>
using namespace decaf;
static bool passing = true;
static const long NTESTS = 10000;
#include "ristretto_vectors.inc.cxx"
class Test {
public:
bool passing_now;
Test(const char *test) {
passing_now = true;
printf("%s...", test);
if (strlen(test) < 27) printf("%*s",int(27-strlen(test)),"");
fflush(stdout);
}
~Test() {
if (std::uncaught_exception()) {
fail();
printf(" due to uncaught exception.\n");
}
if (passing_now) printf("[PASS]\n");
}
void fail() {
if (!passing_now) return;
passing_now = passing = false;
printf("[FAIL]\n");
}
};
static uint64_t leint(const SecureBuffer &xx) {
uint64_t out = 0;
for (unsigned int i=0; i<xx.size() && i<sizeof(out); i++) {
out |= uint64_t(xx[i]) << (8*i);
}
return out;
}
template<typename Group> struct Tests {
typedef typename Group::Scalar Scalar;
typedef typename Group::Point Point;
typedef typename Group::DhLadder DhLadder;
typedef typename Group::Precomputed Precomputed;
static void print(const char *name, const Scalar &x) {
unsigned char buffer[Scalar::SER_BYTES];
x.serialize_into(buffer);
printf(" %s = 0x", name);
for (int i=sizeof(buffer)-1; i>=0; i--) {
printf("%02x", buffer[i]);
}
printf("\n");
}
static void hexprint(const char *name, const SecureBuffer &buffer) {
printf(" %s = 0x", name);
for (int i=buffer.size()-1; i>=0; i--) {
printf("%02x", buffer[i]);
}
printf("\n");
}
static void print(const char *name, const Point &x) {
unsigned char buffer[Point::SER_BYTES];
x.serialize_into(buffer);
printf(" %s = 0x", name);
for (int i=Point::SER_BYTES-1; i>=0; i--) {
printf("%02x", buffer[i]);
}
printf("\n");
}
static bool arith_check(
Test &test,
const Scalar &x,
const Scalar &y,
const Scalar &z,
const Scalar &l,
const Scalar &r,
const char *name
) {
if (l == r) return true;
test.fail();
printf(" %s", name);
print("x", x);
print("y", y);
print("z", z);
print("lhs", l);
print("rhs", r);
return false;
}
static bool point_check(
Test &test,
const Point &p,
const Point &q,
const Point &R,
const Scalar &x,
const Scalar &y,
const Point &l,
const Point &r,
const char *name
) {
bool good = l==r;
if (!p.validate()) { good = false; printf(" p invalid\n"); }
if (!q.validate()) { good = false; printf(" q invalid\n"); }
if (!r.validate()) { good = false; printf(" r invalid\n"); }
if (!l.validate()) { good = false; printf(" l invalid\n"); }
if (good) return true;
test.fail();
printf(" %s", name);
print("x", x);
print("y", y);
print("p", p);
print("q", q);
print("r", R);
print("lhs", r);
print("rhs", l);
return false;
}
static void test_arithmetic() {
SpongeRng rng(Block("test_arithmetic"),SpongeRng::DETERMINISTIC);
Test test("Arithmetic");
Scalar x(0),y(0),z(0);
arith_check(test,x,y,z,INT_MAX,(decaf_word_t)INT_MAX,"cast from max");
arith_check(test,x,y,z,INT_MIN,-Scalar(1+(decaf_word_t)INT_MAX),"cast from min");
for (int i=0; i<NTESTS*10 && test.passing_now; i++) {
size_t sob = i % (2*Group::Scalar::SER_BYTES);
SecureBuffer xx = rng.read(sob), yy = rng.read(sob), zz = rng.read(sob);
Scalar x(xx);
Scalar y(yy);
Scalar z(zz);
arith_check(test,x,y,z,x+y,y+x,"commute add");
arith_check(test,x,y,z,x,x+0,"ident add");
arith_check(test,x,y,z,x,x-0,"ident sub");
arith_check(test,x,y,z,x+-x,0,"inverse add");
arith_check(test,x,y,z,x-x,0,"inverse sub");
arith_check(test,x,y,z,x-(x+1),-1,"inverse add2");
arith_check(test,x,y,z,x+(y+z),(x+y)+z,"assoc add");
arith_check(test,x,y,z,x*(y+z),x*y + x*z,"distributive mul/add");
arith_check(test,x,y,z,x*(y-z),x*y - x*z,"distributive mul/add");
arith_check(test,x,y,z,x*(y*z),(x*y)*z,"assoc mul");
arith_check(test,x,y,z,x*y,y*x,"commute mul");
arith_check(test,x,y,z,x,x*1,"ident mul");
arith_check(test,x,y,z,0,x*0,"mul by 0");
arith_check(test,x,y,z,-x,x*-1,"mul by -1");
arith_check(test,x,y,z,x+x,x*2,"mul by 2");
arith_check(test,x,y,z,-(x*y),(-x)*y,"neg prop mul");
arith_check(test,x,y,z,x*y,(-x)*(-y),"double neg prop mul");
arith_check(test,x,y,z,-(x+y),(-x)+(-y),"neg prop add");
arith_check(test,x,y,z,x-y,(x)+(-y),"add neg sub");
arith_check(test,x,y,z,(-x)-y,-(x+y),"neg add");
if (sob <= 4) {
uint64_t xi = leint(xx), yi = leint(yy);
arith_check(test,x,y,z,x,xi,"parse consistency");
arith_check(test,x,y,z,x+y,xi+yi,"add consistency");
arith_check(test,x,y,z,x*y,xi*yi,"mul consistency");
}
if (i%20) continue;
if (y!=0) arith_check(test,x,y,z,x*y/y,x,"invert");
try {
y = x/0;
test.fail();
printf(" Inverted zero!");
print("x", x);
print("y", y);
} catch(CryptoException&) {}
}
}
static const Block sqrt_minus_one;
static const Block minus_sqrt_minus_one;
static const Block elli_patho; /* sqrt(1/(u(1-d))) */
static void test_elligator() {
SpongeRng rng(Block("test_elligator"),SpongeRng::DETERMINISTIC);
Test test("Elligator");
const int NHINTS = 1<<Point::INVERT_ELLIGATOR_WHICH_BITS;
SecureBuffer *alts[NHINTS];
bool successes[NHINTS];
SecureBuffer *alts2[NHINTS];
bool successes2[NHINTS];
for (unsigned int i=0; i<NTESTS/10 && (i<10 || test.passing_now); i++) {
size_t len = (i % (2*Point::HASH_BYTES + 3));
SecureBuffer b1(len);
if (i!=Point::HASH_BYTES) rng.read(b1); /* special test case */
/* Pathological cases */
if (i==1) b1[0] = 1;
if (i==2 && sqrt_minus_one.size()) b1 = sqrt_minus_one;
if (i==3 && minus_sqrt_minus_one.size()) b1 = minus_sqrt_minus_one;
if (i==4 && elli_patho.size()) b1 = elli_patho;
len = b1.size();
Point s = Point::from_hash(b1), ss=s;
for (unsigned int j=0; j<(i&3); j++) ss = ss.debugging_torque();
ss = ss.debugging_pscale(rng);
bool good = false;
for (int j=0; j<NHINTS; j++) {
alts[j] = new SecureBuffer(len);
alts2[j] = new SecureBuffer(len);
if (len > Point::HASH_BYTES)
memcpy(&(*alts[j])[Point::HASH_BYTES], &b1[Point::HASH_BYTES], len-Point::HASH_BYTES);
if (len > Point::HASH_BYTES)
memcpy(&(*alts2[j])[Point::HASH_BYTES], &b1[Point::HASH_BYTES], len-Point::HASH_BYTES);
successes[j] = decaf_successful( s.invert_elligator(*alts[j], j));
successes2[j] = decaf_successful(ss.invert_elligator(*alts2[j],j));
if (successes[j] != successes2[j]
|| (successes[j] && successes2[j] && *alts[j] != *alts2[j])
) {
test.fail();
printf(" Unscalable Elligator inversion: i=%d, hint=%d, s=%d,%d\n",i,j,
-int(successes[j]),-int(successes2[j]));
hexprint("x",b1);
hexprint("X",*alts[j]);
hexprint("X",*alts2[j]);
}
if (successes[j]) {
good = good || (b1 == *alts[j]);
for (int k=0; k<j; k++) {
if (successes[k] && *alts[j] == *alts[k]) {
test.fail();
printf(" Duplicate Elligator inversion: i=%d, hints=%d, %d\n",i,j,k);
hexprint("x",b1);
hexprint("X",*alts[j]);
}
}
if (s != Point::from_hash(*alts[j])) {
test.fail();
printf(" Fail Elligator inversion round-trip: i=%d, hint=%d %s\n",i,j,
(s==-Point::from_hash(*alts[j])) ? "[output was -input]": "");
hexprint("x",b1);
hexprint("X",*alts[j]);
}
}
}
if (!good) {
test.fail();
printf(" %s Elligator inversion: i=%d\n",good ? "Passed" : "Failed", i);
hexprint("B", b1);
for (int j=0; j<NHINTS; j++) {
printf(" %d: %s%s", j, successes[j] ? "succ" : "fail\n", (successes[j] && *alts[j] == b1) ? " [x]" : "");
if (successes[j]) {
hexprint("b", *alts[j]);
}
}
printf("\n");
}
for (int j=0; j<NHINTS; j++) {
delete alts[j];
alts[j] = NULL;
delete alts2[j];
alts2[j] = NULL;
}
Point t(rng);
SecureBuffer bsteg = t.steg_encode(rng);
if (bsteg[Point::STEG_BYTES-1] == 0 && bsteg[Point::STEG_BYTES-2] == 0 && bsteg[Point::STEG_BYTES-3] == 0) {
test.fail();
printf(" Steg is nonuniform (probability of false failure = 2^-24)\n");
hexprint(" steg buffer:", bsteg);
}
point_check(test,t,t,t,0,0,t,Point::from_hash(bsteg),"steg round-trip");
FixedArrayBuffer<Point::HASH_BYTES> b3(rng), b4(b3);
t = Point::from_hash(b3);
for (unsigned j=0; j<256; j+=2<<((Group::bits()-1)%8)) {
b4[Point::HASH_BYTES-1] = b3[Point::HASH_BYTES-1] ^ j;
Point u = Point::from_hash(b4);
point_check(test,t,t,t,0,0,t,u,"elligator twiddle high bits");
}
}
}
static void test_ec() {
SpongeRng rng(Block("test_ec"),SpongeRng::DETERMINISTIC);
Test test("EC");
Point id = Point::identity(), base = Point::base();
point_check(test,id,id,id,0,0,Point::from_hash(""),id,"fh0");
unsigned char enc[Point::SER_BYTES] = {0};
if (Group::FIELD_MODULUS_TYPE == 3) {
/* When p == 3 mod 4, the QNR is -1, so u*1^2 = -1 also produces the
* identity.
*/
point_check(test,id,id,id,0,0,Point::from_hash("\x01"),id,"fh1");
}
point_check(test,id,id,id,0,0,Point(FixedBlock<sizeof(enc)>(enc)),id,"decode [0]");
try {
enc[0] = 1;
Point f((FixedBlock<sizeof(enc)>(enc)));
test.fail();
printf(" Allowed deserialize of [1]: %d", f==id);
} catch (CryptoException&) {
/* ok */
}
if (sqrt_minus_one.size()) {
try {
Point f(sqrt_minus_one);
test.fail();
printf(" Allowed deserialize of [i]: %d", f==id);
} catch (CryptoException&) {
/* ok */
}
}
if (minus_sqrt_minus_one.size()) {
try {
Point f(minus_sqrt_minus_one);
test.fail();
printf(" Allowed deserialize of [-i]: %d", f==id);
} catch (CryptoException&) {
/* ok */
}
}
for (int i=0; i<NTESTS && test.passing_now; i++) {
Scalar x(rng);
Scalar y(rng);
Point p(rng);
Point q(rng);
Point d1, d2;
SecureBuffer buffer(2*Point::HASH_BYTES);
rng.read(buffer);
Point r = Point::from_hash(buffer);
try {
point_check(test,p,q,r,0,0,p,Point(p.serialize()),"round-trip");
} catch (CryptoException&) {
test.fail();
printf(" Round-trip raised CryptoException!\n");
}
Point pp = p.debugging_torque().debugging_pscale(rng);
if (!memeq(pp.serialize(),p.serialize())) {
test.fail();
printf(" Fail torque seq test\n");
}
if (!memeq((p-pp).serialize(),id.serialize())) {
test.fail();
printf(" Fail torque id test\n");
}
if (!memeq((p-p).serialize(),id.serialize())) {
test.fail();
printf(" Fail id test\n");
}
point_check(test,p,q,r,0,0,p,pp,"torque eq");
point_check(test,p,q,r,0,0,p+q,q+p,"commute add");
point_check(test,p,q,r,0,0,(p-q)+q,p,"correct sub");
point_check(test,p,q,r,0,0,p+(q+r),(p+q)+r,"assoc add");
point_check(test,p,q,r,0,0,p.times_two(),p+p,"dbl add");
if (i%10) continue;
point_check(test,p,q,r,0,0,p.times_two(),p*Scalar(2),"add times two");
point_check(test,p,q,r,x,0,x*(p+q),x*p+x*q,"distr mul");
point_check(test,p,q,r,x,y,(x*y)*p,x*(y*p),"assoc mul");
point_check(test,p,q,r,x,y,x*p+y*q,Point::double_scalarmul(x,p,y,q),"double mul");
p.dual_scalarmul(d1,d2,x,y);
point_check(test,p,q,r,x,y,x*p,d1,"dual mul 1");
point_check(test,p,q,r,x,y,y*p,d2,"dual mul 2");
point_check(test,base,q,r,x,y,x*base+y*q,q.non_secret_combo_with_base(y,x),"ds vt mul");
point_check(test,p,q,r,x,0,Precomputed(p)*x,p*x,"precomp mul");
point_check(test,p,q,r,0,0,r,
Point::from_hash(Buffer(buffer).slice(0,Point::HASH_BYTES))
+ Point::from_hash(Buffer(buffer).slice(Point::HASH_BYTES,Point::HASH_BYTES)),
"unih = hash+add"
);
try {
point_check(test,p,q,r,x,0,Point(x.direct_scalarmul(p.serialize())),x*p,"direct mul");
} catch (CryptoException&) {
printf(" Direct mul raised CryptoException!\n");
test.fail();
}
q=p;
for (int j=1; j<Group::REMOVED_COFACTOR; j<<=1) q = q.times_two();
decaf_error_t error = r.decode_like_eddsa_and_mul_by_ratio_noexcept(
p.mul_by_ratio_and_encode_like_eddsa()
);
if (error != DECAF_SUCCESS) {
test.fail();
printf(" Decode like EdDSA failed.");
}
point_check(test,-q,q,r,i,0,q,r,"Encode like EdDSA round-trip");
}
}
static const uint8_t rfc7748_1[DhLadder::PUBLIC_BYTES];
static const uint8_t rfc7748_1000[DhLadder::PUBLIC_BYTES];
static const uint8_t rfc7748_1000000[DhLadder::PUBLIC_BYTES];
static void test_cfrg_crypto() {
Test test("CFRG crypto");
SpongeRng rng(Block("test_cfrg_crypto"),SpongeRng::DETERMINISTIC);
{
FixedArrayBuffer<DhLadder::PUBLIC_BYTES> base, out;
FixedArrayBuffer<DhLadder::PRIVATE_BYTES> s1(rng);
decaf_error_t e = DhLadder::shared_secret_noexcept(out,base,s1);
if (e != DECAF_FAILURE) {
test.fail();
printf(" Multiply by 0 didn't give an error\n");
}
if (!out.contents_equal(base)) {
test.fail();
printf(" Multiply by 0 didn't give 0\n");
}
}
for (int i=0; i<NTESTS && test.passing_now; i++) {
FixedArrayBuffer<DhLadder::PUBLIC_BYTES> base(rng);
FixedArrayBuffer<DhLadder::PRIVATE_BYTES> s1(rng), s2(rng);
SecureBuffer p1 = DhLadder::shared_secret(base,s1);
SecureBuffer p2 = DhLadder::shared_secret(base,s2);
SecureBuffer ss1 = DhLadder::shared_secret(p2,s1);
SecureBuffer ss2 = DhLadder::shared_secret(p1,s2);
if (!memeq(ss1,ss2)) {
test.fail();
printf(" Shared secrets disagree on iteration %d.\n",i);
}
p1 = DhLadder::shared_secret(DhLadder::base_point(),s1);
p2 = DhLadder::derive_public_key(s1);
if (!memeq(p1,p2)) {
test.fail();
printf(" Public keys disagree on iteration %d.\n Ladder public key: ",i);
for (unsigned j=0; j<s1.size(); j++) { printf("%02x",p1[j]); }
printf("\n Derive public key: ");
for (unsigned j=0; j<s1.size(); j++) { printf("%02x",p2[j]); }
printf("\n");
}
}
}
static const bool eddsa_prehashed[];
static const Block eddsa_sk[], eddsa_pk[], eddsa_message[], eddsa_context[], eddsa_sig[];
static const bool eddsa_verify_should_succeed[];
static void test_cfrg_vectors() {
Test test("CFRG test vectors");
SecureBuffer k = DhLadder::base_point();
SecureBuffer u = DhLadder::base_point();
int the_ntests = (NTESTS < 1000000) ? 1000 : 1000000;
/* EdDSA */
for (unsigned int t=0; t<sizeof(eddsa_sk)/sizeof(eddsa_sk[0]); t++) {
if (eddsa_sk[t].size()) {
typename EdDSA<Group>::PrivateKey priv(eddsa_sk[t]);
SecureBuffer eddsa_pk2 = priv.pub().serialize();
if (!memeq(SecureBuffer(eddsa_pk[t]), eddsa_pk2)) {
test.fail();
printf(" EdDSA PK vectors #%d disagree.", t);
printf("\n Correct: ");
for (unsigned i=0; i<eddsa_pk[t].size(); i++) printf("%02x", eddsa_pk[t][i]);
printf("\n Incorrect: ");
for (unsigned i=0; i<eddsa_pk2.size(); i++) printf("%02x", eddsa_pk2[i]);
printf("\n");
}
SecureBuffer sig;
if (eddsa_prehashed[t]) {
typename EdDSA<Group>::PrivateKeyPh priv2(eddsa_sk[t]);
sig = priv2.sign_with_prehash(eddsa_message[t],eddsa_context[t]);
} else {
sig = priv.sign(eddsa_message[t],eddsa_context[t]);
}
if (!memeq(SecureBuffer(eddsa_sig[t]),sig)) {
test.fail();
printf(" EdDSA sig vectors #%d disagree.", t);
printf("\n Correct: ");
for (unsigned i=0; i<eddsa_sig[t].size(); i++) printf("%02x", eddsa_sig[t][i]);
printf("\n Incorrect: ");
for (unsigned i=0; i<sig.size(); i++) printf("%02x", sig[i]);
printf("\n");
}
}
bool verified;
try {
typename EdDSA<Group>::PublicKey pub(eddsa_pk[t]);
if (eddsa_prehashed[t]) {
pub.verify_with_prehash(eddsa_sig[t], eddsa_message[t], eddsa_context[t]);
} else {
pub.verify(eddsa_sig[t], eddsa_message[t], eddsa_context[t]);
}
verified = true;
} catch(CryptoException&) {
verified = false;
}
if (verified != eddsa_verify_should_succeed[t]) {
test.fail();
printf(" EdDSA Verify vector #%d disagree: verify %s but should %s\n",
t, verified ? "passed" : "failed",
eddsa_verify_should_succeed[t] ? "pass" : "fail");
}
}
/* X25519/X448 */
for (int i=0; i<the_ntests && test.passing_now; i++) {
SecureBuffer n = DhLadder::shared_secret(u,k);
u = k; k = n;
if (i==1-1) {
if (!memeq(k,SecureBuffer(FixedBlock<DhLadder::PUBLIC_BYTES>(rfc7748_1)))) {
test.fail();
printf(" Test vectors disagree at 1.");
}
} else if (i==1000-1) {
if (!memeq(k,SecureBuffer(FixedBlock<DhLadder::PUBLIC_BYTES>(rfc7748_1000)))) {
test.fail();
printf(" Test vectors disagree at 1000.");
}
} else if (i==1000000-1) {
if (!memeq(k,SecureBuffer(FixedBlock<DhLadder::PUBLIC_BYTES>(rfc7748_1000000)))) {
test.fail();
printf(" Test vectors disagree at 1000000.");
}
}
}
}
static void test_eddsa() {
Test test("EdDSA");
SpongeRng rng(Block("test_eddsa"),SpongeRng::DETERMINISTIC);
int lg_scalar = Group::bits();
for (int cof = Group::REMOVED_COFACTOR; cof>1; cof>>=1) {
lg_scalar--;
}
typename Group::Scalar more_than_size = 1;
for (int i=0; i<lg_scalar; i++) more_than_size *= 2;
for (int i=0; i<NTESTS && test.passing_now; i++) {
typename EdDSA<Group>::PrivateKey priv(rng);
typename EdDSA<Group>::PublicKey pub(priv);
SecureBuffer message(i);
rng.read(message);
SecureBuffer context(i%256);
rng.read(context);
SecureBuffer sig = priv.sign(message,context);
try {
pub.verify(sig,message,context);
} catch(CryptoException&) {
test.fail();
printf(" Signature validation failed on sig %d\n", i);
}
try {
sig[(i/8) % sig.size()] ^= 1<<(i%8);
pub.verify(sig,message,context);
test.fail();
printf(" Signature validation passed incorrectly on corrupted sig %d\n", i);
} catch(CryptoException&) {}
sig[(i/8) % sig.size()] ^= 1<<(i%8);
try {
const int size = EdDSA<Group>::PublicKey::SER_BYTES;
uint8_t ser[size];
pub.serialize_into(ser);
ser[(i/8) % size] ^= 1<<(i%8);
typename EdDSA<Group>::PublicKey pub2((FixedBlock<size>(ser)));
pub2.verify(sig,message,context);
test.fail();
printf(" Signature validation passed incorrectly on corrupted pubkey %d\n", i);
} catch(CryptoException&) {}
if (message.size() > 0) {
try {
message[(i/8) % message.size()] ^= 1<<(i%8);
pub.verify(sig,message,context);
test.fail();
printf(" Signature validation passed incorrectly on corrupted message %d\n", i);
} catch(CryptoException&) {}
message[(i/8) % message.size()] ^= 1<<(i%8);
}
if (context.size() > 0) {
try {
context[(i/8) % context.size()] ^= 1<<(i%8);
pub.verify(sig,message,context);
test.fail();
printf(" Signature validation passed incorrectly on corrupted message %d\n", i);
} catch(CryptoException&) {}
context[(i/8) % context.size()] ^= 1<<(i%8);
}
// Construct sig which is numerically equal but improper
const int scalarbytes = Group::Scalar::SER_BYTES;
uint8_t *scalarpart = &sig[EdDSA<Group>::PublicKey::SER_BYTES];
typename Group::Scalar sig_r = FixedBlock<scalarbytes>(scalarpart);
memcpy(scalarpart, (-sig_r).serialize().data(), scalarbytes);
try {
pub.verify(sig,message,context);
test.fail();
printf(" Signature validation passed incorrectly on negated sig %d\n", i);
} catch(CryptoException&) {}
sig_r -= more_than_size;
memcpy(scalarpart, sig_r.serialize().data(), scalarbytes);
scalarpart[scalarbytes-1] += 1<<(lg_scalar%8);
try {
pub.verify(sig,message,context);
test.fail();
printf(" Signature validation passed incorrectly on improper sig %d\n", i);
} catch(CryptoException&) {}
/* Test encode_like and torque */
Point p(rng);
SecureBuffer p1 = p.mul_by_ratio_and_encode_like_eddsa();
SecureBuffer p2 = p.debugging_torque().mul_by_ratio_and_encode_like_eddsa();
if (!memeq(p1,p2)) {
test.fail();
printf(" Torque and encode like EdDSA failed\n");
}
SecureBuffer p3 = p.mul_by_ratio_and_encode_like_ladder();
SecureBuffer p4 = p.debugging_torque().mul_by_ratio_and_encode_like_ladder();
if (!memeq(p3,p4)) {
test.fail();
printf(" Torque and encode like ladder failed\n");
}
}
}
/* Thanks Johan Pascal */
static void test_convert_eddsa_to_x() {
Test test("ECDH using EdDSA keys");
SpongeRng rng(Block("test_x_on_eddsa_key"),SpongeRng::DETERMINISTIC);
for (int i=0; i<NTESTS && test.passing_now; i++) {
/* generate 2 pairs of EdDSA keys */
typename EdDSA<Group>::PrivateKey alice_priv(rng);
typename EdDSA<Group>::PublicKey alice_pub(alice_priv);
typename EdDSA<Group>::PrivateKey bob_priv(rng);
typename EdDSA<Group>::PublicKey bob_pub(bob_priv);
/* convert them to ECDH format
* check public key value by computing it from direct conversion and regeneration from converted private)
*/
SecureBuffer alice_priv_x = alice_priv.convert_to_x();
SecureBuffer alice_pub_x_conversion = alice_pub.convert_to_x();
SecureBuffer alice_pub_x_generated = DhLadder::derive_public_key(alice_priv_x);
if (!memeq(alice_pub_x_conversion, alice_pub_x_generated)) {
test.fail();
printf(" Ed2X Public key conversion and regeneration from converted private key differs.\n");
}
SecureBuffer bob_priv_x = bob_priv.convert_to_x();
SecureBuffer bob_pub_x_conversion = bob_pub.convert_to_x();
SecureBuffer bob_pub_x_generated = DhLadder::derive_public_key(bob_priv_x);
if (!memeq(bob_pub_x_conversion, bob_pub_x_generated)) {
test.fail();
printf(" Ed2X Public key conversion and regeneration from converted private key differs.\n");
}
/* compute shared secrets and check they match */
SecureBuffer alice_shared = DhLadder::shared_secret(bob_pub_x_conversion, alice_priv_x);
SecureBuffer bob_shared = DhLadder::shared_secret(alice_pub_x_conversion, bob_priv_x);
if (!memeq(alice_shared, bob_shared)) {
test.fail();
printf(" ECDH shared secret mismatch.\n");
}
}
}
static void test_dalek_vectors() {
Test test("Test vectors from Dalek");
Point p = Point::base(), q;
for (unsigned i=0; i<base_multiples<Group>::count; i++) {
if (!decaf_memeq(q.serialize().data(),base_multiples<Group>::values[i],Point::SER_BYTES)) {
test.fail();
printf(" Failed test vector for %d * base point.\n", i);
}
q += p;
}
for (unsigned i=0; i<elligator_examples<Group>::count; i++) {
Point r = Point::from_hash(FixedBlock<Point::HASH_BYTES>(elligator_examples<Group>::inputs[i]));
Point s = Point(FixedBlock<Point::SER_BYTES>(elligator_examples<Group>::outputs[i]));
point_check(test,r,r,r,0,0,r,s,"elligator test vector");
}
}
static void run() {
printf("Testing %s:\n",Group::name());
test_arithmetic();
test_elligator();
test_ec();
test_eddsa();
test_convert_eddsa_to_x();
test_cfrg_crypto();
test_cfrg_vectors();
test_dalek_vectors();
printf("\n");
}
}; /* template<GroupId GROUP> struct Tests */
template<typename T>
static void test_xof() {
/* TODO: more testing of XOFs */
Test test("XOF");
SpongeRng rng(Block("test_xof"),SpongeRng::DETERMINISTIC);
FixedArrayBuffer<1024> a,b,c;
rng.read(c);
T s1, s2;
unsigned i;
for (i=0; i<c.size(); i++) s1.update(c.slice(i,1));
s2.update(c);
for (i=0; i<a.size(); i++) s1.output(a.slice(i,1));
s2.output(b);
if (!a.contents_equal(b)) {
test.fail();
printf(" Buffers aren't equal!\n");
}
}
static void test_rng() {
Test test("RNG");
SpongeRng rng_d1(Block("test_rng"),SpongeRng::DETERMINISTIC);
SpongeRng rng_d2(Block("test_rng"),SpongeRng::DETERMINISTIC);
SpongeRng rng_d3(Block("best_rng"),SpongeRng::DETERMINISTIC);
SpongeRng rng_n1;
SpongeRng rng_n2;
SecureBuffer s1,s2,s3;
for (int i=0; i<5; i++) {
s1 = rng_d1.read(16<<i);
s2 = rng_d2.read(16<<i);
s3 = rng_d3.read(16<<i);
if (s1 != s2) {
test.fail();
printf(" Deterministic RNG didn't match!\n");
}
if (s1 == s3) {
test.fail();
printf(" Deterministic matched with different data!\n");
}
rng_d1.stir("hello");
rng_d2.stir("hello");
rng_d3.stir("hello");
s1 = rng_n1.read(16<<i);
s2 = rng_n2.read(16<<i);
if (s1 == s2) {
test.fail();
printf(" Nondeterministic RNG matched!\n");
}
}
rng_d1.stir("hello");
rng_d2.stir("jello");
s1 = rng_d1.read(16);
s2 = rng_d2.read(16);
if (s1 == s2) {
test.fail();
printf(" Deterministic matched with different data!\n");
}
}
#include "vectors.inc.cxx"
int main(int argc, char **argv) {
(void) argc; (void) argv;
test_rng();
test_xof<SHAKE<128> >();
test_xof<SHAKE<256> >();
printf("\n");
run_for_all_curves<Tests>();
if (passing) printf("Passed all tests.\n");
return passing ? 0 : 1;
}
|