File: crc32_impl.h

package info (click to toggle)
libdeflate 1.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,024 kB
  • sloc: ansic: 10,943; sh: 1,342; makefile: 309; python: 81
file content (648 lines) | stat: -rw-r--r-- 22,689 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/*
 * arm/crc32_impl.h - ARM implementations of the gzip CRC-32 algorithm
 *
 * Copyright 2022 Eric Biggers
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use,
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following
 * conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#ifndef LIB_ARM_CRC32_IMPL_H
#define LIB_ARM_CRC32_IMPL_H

#include "cpu_features.h"

/*
 * crc32_arm_crc() - implementation using crc32 instructions (only)
 *
 * In general this implementation is straightforward.  However, naive use of the
 * crc32 instructions is serial: one of the two inputs to each crc32 instruction
 * is the output of the previous one.  To take advantage of CPUs that can
 * execute multiple crc32 instructions in parallel, when possible we interleave
 * the checksumming of several adjacent chunks, then combine their CRCs.
 *
 * However, without pmull, combining CRCs is fairly slow.  So in this pmull-less
 * version, we only use a large chunk length, and thus we only do chunked
 * processing if there is a lot of data to checksum.  This also means that a
 * variable chunk length wouldn't help much, so we just support a fixed length.
 */
#if HAVE_CRC32_INTRIN
#  if HAVE_CRC32_NATIVE
#    define ATTRIBUTES
#  else
#    ifdef __arm__
#      ifdef __clang__
#        define ATTRIBUTES	__attribute__((target("armv8-a,crc")))
#      else
#        define ATTRIBUTES	__attribute__((target("arch=armv8-a+simd+crc")))
#      endif
#    else
#      ifdef __clang__
#        define ATTRIBUTES	__attribute__((target("crc")))
#      else
#        define ATTRIBUTES	__attribute__((target("+crc")))
#      endif
#    endif
#  endif

#include <arm_acle.h>

/*
 * Combine the CRCs for 4 adjacent chunks of length L = CRC32_FIXED_CHUNK_LEN
 * bytes each by computing:
 *
 *	[ crc0*x^(3*8*L) + crc1*x^(2*8*L) + crc2*x^(1*8*L) + crc3 ] mod G(x)
 *
 * This has been optimized in several ways:
 *
 *    - The needed multipliers (x to some power, reduced mod G(x)) were
 *	precomputed.
 *
 *    - The 3 multiplications are interleaved.
 *
 *    - The reduction mod G(x) is delayed to the end and done using __crc32d.
 *	Note that the use of __crc32d introduces an extra factor of x^32.  To
 *	cancel that out along with the extra factor of x^1 that gets introduced
 *	because of how the 63-bit products are aligned in their 64-bit integers,
 *	the multipliers are actually x^(j*8*L - 33) instead of x^(j*8*L).
 */
static forceinline ATTRIBUTES u32
combine_crcs_slow(u32 crc0, u32 crc1, u32 crc2, u32 crc3)
{
	u64 res0 = 0, res1 = 0, res2 = 0;
	int i;

	/* Multiply crc{0,1,2} by CRC32_FIXED_CHUNK_MULT_{3,2,1}. */
	for (i = 0; i < 32; i++) {
		if (CRC32_FIXED_CHUNK_MULT_3 & (1U << i))
			res0 ^= (u64)crc0 << i;
		if (CRC32_FIXED_CHUNK_MULT_2 & (1U << i))
			res1 ^= (u64)crc1 << i;
		if (CRC32_FIXED_CHUNK_MULT_1 & (1U << i))
			res2 ^= (u64)crc2 << i;
	}
	/* Add the different parts and reduce mod G(x). */
	return __crc32d(0, res0 ^ res1 ^ res2) ^ crc3;
}

#define crc32_arm_crc	crc32_arm_crc
static u32 ATTRIBUTES MAYBE_UNUSED
crc32_arm_crc(u32 crc, const u8 *p, size_t len)
{
	if (len >= 64) {
		const size_t align = -(uintptr_t)p & 7;

		/* Align p to the next 8-byte boundary. */
		if (align) {
			if (align & 1)
				crc = __crc32b(crc, *p++);
			if (align & 2) {
				crc = __crc32h(crc, le16_bswap(*(u16 *)p));
				p += 2;
			}
			if (align & 4) {
				crc = __crc32w(crc, le32_bswap(*(u32 *)p));
				p += 4;
			}
			len -= align;
		}
		/*
		 * Interleave the processing of multiple adjacent data chunks to
		 * take advantage of instruction-level parallelism.
		 *
		 * Some CPUs don't prefetch the data if it's being fetched in
		 * multiple interleaved streams, so do explicit prefetching.
		 */
		while (len >= CRC32_NUM_CHUNKS * CRC32_FIXED_CHUNK_LEN) {
			const u64 *wp0 = (const u64 *)p;
			const u64 * const wp0_end =
				(const u64 *)(p + CRC32_FIXED_CHUNK_LEN);
			u32 crc1 = 0, crc2 = 0, crc3 = 0;

			STATIC_ASSERT(CRC32_NUM_CHUNKS == 4);
			STATIC_ASSERT(CRC32_FIXED_CHUNK_LEN % (4 * 8) == 0);
			do {
				prefetchr(&wp0[64 + 0*CRC32_FIXED_CHUNK_LEN/8]);
				prefetchr(&wp0[64 + 1*CRC32_FIXED_CHUNK_LEN/8]);
				prefetchr(&wp0[64 + 2*CRC32_FIXED_CHUNK_LEN/8]);
				prefetchr(&wp0[64 + 3*CRC32_FIXED_CHUNK_LEN/8]);
				crc  = __crc32d(crc,  le64_bswap(wp0[0*CRC32_FIXED_CHUNK_LEN/8]));
				crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_FIXED_CHUNK_LEN/8]));
				crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_FIXED_CHUNK_LEN/8]));
				crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_FIXED_CHUNK_LEN/8]));
				wp0++;
				crc  = __crc32d(crc,  le64_bswap(wp0[0*CRC32_FIXED_CHUNK_LEN/8]));
				crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_FIXED_CHUNK_LEN/8]));
				crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_FIXED_CHUNK_LEN/8]));
				crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_FIXED_CHUNK_LEN/8]));
				wp0++;
				crc  = __crc32d(crc,  le64_bswap(wp0[0*CRC32_FIXED_CHUNK_LEN/8]));
				crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_FIXED_CHUNK_LEN/8]));
				crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_FIXED_CHUNK_LEN/8]));
				crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_FIXED_CHUNK_LEN/8]));
				wp0++;
				crc  = __crc32d(crc,  le64_bswap(wp0[0*CRC32_FIXED_CHUNK_LEN/8]));
				crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_FIXED_CHUNK_LEN/8]));
				crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_FIXED_CHUNK_LEN/8]));
				crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_FIXED_CHUNK_LEN/8]));
				wp0++;
			} while (wp0 != wp0_end);
			crc = combine_crcs_slow(crc, crc1, crc2, crc3);
			p += CRC32_NUM_CHUNKS * CRC32_FIXED_CHUNK_LEN;
			len -= CRC32_NUM_CHUNKS * CRC32_FIXED_CHUNK_LEN;
		}
		/*
		 * Due to the large fixed chunk length used above, there might
		 * still be a lot of data left.  So use a 64-byte loop here,
		 * instead of a loop that is less unrolled.
		 */
		while (len >= 64) {
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 0)));
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 8)));
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 16)));
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 24)));
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 32)));
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 40)));
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 48)));
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 56)));
			p += 64;
			len -= 64;
		}
	}
	if (len & 32) {
		crc = __crc32d(crc, get_unaligned_le64(p + 0));
		crc = __crc32d(crc, get_unaligned_le64(p + 8));
		crc = __crc32d(crc, get_unaligned_le64(p + 16));
		crc = __crc32d(crc, get_unaligned_le64(p + 24));
		p += 32;
	}
	if (len & 16) {
		crc = __crc32d(crc, get_unaligned_le64(p + 0));
		crc = __crc32d(crc, get_unaligned_le64(p + 8));
		p += 16;
	}
	if (len & 8) {
		crc = __crc32d(crc, get_unaligned_le64(p));
		p += 8;
	}
	if (len & 4) {
		crc = __crc32w(crc, get_unaligned_le32(p));
		p += 4;
	}
	if (len & 2) {
		crc = __crc32h(crc, get_unaligned_le16(p));
		p += 2;
	}
	if (len & 1)
		crc = __crc32b(crc, *p);
	return crc;
}
#undef ATTRIBUTES
#endif /* crc32_arm_crc() */

/*
 * crc32_arm_crc_pmullcombine() - implementation using crc32 instructions, plus
 *	pmull instructions for CRC combining
 *
 * This is similar to crc32_arm_crc(), but it enables the use of pmull
 * (carryless multiplication) instructions for the steps where the CRCs of
 * adjacent data chunks are combined.  As this greatly speeds up CRC
 * combination, this implementation also differs from crc32_arm_crc() in that it
 * uses a variable chunk length which can get fairly small.  The precomputed
 * multipliers needed for the selected chunk length are loaded from a table.
 *
 * Note that pmull is used here only for combining the CRCs of separately
 * checksummed chunks, not for folding the data itself.  See crc32_arm_pmull*()
 * for implementations that use pmull for folding the data itself.
 */
#if HAVE_CRC32_INTRIN && HAVE_PMULL_INTRIN && \
	((HAVE_CRC32_NATIVE && HAVE_PMULL_NATIVE) || \
	 (HAVE_CRC32_TARGET && HAVE_PMULL_TARGET))
#  if HAVE_CRC32_NATIVE && HAVE_PMULL_NATIVE
#    define ATTRIBUTES
#  else
#    ifdef __arm__
#      define ATTRIBUTES	__attribute__((target("arch=armv8-a+crc,fpu=crypto-neon-fp-armv8")))
#    else
#      ifdef __clang__
#        define ATTRIBUTES	__attribute__((target("crc,crypto")))
#      else
#        define ATTRIBUTES	__attribute__((target("+crc,+crypto")))
#      endif
#    endif
#  endif

#include <arm_acle.h>
#include <arm_neon.h>

/*
 * Like combine_crcs_slow(), but uses vmull_p64 to do the multiplications more
 * quickly, and supports a variable chunk length.  The chunk length is
 * 'i * CRC32_MIN_VARIABLE_CHUNK_LEN'
 * where 1 <= i < ARRAY_LEN(crc32_mults_for_chunklen).
 */
static forceinline ATTRIBUTES u32
combine_crcs_fast(u32 crc0, u32 crc1, u32 crc2, u32 crc3, size_t i)
{
	u64 res0 = vmull_p64(crc0, crc32_mults_for_chunklen[i][0]);
	u64 res1 = vmull_p64(crc1, crc32_mults_for_chunklen[i][1]);
	u64 res2 = vmull_p64(crc2, crc32_mults_for_chunklen[i][2]);

	return __crc32d(0, res0 ^ res1 ^ res2) ^ crc3;
}

#define crc32_arm_crc_pmullcombine	crc32_arm_crc_pmullcombine
static u32 ATTRIBUTES MAYBE_UNUSED
crc32_arm_crc_pmullcombine(u32 crc, const u8 *p, size_t len)
{
	const size_t align = -(uintptr_t)p & 7;

	if (len >= align + CRC32_NUM_CHUNKS * CRC32_MIN_VARIABLE_CHUNK_LEN) {
		/* Align p to the next 8-byte boundary. */
		if (align) {
			if (align & 1)
				crc = __crc32b(crc, *p++);
			if (align & 2) {
				crc = __crc32h(crc, le16_bswap(*(u16 *)p));
				p += 2;
			}
			if (align & 4) {
				crc = __crc32w(crc, le32_bswap(*(u32 *)p));
				p += 4;
			}
			len -= align;
		}
		/*
		 * Handle CRC32_MAX_VARIABLE_CHUNK_LEN specially, so that better
		 * code is generated for it.
		 */
		while (len >= CRC32_NUM_CHUNKS * CRC32_MAX_VARIABLE_CHUNK_LEN) {
			const u64 *wp0 = (const u64 *)p;
			const u64 * const wp0_end =
				(const u64 *)(p + CRC32_MAX_VARIABLE_CHUNK_LEN);
			u32 crc1 = 0, crc2 = 0, crc3 = 0;

			STATIC_ASSERT(CRC32_NUM_CHUNKS == 4);
			STATIC_ASSERT(CRC32_MAX_VARIABLE_CHUNK_LEN % (4 * 8) == 0);
			do {
				prefetchr(&wp0[64 + 0*CRC32_MAX_VARIABLE_CHUNK_LEN/8]);
				prefetchr(&wp0[64 + 1*CRC32_MAX_VARIABLE_CHUNK_LEN/8]);
				prefetchr(&wp0[64 + 2*CRC32_MAX_VARIABLE_CHUNK_LEN/8]);
				prefetchr(&wp0[64 + 3*CRC32_MAX_VARIABLE_CHUNK_LEN/8]);
				crc  = __crc32d(crc,  le64_bswap(wp0[0*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				wp0++;
				crc  = __crc32d(crc,  le64_bswap(wp0[0*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				wp0++;
				crc  = __crc32d(crc,  le64_bswap(wp0[0*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				wp0++;
				crc  = __crc32d(crc,  le64_bswap(wp0[0*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
				wp0++;
			} while (wp0 != wp0_end);
			crc = combine_crcs_fast(crc, crc1, crc2, crc3,
						ARRAY_LEN(crc32_mults_for_chunklen) - 1);
			p += CRC32_NUM_CHUNKS * CRC32_MAX_VARIABLE_CHUNK_LEN;
			len -= CRC32_NUM_CHUNKS * CRC32_MAX_VARIABLE_CHUNK_LEN;
		}
		/* Handle up to one variable-length chunk. */
		if (len >= CRC32_NUM_CHUNKS * CRC32_MIN_VARIABLE_CHUNK_LEN) {
			const size_t i = len / (CRC32_NUM_CHUNKS *
						CRC32_MIN_VARIABLE_CHUNK_LEN);
			const size_t chunk_len =
				i * CRC32_MIN_VARIABLE_CHUNK_LEN;
			const u64 *wp0 = (const u64 *)(p + 0*chunk_len);
			const u64 *wp1 = (const u64 *)(p + 1*chunk_len);
			const u64 *wp2 = (const u64 *)(p + 2*chunk_len);
			const u64 *wp3 = (const u64 *)(p + 3*chunk_len);
			const u64 * const wp0_end = wp1;
			u32 crc1 = 0, crc2 = 0, crc3 = 0;

			STATIC_ASSERT(CRC32_NUM_CHUNKS == 4);
			STATIC_ASSERT(CRC32_MIN_VARIABLE_CHUNK_LEN % (4 * 8) == 0);
			do {
				prefetchr(wp0 + 64);
				prefetchr(wp1 + 64);
				prefetchr(wp2 + 64);
				prefetchr(wp3 + 64);
				crc  = __crc32d(crc,  le64_bswap(*wp0++));
				crc1 = __crc32d(crc1, le64_bswap(*wp1++));
				crc2 = __crc32d(crc2, le64_bswap(*wp2++));
				crc3 = __crc32d(crc3, le64_bswap(*wp3++));
				crc  = __crc32d(crc,  le64_bswap(*wp0++));
				crc1 = __crc32d(crc1, le64_bswap(*wp1++));
				crc2 = __crc32d(crc2, le64_bswap(*wp2++));
				crc3 = __crc32d(crc3, le64_bswap(*wp3++));
				crc  = __crc32d(crc,  le64_bswap(*wp0++));
				crc1 = __crc32d(crc1, le64_bswap(*wp1++));
				crc2 = __crc32d(crc2, le64_bswap(*wp2++));
				crc3 = __crc32d(crc3, le64_bswap(*wp3++));
				crc  = __crc32d(crc,  le64_bswap(*wp0++));
				crc1 = __crc32d(crc1, le64_bswap(*wp1++));
				crc2 = __crc32d(crc2, le64_bswap(*wp2++));
				crc3 = __crc32d(crc3, le64_bswap(*wp3++));
			} while (wp0 != wp0_end);
			crc = combine_crcs_fast(crc, crc1, crc2, crc3, i);
			p += CRC32_NUM_CHUNKS * chunk_len;
			len -= CRC32_NUM_CHUNKS * chunk_len;
		}

		while (len >= 32) {
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 0)));
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 8)));
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 16)));
			crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 24)));
			p += 32;
			len -= 32;
		}
	} else {
		while (len >= 32) {
			crc = __crc32d(crc, get_unaligned_le64(p + 0));
			crc = __crc32d(crc, get_unaligned_le64(p + 8));
			crc = __crc32d(crc, get_unaligned_le64(p + 16));
			crc = __crc32d(crc, get_unaligned_le64(p + 24));
			p += 32;
			len -= 32;
		}
	}
	if (len & 16) {
		crc = __crc32d(crc, get_unaligned_le64(p + 0));
		crc = __crc32d(crc, get_unaligned_le64(p + 8));
		p += 16;
	}
	if (len & 8) {
		crc = __crc32d(crc, get_unaligned_le64(p));
		p += 8;
	}
	if (len & 4) {
		crc = __crc32w(crc, get_unaligned_le32(p));
		p += 4;
	}
	if (len & 2) {
		crc = __crc32h(crc, get_unaligned_le16(p));
		p += 2;
	}
	if (len & 1)
		crc = __crc32b(crc, *p);
	return crc;
}
#undef ATTRIBUTES
#endif /* crc32_arm_crc_pmullcombine() */

/*
 * crc32_arm_pmullx4() - implementation using "folding" with pmull instructions
 *
 * This implementation is intended for CPUs that support pmull instructions but
 * not crc32 instructions.
 */
#if HAVE_PMULL_INTRIN
#  define crc32_arm_pmullx4	crc32_arm_pmullx4
#  define SUFFIX			 _pmullx4
#  if HAVE_PMULL_NATIVE
#    define ATTRIBUTES
#  else
#    ifdef __arm__
#      define ATTRIBUTES    __attribute__((target("fpu=crypto-neon-fp-armv8")))
#    else
#      ifdef __clang__
#        define ATTRIBUTES  __attribute__((target("crypto")))
#      else
#        define ATTRIBUTES  __attribute__((target("+crypto")))
#      endif
#    endif
#  endif
#  define ENABLE_EOR3		0
#  include "crc32_pmull_helpers.h"

static u32 ATTRIBUTES MAYBE_UNUSED
crc32_arm_pmullx4(u32 crc, const u8 *p, size_t len)
{
	const poly64x2_t multipliers_4 = (poly64x2_t)CRC32_4VECS_MULTS;
	const poly64x2_t multipliers_2 = (poly64x2_t)CRC32_2VECS_MULTS;
	const poly64x2_t multipliers_1 = (poly64x2_t)CRC32_1VECS_MULTS;
	const uint8x16_t zeroes = (uint8x16_t){ 0 };
	const uint8x16_t mask32 = (uint8x16_t)(uint32x4_t){ 0xFFFFFFFF };
	uint8x16_t v0, v1, v2, v3;

	if (len < 64 + 15) {
		if (len < 16)
			return crc32_slice1(crc, p, len);
		v0 = vld1q_u8(p) ^ (uint8x16_t)(uint32x4_t){ crc };
		p += 16;
		len -= 16;
		while (len >= 16) {
			v0 = fold_vec(v0, vld1q_u8(p), multipliers_1);
			p += 16;
			len -= 16;
		}
	} else {
		const size_t align = -(uintptr_t)p & 15;
		const uint8x16_t *vp;

		v0 = vld1q_u8(p) ^ (uint8x16_t)(uint32x4_t){ crc };
		p += 16;
		/* Align p to the next 16-byte boundary. */
		if (align) {
			v0 = fold_partial_vec(v0, p, align, multipliers_1);
			p += align;
			len -= align;
		}
		vp = (const uint8x16_t *)p;
		v1 = *vp++;
		v2 = *vp++;
		v3 = *vp++;
		while (len >= 64 + 64) {
			v0 = fold_vec(v0, *vp++, multipliers_4);
			v1 = fold_vec(v1, *vp++, multipliers_4);
			v2 = fold_vec(v2, *vp++, multipliers_4);
			v3 = fold_vec(v3, *vp++, multipliers_4);
			len -= 64;
		}
		v0 = fold_vec(v0, v2, multipliers_2);
		v1 = fold_vec(v1, v3, multipliers_2);
		if (len & 32) {
			v0 = fold_vec(v0, *vp++, multipliers_2);
			v1 = fold_vec(v1, *vp++, multipliers_2);
		}
		v0 = fold_vec(v0, v1, multipliers_1);
		if (len & 16)
			v0 = fold_vec(v0, *vp++, multipliers_1);
		p = (const u8 *)vp;
		len &= 15;
	}

	/* Handle any remaining partial block now before reducing to 32 bits. */
	if (len)
		v0 = fold_partial_vec(v0, p, len, multipliers_1);

	/*
	 * Fold 128 => 96 bits.  This also implicitly appends 32 zero bits,
	 * which is equivalent to multiplying by x^32.  This is needed because
	 * the CRC is defined as M(x)*x^32 mod G(x), not just M(x) mod G(x).
	 */
	v0 = vextq_u8(v0, zeroes, 8) ^
	     (uint8x16_t)vmull_p64((poly64_t)vget_low_u8(v0),
				   CRC32_1VECS_MULT_2);

	/* Fold 96 => 64 bits. */
	v0 = vextq_u8(v0, zeroes, 4) ^
		(uint8x16_t)vmull_p64((poly64_t)vget_low_u8(v0 & mask32),
				      CRC32_FINAL_MULT);

	/* Reduce 64 => 32 bits using Barrett reduction. */
	v1 = (uint8x16_t)vmull_p64((poly64_t)vget_low_u8(v0 & mask32),
				   CRC32_BARRETT_CONSTANT_1);
	v1 = (uint8x16_t)vmull_p64((poly64_t)vget_low_u8(v1 & mask32),
				   CRC32_BARRETT_CONSTANT_2);
	return ((uint32x4_t)(v0 ^ v1))[1];
}
#undef SUFFIX
#undef ATTRIBUTES
#undef ENABLE_EOR3
#endif /* crc32_arm_pmullx4() */

/*
 * crc32_arm_pmullx12_crc() - large-stride implementation using "folding" with
 *	pmull instructions, where crc32 instructions are also available
 *
 * See crc32_pmull_wide.h for explanation.
 */
#if defined(__aarch64__) && HAVE_PMULL_INTRIN && HAVE_CRC32_INTRIN && \
	((HAVE_PMULL_NATIVE && HAVE_CRC32_NATIVE) || \
	 (HAVE_PMULL_TARGET && HAVE_CRC32_TARGET))
#  define crc32_arm_pmullx12_crc	crc32_arm_pmullx12_crc
#  define SUFFIX				 _pmullx12_crc
#  if HAVE_PMULL_NATIVE && HAVE_CRC32_NATIVE
#    define ATTRIBUTES
#  else
#    ifdef __clang__
#      define ATTRIBUTES  __attribute__((target("crypto,crc")))
#    else
#      define ATTRIBUTES  __attribute__((target("+crypto,+crc")))
#    endif
#  endif
#  define ENABLE_EOR3	0
#  include "crc32_pmull_wide.h"
#endif

/*
 * crc32_arm_pmullx12_crc_eor3()
 *
 * This like crc32_arm_pmullx12_crc(), but it adds the eor3 instruction (from
 * the sha3 extension) for even better performance.
 *
 * Note: we require HAVE_SHA3_TARGET (or HAVE_SHA3_NATIVE) rather than
 * HAVE_SHA3_INTRIN, as we have an inline asm fallback for eor3.
 */
#if defined(__aarch64__) && HAVE_PMULL_INTRIN && HAVE_CRC32_INTRIN && \
	((HAVE_PMULL_NATIVE && HAVE_CRC32_NATIVE && HAVE_SHA3_NATIVE) || \
	 (HAVE_PMULL_TARGET && HAVE_CRC32_TARGET && HAVE_SHA3_TARGET))
#  define crc32_arm_pmullx12_crc_eor3	crc32_arm_pmullx12_crc_eor3
#  define SUFFIX				 _pmullx12_crc_eor3
#  if HAVE_PMULL_NATIVE && HAVE_CRC32_NATIVE && HAVE_SHA3_NATIVE
#    define ATTRIBUTES
#  else
#    ifdef __clang__
#      define ATTRIBUTES  __attribute__((target("crypto,crc,sha3")))
     /*
      * With gcc, arch=armv8.2-a is needed for the sha3 intrinsics, unless the
      * default target is armv8.3-a or later in which case it must be omitted.
      * armv8.3-a or later can be detected by checking for __ARM_FEATURE_JCVT.
      */
#    elif defined(__ARM_FEATURE_JCVT)
#      define ATTRIBUTES  __attribute__((target("+crypto,+crc,+sha3")))
#    else
#      define ATTRIBUTES  __attribute__((target("arch=armv8.2-a+crypto+crc+sha3")))
#    endif
#  endif
#  define ENABLE_EOR3	1
#  include "crc32_pmull_wide.h"
#endif

/*
 * On the Apple M1 processor, crc32 instructions max out at about 25.5 GB/s in
 * the best case of using a 3-way or greater interleaved chunked implementation,
 * whereas a pmull-based implementation achieves 68 GB/s provided that the
 * stride length is large enough (about 10+ vectors with eor3, or 12+ without).
 *
 * For now we assume that crc32 instructions are preferable in other cases.
 */
#define PREFER_PMULL_TO_CRC	0
#ifdef __APPLE__
#  include <TargetConditionals.h>
#  if TARGET_OS_OSX
#    undef PREFER_PMULL_TO_CRC
#    define PREFER_PMULL_TO_CRC	1
#  endif
#endif

/*
 * If the best implementation is statically available, use it unconditionally.
 * Otherwise choose the best implementation at runtime.
 */
#if PREFER_PMULL_TO_CRC && defined(crc32_arm_pmullx12_crc_eor3) && \
	HAVE_PMULL_NATIVE && HAVE_CRC32_NATIVE && HAVE_SHA3_NATIVE
#  define DEFAULT_IMPL	crc32_arm_pmullx12_crc_eor3
#elif !PREFER_PMULL_TO_CRC && defined(crc32_arm_crc_pmullcombine) && \
	HAVE_CRC32_NATIVE && HAVE_PMULL_NATIVE
#  define DEFAULT_IMPL	crc32_arm_crc_pmullcombine
#else
static inline crc32_func_t
arch_select_crc32_func(void)
{
	const u32 features MAYBE_UNUSED = get_arm_cpu_features();

#if PREFER_PMULL_TO_CRC && defined(crc32_arm_pmullx12_crc_eor3)
	if (HAVE_PMULL(features) && HAVE_CRC32(features) && HAVE_SHA3(features))
		return crc32_arm_pmullx12_crc_eor3;
#endif
#if PREFER_PMULL_TO_CRC && defined(crc32_arm_pmullx12_crc)
	if (HAVE_PMULL(features) && HAVE_CRC32(features))
		return crc32_arm_pmullx12_crc;
#endif
#ifdef crc32_arm_crc_pmullcombine
	if (HAVE_CRC32(features) && HAVE_PMULL(features))
		return crc32_arm_crc_pmullcombine;
#endif
#ifdef crc32_arm_crc
	if (HAVE_CRC32(features))
		return crc32_arm_crc;
#endif
#ifdef crc32_arm_pmullx4
	if (HAVE_PMULL(features))
		return crc32_arm_pmullx4;
#endif
	return NULL;
}
#define arch_select_crc32_func	arch_select_crc32_func
#endif

#endif /* LIB_ARM_CRC32_IMPL_H */