1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
/*
* arm/crc32_impl.h - ARM implementations of the gzip CRC-32 algorithm
*
* Copyright 2022 Eric Biggers
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef LIB_ARM_CRC32_IMPL_H
#define LIB_ARM_CRC32_IMPL_H
#include "cpu_features.h"
/*
* crc32_arm_crc() - implementation using crc32 instructions (only)
*
* In general this implementation is straightforward. However, naive use of the
* crc32 instructions is serial: one of the two inputs to each crc32 instruction
* is the output of the previous one. To take advantage of CPUs that can
* execute multiple crc32 instructions in parallel, when possible we interleave
* the checksumming of several adjacent chunks, then combine their CRCs.
*
* However, without pmull, combining CRCs is fairly slow. So in this pmull-less
* version, we only use a large chunk length, and thus we only do chunked
* processing if there is a lot of data to checksum. This also means that a
* variable chunk length wouldn't help much, so we just support a fixed length.
*/
#if HAVE_CRC32_INTRIN
# if HAVE_CRC32_NATIVE
# define ATTRIBUTES
# else
# ifdef __arm__
# ifdef __clang__
# define ATTRIBUTES __attribute__((target("armv8-a,crc")))
# else
# define ATTRIBUTES __attribute__((target("arch=armv8-a+simd+crc")))
# endif
# else
# ifdef __clang__
# define ATTRIBUTES __attribute__((target("crc")))
# else
# define ATTRIBUTES __attribute__((target("+crc")))
# endif
# endif
# endif
#include <arm_acle.h>
/*
* Combine the CRCs for 4 adjacent chunks of length L = CRC32_FIXED_CHUNK_LEN
* bytes each by computing:
*
* [ crc0*x^(3*8*L) + crc1*x^(2*8*L) + crc2*x^(1*8*L) + crc3 ] mod G(x)
*
* This has been optimized in several ways:
*
* - The needed multipliers (x to some power, reduced mod G(x)) were
* precomputed.
*
* - The 3 multiplications are interleaved.
*
* - The reduction mod G(x) is delayed to the end and done using __crc32d.
* Note that the use of __crc32d introduces an extra factor of x^32. To
* cancel that out along with the extra factor of x^1 that gets introduced
* because of how the 63-bit products are aligned in their 64-bit integers,
* the multipliers are actually x^(j*8*L - 33) instead of x^(j*8*L).
*/
static forceinline ATTRIBUTES u32
combine_crcs_slow(u32 crc0, u32 crc1, u32 crc2, u32 crc3)
{
u64 res0 = 0, res1 = 0, res2 = 0;
int i;
/* Multiply crc{0,1,2} by CRC32_FIXED_CHUNK_MULT_{3,2,1}. */
for (i = 0; i < 32; i++) {
if (CRC32_FIXED_CHUNK_MULT_3 & (1U << i))
res0 ^= (u64)crc0 << i;
if (CRC32_FIXED_CHUNK_MULT_2 & (1U << i))
res1 ^= (u64)crc1 << i;
if (CRC32_FIXED_CHUNK_MULT_1 & (1U << i))
res2 ^= (u64)crc2 << i;
}
/* Add the different parts and reduce mod G(x). */
return __crc32d(0, res0 ^ res1 ^ res2) ^ crc3;
}
#define crc32_arm_crc crc32_arm_crc
static u32 ATTRIBUTES MAYBE_UNUSED
crc32_arm_crc(u32 crc, const u8 *p, size_t len)
{
if (len >= 64) {
const size_t align = -(uintptr_t)p & 7;
/* Align p to the next 8-byte boundary. */
if (align) {
if (align & 1)
crc = __crc32b(crc, *p++);
if (align & 2) {
crc = __crc32h(crc, le16_bswap(*(u16 *)p));
p += 2;
}
if (align & 4) {
crc = __crc32w(crc, le32_bswap(*(u32 *)p));
p += 4;
}
len -= align;
}
/*
* Interleave the processing of multiple adjacent data chunks to
* take advantage of instruction-level parallelism.
*
* Some CPUs don't prefetch the data if it's being fetched in
* multiple interleaved streams, so do explicit prefetching.
*/
while (len >= CRC32_NUM_CHUNKS * CRC32_FIXED_CHUNK_LEN) {
const u64 *wp0 = (const u64 *)p;
const u64 * const wp0_end =
(const u64 *)(p + CRC32_FIXED_CHUNK_LEN);
u32 crc1 = 0, crc2 = 0, crc3 = 0;
STATIC_ASSERT(CRC32_NUM_CHUNKS == 4);
STATIC_ASSERT(CRC32_FIXED_CHUNK_LEN % (4 * 8) == 0);
do {
prefetchr(&wp0[64 + 0*CRC32_FIXED_CHUNK_LEN/8]);
prefetchr(&wp0[64 + 1*CRC32_FIXED_CHUNK_LEN/8]);
prefetchr(&wp0[64 + 2*CRC32_FIXED_CHUNK_LEN/8]);
prefetchr(&wp0[64 + 3*CRC32_FIXED_CHUNK_LEN/8]);
crc = __crc32d(crc, le64_bswap(wp0[0*CRC32_FIXED_CHUNK_LEN/8]));
crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_FIXED_CHUNK_LEN/8]));
crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_FIXED_CHUNK_LEN/8]));
crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_FIXED_CHUNK_LEN/8]));
wp0++;
crc = __crc32d(crc, le64_bswap(wp0[0*CRC32_FIXED_CHUNK_LEN/8]));
crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_FIXED_CHUNK_LEN/8]));
crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_FIXED_CHUNK_LEN/8]));
crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_FIXED_CHUNK_LEN/8]));
wp0++;
crc = __crc32d(crc, le64_bswap(wp0[0*CRC32_FIXED_CHUNK_LEN/8]));
crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_FIXED_CHUNK_LEN/8]));
crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_FIXED_CHUNK_LEN/8]));
crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_FIXED_CHUNK_LEN/8]));
wp0++;
crc = __crc32d(crc, le64_bswap(wp0[0*CRC32_FIXED_CHUNK_LEN/8]));
crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_FIXED_CHUNK_LEN/8]));
crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_FIXED_CHUNK_LEN/8]));
crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_FIXED_CHUNK_LEN/8]));
wp0++;
} while (wp0 != wp0_end);
crc = combine_crcs_slow(crc, crc1, crc2, crc3);
p += CRC32_NUM_CHUNKS * CRC32_FIXED_CHUNK_LEN;
len -= CRC32_NUM_CHUNKS * CRC32_FIXED_CHUNK_LEN;
}
/*
* Due to the large fixed chunk length used above, there might
* still be a lot of data left. So use a 64-byte loop here,
* instead of a loop that is less unrolled.
*/
while (len >= 64) {
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 0)));
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 8)));
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 16)));
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 24)));
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 32)));
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 40)));
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 48)));
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 56)));
p += 64;
len -= 64;
}
}
if (len & 32) {
crc = __crc32d(crc, get_unaligned_le64(p + 0));
crc = __crc32d(crc, get_unaligned_le64(p + 8));
crc = __crc32d(crc, get_unaligned_le64(p + 16));
crc = __crc32d(crc, get_unaligned_le64(p + 24));
p += 32;
}
if (len & 16) {
crc = __crc32d(crc, get_unaligned_le64(p + 0));
crc = __crc32d(crc, get_unaligned_le64(p + 8));
p += 16;
}
if (len & 8) {
crc = __crc32d(crc, get_unaligned_le64(p));
p += 8;
}
if (len & 4) {
crc = __crc32w(crc, get_unaligned_le32(p));
p += 4;
}
if (len & 2) {
crc = __crc32h(crc, get_unaligned_le16(p));
p += 2;
}
if (len & 1)
crc = __crc32b(crc, *p);
return crc;
}
#undef ATTRIBUTES
#endif /* crc32_arm_crc() */
/*
* crc32_arm_crc_pmullcombine() - implementation using crc32 instructions, plus
* pmull instructions for CRC combining
*
* This is similar to crc32_arm_crc(), but it enables the use of pmull
* (carryless multiplication) instructions for the steps where the CRCs of
* adjacent data chunks are combined. As this greatly speeds up CRC
* combination, this implementation also differs from crc32_arm_crc() in that it
* uses a variable chunk length which can get fairly small. The precomputed
* multipliers needed for the selected chunk length are loaded from a table.
*
* Note that pmull is used here only for combining the CRCs of separately
* checksummed chunks, not for folding the data itself. See crc32_arm_pmull*()
* for implementations that use pmull for folding the data itself.
*/
#if HAVE_CRC32_INTRIN && HAVE_PMULL_INTRIN && \
((HAVE_CRC32_NATIVE && HAVE_PMULL_NATIVE) || \
(HAVE_CRC32_TARGET && HAVE_PMULL_TARGET))
# if HAVE_CRC32_NATIVE && HAVE_PMULL_NATIVE
# define ATTRIBUTES
# else
# ifdef __arm__
# define ATTRIBUTES __attribute__((target("arch=armv8-a+crc,fpu=crypto-neon-fp-armv8")))
# else
# ifdef __clang__
# define ATTRIBUTES __attribute__((target("crc,crypto")))
# else
# define ATTRIBUTES __attribute__((target("+crc,+crypto")))
# endif
# endif
# endif
#include <arm_acle.h>
#include <arm_neon.h>
/*
* Like combine_crcs_slow(), but uses vmull_p64 to do the multiplications more
* quickly, and supports a variable chunk length. The chunk length is
* 'i * CRC32_MIN_VARIABLE_CHUNK_LEN'
* where 1 <= i < ARRAY_LEN(crc32_mults_for_chunklen).
*/
static forceinline ATTRIBUTES u32
combine_crcs_fast(u32 crc0, u32 crc1, u32 crc2, u32 crc3, size_t i)
{
u64 res0 = vmull_p64(crc0, crc32_mults_for_chunklen[i][0]);
u64 res1 = vmull_p64(crc1, crc32_mults_for_chunklen[i][1]);
u64 res2 = vmull_p64(crc2, crc32_mults_for_chunklen[i][2]);
return __crc32d(0, res0 ^ res1 ^ res2) ^ crc3;
}
#define crc32_arm_crc_pmullcombine crc32_arm_crc_pmullcombine
static u32 ATTRIBUTES MAYBE_UNUSED
crc32_arm_crc_pmullcombine(u32 crc, const u8 *p, size_t len)
{
const size_t align = -(uintptr_t)p & 7;
if (len >= align + CRC32_NUM_CHUNKS * CRC32_MIN_VARIABLE_CHUNK_LEN) {
/* Align p to the next 8-byte boundary. */
if (align) {
if (align & 1)
crc = __crc32b(crc, *p++);
if (align & 2) {
crc = __crc32h(crc, le16_bswap(*(u16 *)p));
p += 2;
}
if (align & 4) {
crc = __crc32w(crc, le32_bswap(*(u32 *)p));
p += 4;
}
len -= align;
}
/*
* Handle CRC32_MAX_VARIABLE_CHUNK_LEN specially, so that better
* code is generated for it.
*/
while (len >= CRC32_NUM_CHUNKS * CRC32_MAX_VARIABLE_CHUNK_LEN) {
const u64 *wp0 = (const u64 *)p;
const u64 * const wp0_end =
(const u64 *)(p + CRC32_MAX_VARIABLE_CHUNK_LEN);
u32 crc1 = 0, crc2 = 0, crc3 = 0;
STATIC_ASSERT(CRC32_NUM_CHUNKS == 4);
STATIC_ASSERT(CRC32_MAX_VARIABLE_CHUNK_LEN % (4 * 8) == 0);
do {
prefetchr(&wp0[64 + 0*CRC32_MAX_VARIABLE_CHUNK_LEN/8]);
prefetchr(&wp0[64 + 1*CRC32_MAX_VARIABLE_CHUNK_LEN/8]);
prefetchr(&wp0[64 + 2*CRC32_MAX_VARIABLE_CHUNK_LEN/8]);
prefetchr(&wp0[64 + 3*CRC32_MAX_VARIABLE_CHUNK_LEN/8]);
crc = __crc32d(crc, le64_bswap(wp0[0*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
wp0++;
crc = __crc32d(crc, le64_bswap(wp0[0*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
wp0++;
crc = __crc32d(crc, le64_bswap(wp0[0*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
wp0++;
crc = __crc32d(crc, le64_bswap(wp0[0*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc1 = __crc32d(crc1, le64_bswap(wp0[1*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc2 = __crc32d(crc2, le64_bswap(wp0[2*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
crc3 = __crc32d(crc3, le64_bswap(wp0[3*CRC32_MAX_VARIABLE_CHUNK_LEN/8]));
wp0++;
} while (wp0 != wp0_end);
crc = combine_crcs_fast(crc, crc1, crc2, crc3,
ARRAY_LEN(crc32_mults_for_chunklen) - 1);
p += CRC32_NUM_CHUNKS * CRC32_MAX_VARIABLE_CHUNK_LEN;
len -= CRC32_NUM_CHUNKS * CRC32_MAX_VARIABLE_CHUNK_LEN;
}
/* Handle up to one variable-length chunk. */
if (len >= CRC32_NUM_CHUNKS * CRC32_MIN_VARIABLE_CHUNK_LEN) {
const size_t i = len / (CRC32_NUM_CHUNKS *
CRC32_MIN_VARIABLE_CHUNK_LEN);
const size_t chunk_len =
i * CRC32_MIN_VARIABLE_CHUNK_LEN;
const u64 *wp0 = (const u64 *)(p + 0*chunk_len);
const u64 *wp1 = (const u64 *)(p + 1*chunk_len);
const u64 *wp2 = (const u64 *)(p + 2*chunk_len);
const u64 *wp3 = (const u64 *)(p + 3*chunk_len);
const u64 * const wp0_end = wp1;
u32 crc1 = 0, crc2 = 0, crc3 = 0;
STATIC_ASSERT(CRC32_NUM_CHUNKS == 4);
STATIC_ASSERT(CRC32_MIN_VARIABLE_CHUNK_LEN % (4 * 8) == 0);
do {
prefetchr(wp0 + 64);
prefetchr(wp1 + 64);
prefetchr(wp2 + 64);
prefetchr(wp3 + 64);
crc = __crc32d(crc, le64_bswap(*wp0++));
crc1 = __crc32d(crc1, le64_bswap(*wp1++));
crc2 = __crc32d(crc2, le64_bswap(*wp2++));
crc3 = __crc32d(crc3, le64_bswap(*wp3++));
crc = __crc32d(crc, le64_bswap(*wp0++));
crc1 = __crc32d(crc1, le64_bswap(*wp1++));
crc2 = __crc32d(crc2, le64_bswap(*wp2++));
crc3 = __crc32d(crc3, le64_bswap(*wp3++));
crc = __crc32d(crc, le64_bswap(*wp0++));
crc1 = __crc32d(crc1, le64_bswap(*wp1++));
crc2 = __crc32d(crc2, le64_bswap(*wp2++));
crc3 = __crc32d(crc3, le64_bswap(*wp3++));
crc = __crc32d(crc, le64_bswap(*wp0++));
crc1 = __crc32d(crc1, le64_bswap(*wp1++));
crc2 = __crc32d(crc2, le64_bswap(*wp2++));
crc3 = __crc32d(crc3, le64_bswap(*wp3++));
} while (wp0 != wp0_end);
crc = combine_crcs_fast(crc, crc1, crc2, crc3, i);
p += CRC32_NUM_CHUNKS * chunk_len;
len -= CRC32_NUM_CHUNKS * chunk_len;
}
while (len >= 32) {
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 0)));
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 8)));
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 16)));
crc = __crc32d(crc, le64_bswap(*(u64 *)(p + 24)));
p += 32;
len -= 32;
}
} else {
while (len >= 32) {
crc = __crc32d(crc, get_unaligned_le64(p + 0));
crc = __crc32d(crc, get_unaligned_le64(p + 8));
crc = __crc32d(crc, get_unaligned_le64(p + 16));
crc = __crc32d(crc, get_unaligned_le64(p + 24));
p += 32;
len -= 32;
}
}
if (len & 16) {
crc = __crc32d(crc, get_unaligned_le64(p + 0));
crc = __crc32d(crc, get_unaligned_le64(p + 8));
p += 16;
}
if (len & 8) {
crc = __crc32d(crc, get_unaligned_le64(p));
p += 8;
}
if (len & 4) {
crc = __crc32w(crc, get_unaligned_le32(p));
p += 4;
}
if (len & 2) {
crc = __crc32h(crc, get_unaligned_le16(p));
p += 2;
}
if (len & 1)
crc = __crc32b(crc, *p);
return crc;
}
#undef ATTRIBUTES
#endif /* crc32_arm_crc_pmullcombine() */
/*
* crc32_arm_pmullx4() - implementation using "folding" with pmull instructions
*
* This implementation is intended for CPUs that support pmull instructions but
* not crc32 instructions.
*/
#if HAVE_PMULL_INTRIN
# define crc32_arm_pmullx4 crc32_arm_pmullx4
# define SUFFIX _pmullx4
# if HAVE_PMULL_NATIVE
# define ATTRIBUTES
# else
# ifdef __arm__
# define ATTRIBUTES __attribute__((target("fpu=crypto-neon-fp-armv8")))
# else
# ifdef __clang__
# define ATTRIBUTES __attribute__((target("crypto")))
# else
# define ATTRIBUTES __attribute__((target("+crypto")))
# endif
# endif
# endif
# define ENABLE_EOR3 0
# include "crc32_pmull_helpers.h"
static u32 ATTRIBUTES MAYBE_UNUSED
crc32_arm_pmullx4(u32 crc, const u8 *p, size_t len)
{
const poly64x2_t multipliers_4 = (poly64x2_t)CRC32_4VECS_MULTS;
const poly64x2_t multipliers_2 = (poly64x2_t)CRC32_2VECS_MULTS;
const poly64x2_t multipliers_1 = (poly64x2_t)CRC32_1VECS_MULTS;
const uint8x16_t zeroes = (uint8x16_t){ 0 };
const uint8x16_t mask32 = (uint8x16_t)(uint32x4_t){ 0xFFFFFFFF };
uint8x16_t v0, v1, v2, v3;
if (len < 64 + 15) {
if (len < 16)
return crc32_slice1(crc, p, len);
v0 = vld1q_u8(p) ^ (uint8x16_t)(uint32x4_t){ crc };
p += 16;
len -= 16;
while (len >= 16) {
v0 = fold_vec(v0, vld1q_u8(p), multipliers_1);
p += 16;
len -= 16;
}
} else {
const size_t align = -(uintptr_t)p & 15;
const uint8x16_t *vp;
v0 = vld1q_u8(p) ^ (uint8x16_t)(uint32x4_t){ crc };
p += 16;
/* Align p to the next 16-byte boundary. */
if (align) {
v0 = fold_partial_vec(v0, p, align, multipliers_1);
p += align;
len -= align;
}
vp = (const uint8x16_t *)p;
v1 = *vp++;
v2 = *vp++;
v3 = *vp++;
while (len >= 64 + 64) {
v0 = fold_vec(v0, *vp++, multipliers_4);
v1 = fold_vec(v1, *vp++, multipliers_4);
v2 = fold_vec(v2, *vp++, multipliers_4);
v3 = fold_vec(v3, *vp++, multipliers_4);
len -= 64;
}
v0 = fold_vec(v0, v2, multipliers_2);
v1 = fold_vec(v1, v3, multipliers_2);
if (len & 32) {
v0 = fold_vec(v0, *vp++, multipliers_2);
v1 = fold_vec(v1, *vp++, multipliers_2);
}
v0 = fold_vec(v0, v1, multipliers_1);
if (len & 16)
v0 = fold_vec(v0, *vp++, multipliers_1);
p = (const u8 *)vp;
len &= 15;
}
/* Handle any remaining partial block now before reducing to 32 bits. */
if (len)
v0 = fold_partial_vec(v0, p, len, multipliers_1);
/*
* Fold 128 => 96 bits. This also implicitly appends 32 zero bits,
* which is equivalent to multiplying by x^32. This is needed because
* the CRC is defined as M(x)*x^32 mod G(x), not just M(x) mod G(x).
*/
v0 = vextq_u8(v0, zeroes, 8) ^
(uint8x16_t)vmull_p64((poly64_t)vget_low_u8(v0),
CRC32_1VECS_MULT_2);
/* Fold 96 => 64 bits. */
v0 = vextq_u8(v0, zeroes, 4) ^
(uint8x16_t)vmull_p64((poly64_t)vget_low_u8(v0 & mask32),
CRC32_FINAL_MULT);
/* Reduce 64 => 32 bits using Barrett reduction. */
v1 = (uint8x16_t)vmull_p64((poly64_t)vget_low_u8(v0 & mask32),
CRC32_BARRETT_CONSTANT_1);
v1 = (uint8x16_t)vmull_p64((poly64_t)vget_low_u8(v1 & mask32),
CRC32_BARRETT_CONSTANT_2);
return ((uint32x4_t)(v0 ^ v1))[1];
}
#undef SUFFIX
#undef ATTRIBUTES
#undef ENABLE_EOR3
#endif /* crc32_arm_pmullx4() */
/*
* crc32_arm_pmullx12_crc() - large-stride implementation using "folding" with
* pmull instructions, where crc32 instructions are also available
*
* See crc32_pmull_wide.h for explanation.
*/
#if defined(__aarch64__) && HAVE_PMULL_INTRIN && HAVE_CRC32_INTRIN && \
((HAVE_PMULL_NATIVE && HAVE_CRC32_NATIVE) || \
(HAVE_PMULL_TARGET && HAVE_CRC32_TARGET))
# define crc32_arm_pmullx12_crc crc32_arm_pmullx12_crc
# define SUFFIX _pmullx12_crc
# if HAVE_PMULL_NATIVE && HAVE_CRC32_NATIVE
# define ATTRIBUTES
# else
# ifdef __clang__
# define ATTRIBUTES __attribute__((target("crypto,crc")))
# else
# define ATTRIBUTES __attribute__((target("+crypto,+crc")))
# endif
# endif
# define ENABLE_EOR3 0
# include "crc32_pmull_wide.h"
#endif
/*
* crc32_arm_pmullx12_crc_eor3()
*
* This like crc32_arm_pmullx12_crc(), but it adds the eor3 instruction (from
* the sha3 extension) for even better performance.
*
* Note: we require HAVE_SHA3_TARGET (or HAVE_SHA3_NATIVE) rather than
* HAVE_SHA3_INTRIN, as we have an inline asm fallback for eor3.
*/
#if defined(__aarch64__) && HAVE_PMULL_INTRIN && HAVE_CRC32_INTRIN && \
((HAVE_PMULL_NATIVE && HAVE_CRC32_NATIVE && HAVE_SHA3_NATIVE) || \
(HAVE_PMULL_TARGET && HAVE_CRC32_TARGET && HAVE_SHA3_TARGET))
# define crc32_arm_pmullx12_crc_eor3 crc32_arm_pmullx12_crc_eor3
# define SUFFIX _pmullx12_crc_eor3
# if HAVE_PMULL_NATIVE && HAVE_CRC32_NATIVE && HAVE_SHA3_NATIVE
# define ATTRIBUTES
# else
# ifdef __clang__
# define ATTRIBUTES __attribute__((target("crypto,crc,sha3")))
/*
* With gcc, arch=armv8.2-a is needed for the sha3 intrinsics, unless the
* default target is armv8.3-a or later in which case it must be omitted.
* armv8.3-a or later can be detected by checking for __ARM_FEATURE_JCVT.
*/
# elif defined(__ARM_FEATURE_JCVT)
# define ATTRIBUTES __attribute__((target("+crypto,+crc,+sha3")))
# else
# define ATTRIBUTES __attribute__((target("arch=armv8.2-a+crypto+crc+sha3")))
# endif
# endif
# define ENABLE_EOR3 1
# include "crc32_pmull_wide.h"
#endif
/*
* On the Apple M1 processor, crc32 instructions max out at about 25.5 GB/s in
* the best case of using a 3-way or greater interleaved chunked implementation,
* whereas a pmull-based implementation achieves 68 GB/s provided that the
* stride length is large enough (about 10+ vectors with eor3, or 12+ without).
*
* For now we assume that crc32 instructions are preferable in other cases.
*/
#define PREFER_PMULL_TO_CRC 0
#ifdef __APPLE__
# include <TargetConditionals.h>
# if TARGET_OS_OSX
# undef PREFER_PMULL_TO_CRC
# define PREFER_PMULL_TO_CRC 1
# endif
#endif
/*
* If the best implementation is statically available, use it unconditionally.
* Otherwise choose the best implementation at runtime.
*/
#if PREFER_PMULL_TO_CRC && defined(crc32_arm_pmullx12_crc_eor3) && \
HAVE_PMULL_NATIVE && HAVE_CRC32_NATIVE && HAVE_SHA3_NATIVE
# define DEFAULT_IMPL crc32_arm_pmullx12_crc_eor3
#elif !PREFER_PMULL_TO_CRC && defined(crc32_arm_crc_pmullcombine) && \
HAVE_CRC32_NATIVE && HAVE_PMULL_NATIVE
# define DEFAULT_IMPL crc32_arm_crc_pmullcombine
#else
static inline crc32_func_t
arch_select_crc32_func(void)
{
const u32 features MAYBE_UNUSED = get_arm_cpu_features();
#if PREFER_PMULL_TO_CRC && defined(crc32_arm_pmullx12_crc_eor3)
if (HAVE_PMULL(features) && HAVE_CRC32(features) && HAVE_SHA3(features))
return crc32_arm_pmullx12_crc_eor3;
#endif
#if PREFER_PMULL_TO_CRC && defined(crc32_arm_pmullx12_crc)
if (HAVE_PMULL(features) && HAVE_CRC32(features))
return crc32_arm_pmullx12_crc;
#endif
#ifdef crc32_arm_crc_pmullcombine
if (HAVE_CRC32(features) && HAVE_PMULL(features))
return crc32_arm_crc_pmullcombine;
#endif
#ifdef crc32_arm_crc
if (HAVE_CRC32(features))
return crc32_arm_crc;
#endif
#ifdef crc32_arm_pmullx4
if (HAVE_PMULL(features))
return crc32_arm_pmullx4;
#endif
return NULL;
}
#define arch_select_crc32_func arch_select_crc32_func
#endif
#endif /* LIB_ARM_CRC32_IMPL_H */
|