1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
/*
* decompress_template.h
*
* Copyright 2016 Eric Biggers
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* This is the actual DEFLATE decompression routine, lifted out of
* deflate_decompress.c so that it can be compiled multiple times with different
* target instruction sets.
*/
#ifndef ATTRIBUTES
# define ATTRIBUTES
#endif
#ifndef EXTRACT_VARBITS
# define EXTRACT_VARBITS(word, count) ((word) & BITMASK(count))
#endif
#ifndef EXTRACT_VARBITS8
# define EXTRACT_VARBITS8(word, count) ((word) & BITMASK((u8)(count)))
#endif
static ATTRIBUTES MAYBE_UNUSED enum libdeflate_result
FUNCNAME(struct libdeflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes_avail,
size_t *actual_in_nbytes_ret, size_t *actual_out_nbytes_ret)
{
u8 *out_next = out;
u8 * const out_end = out_next + out_nbytes_avail;
u8 * const out_fastloop_end =
out_end - MIN(out_nbytes_avail, FASTLOOP_MAX_BYTES_WRITTEN);
/* Input bitstream state; see deflate_decompress.c for documentation */
const u8 *in_next = in;
const u8 * const in_end = in_next + in_nbytes;
const u8 * const in_fastloop_end =
in_end - MIN(in_nbytes, FASTLOOP_MAX_BYTES_READ);
bitbuf_t bitbuf = 0;
bitbuf_t saved_bitbuf;
u32 bitsleft = 0;
size_t overread_count = 0;
bool is_final_block;
unsigned block_type;
unsigned num_litlen_syms;
unsigned num_offset_syms;
bitbuf_t litlen_tablemask;
u32 entry;
next_block:
/* Starting to read the next block */
;
STATIC_ASSERT(CAN_CONSUME(1 + 2 + 5 + 5 + 4 + 3));
REFILL_BITS();
/* BFINAL: 1 bit */
is_final_block = bitbuf & BITMASK(1);
/* BTYPE: 2 bits */
block_type = (bitbuf >> 1) & BITMASK(2);
if (block_type == DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN) {
/* Dynamic Huffman block */
/* The order in which precode lengths are stored */
static const u8 deflate_precode_lens_permutation[DEFLATE_NUM_PRECODE_SYMS] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
unsigned num_explicit_precode_lens;
unsigned i;
/* Read the codeword length counts. */
STATIC_ASSERT(DEFLATE_NUM_LITLEN_SYMS == 257 + BITMASK(5));
num_litlen_syms = 257 + ((bitbuf >> 3) & BITMASK(5));
STATIC_ASSERT(DEFLATE_NUM_OFFSET_SYMS == 1 + BITMASK(5));
num_offset_syms = 1 + ((bitbuf >> 8) & BITMASK(5));
STATIC_ASSERT(DEFLATE_NUM_PRECODE_SYMS == 4 + BITMASK(4));
num_explicit_precode_lens = 4 + ((bitbuf >> 13) & BITMASK(4));
d->static_codes_loaded = false;
/*
* Read the precode codeword lengths.
*
* A 64-bit bitbuffer is just one bit too small to hold the
* maximum number of precode lens, so to minimize branches we
* merge one len with the previous fields.
*/
STATIC_ASSERT(DEFLATE_MAX_PRE_CODEWORD_LEN == (1 << 3) - 1);
if (CAN_CONSUME(3 * (DEFLATE_NUM_PRECODE_SYMS - 1))) {
d->u.precode_lens[deflate_precode_lens_permutation[0]] =
(bitbuf >> 17) & BITMASK(3);
bitbuf >>= 20;
bitsleft -= 20;
REFILL_BITS();
i = 1;
do {
d->u.precode_lens[deflate_precode_lens_permutation[i]] =
bitbuf & BITMASK(3);
bitbuf >>= 3;
bitsleft -= 3;
} while (++i < num_explicit_precode_lens);
} else {
bitbuf >>= 17;
bitsleft -= 17;
i = 0;
do {
if ((u8)bitsleft < 3)
REFILL_BITS();
d->u.precode_lens[deflate_precode_lens_permutation[i]] =
bitbuf & BITMASK(3);
bitbuf >>= 3;
bitsleft -= 3;
} while (++i < num_explicit_precode_lens);
}
for (; i < DEFLATE_NUM_PRECODE_SYMS; i++)
d->u.precode_lens[deflate_precode_lens_permutation[i]] = 0;
/* Build the decode table for the precode. */
SAFETY_CHECK(build_precode_decode_table(d));
/* Decode the litlen and offset codeword lengths. */
i = 0;
do {
unsigned presym;
u8 rep_val;
unsigned rep_count;
if ((u8)bitsleft < DEFLATE_MAX_PRE_CODEWORD_LEN + 7)
REFILL_BITS();
/*
* The code below assumes that the precode decode table
* doesn't have any subtables.
*/
STATIC_ASSERT(PRECODE_TABLEBITS == DEFLATE_MAX_PRE_CODEWORD_LEN);
/* Decode the next precode symbol. */
entry = d->u.l.precode_decode_table[
bitbuf & BITMASK(DEFLATE_MAX_PRE_CODEWORD_LEN)];
bitbuf >>= (u8)entry;
bitsleft -= entry; /* optimization: subtract full entry */
presym = entry >> 16;
if (presym < 16) {
/* Explicit codeword length */
d->u.l.lens[i++] = presym;
continue;
}
/* Run-length encoded codeword lengths */
/*
* Note: we don't need to immediately verify that the
* repeat count doesn't overflow the number of elements,
* since we've sized the lens array to have enough extra
* space to allow for the worst-case overrun (138 zeroes
* when only 1 length was remaining).
*
* In the case of the small repeat counts (presyms 16
* and 17), it is fastest to always write the maximum
* number of entries. That gets rid of branches that
* would otherwise be required.
*
* It is not just because of the numerical order that
* our checks go in the order 'presym < 16', 'presym ==
* 16', and 'presym == 17'. For typical data this is
* ordered from most frequent to least frequent case.
*/
STATIC_ASSERT(DEFLATE_MAX_LENS_OVERRUN == 138 - 1);
if (presym == 16) {
/* Repeat the previous length 3 - 6 times. */
SAFETY_CHECK(i != 0);
rep_val = d->u.l.lens[i - 1];
STATIC_ASSERT(3 + BITMASK(2) == 6);
rep_count = 3 + (bitbuf & BITMASK(2));
bitbuf >>= 2;
bitsleft -= 2;
d->u.l.lens[i + 0] = rep_val;
d->u.l.lens[i + 1] = rep_val;
d->u.l.lens[i + 2] = rep_val;
d->u.l.lens[i + 3] = rep_val;
d->u.l.lens[i + 4] = rep_val;
d->u.l.lens[i + 5] = rep_val;
i += rep_count;
} else if (presym == 17) {
/* Repeat zero 3 - 10 times. */
STATIC_ASSERT(3 + BITMASK(3) == 10);
rep_count = 3 + (bitbuf & BITMASK(3));
bitbuf >>= 3;
bitsleft -= 3;
d->u.l.lens[i + 0] = 0;
d->u.l.lens[i + 1] = 0;
d->u.l.lens[i + 2] = 0;
d->u.l.lens[i + 3] = 0;
d->u.l.lens[i + 4] = 0;
d->u.l.lens[i + 5] = 0;
d->u.l.lens[i + 6] = 0;
d->u.l.lens[i + 7] = 0;
d->u.l.lens[i + 8] = 0;
d->u.l.lens[i + 9] = 0;
i += rep_count;
} else {
/* Repeat zero 11 - 138 times. */
STATIC_ASSERT(11 + BITMASK(7) == 138);
rep_count = 11 + (bitbuf & BITMASK(7));
bitbuf >>= 7;
bitsleft -= 7;
memset(&d->u.l.lens[i], 0,
rep_count * sizeof(d->u.l.lens[i]));
i += rep_count;
}
} while (i < num_litlen_syms + num_offset_syms);
/* Unnecessary, but check this for consistency with zlib. */
SAFETY_CHECK(i == num_litlen_syms + num_offset_syms);
} else if (block_type == DEFLATE_BLOCKTYPE_UNCOMPRESSED) {
u16 len, nlen;
/*
* Uncompressed block: copy 'len' bytes literally from the input
* buffer to the output buffer.
*/
bitsleft -= 3; /* for BTYPE and BFINAL */
/*
* Align the bitstream to the next byte boundary. This means
* the next byte boundary as if we were reading a byte at a
* time. Therefore, we have to rewind 'in_next' by any bytes
* that have been refilled but not actually consumed yet (not
* counting overread bytes, which don't increment 'in_next').
*/
bitsleft = (u8)bitsleft;
SAFETY_CHECK(overread_count <= (bitsleft >> 3));
in_next -= (bitsleft >> 3) - overread_count;
overread_count = 0;
bitbuf = 0;
bitsleft = 0;
SAFETY_CHECK(in_end - in_next >= 4);
len = get_unaligned_le16(in_next);
nlen = get_unaligned_le16(in_next + 2);
in_next += 4;
SAFETY_CHECK(len == (u16)~nlen);
if (unlikely(len > out_end - out_next))
return LIBDEFLATE_INSUFFICIENT_SPACE;
SAFETY_CHECK(len <= in_end - in_next);
memcpy(out_next, in_next, len);
in_next += len;
out_next += len;
goto block_done;
} else {
unsigned i;
SAFETY_CHECK(block_type == DEFLATE_BLOCKTYPE_STATIC_HUFFMAN);
/*
* Static Huffman block: build the decode tables for the static
* codes. Skip doing so if the tables are already set up from
* an earlier static block; this speeds up decompression of
* degenerate input of many empty or very short static blocks.
*
* Afterwards, the remainder is the same as decompressing a
* dynamic Huffman block.
*/
bitbuf >>= 3; /* for BTYPE and BFINAL */
bitsleft -= 3;
if (d->static_codes_loaded)
goto have_decode_tables;
d->static_codes_loaded = true;
STATIC_ASSERT(DEFLATE_NUM_LITLEN_SYMS == 288);
STATIC_ASSERT(DEFLATE_NUM_OFFSET_SYMS == 32);
for (i = 0; i < 144; i++)
d->u.l.lens[i] = 8;
for (; i < 256; i++)
d->u.l.lens[i] = 9;
for (; i < 280; i++)
d->u.l.lens[i] = 7;
for (; i < 288; i++)
d->u.l.lens[i] = 8;
for (; i < 288 + 32; i++)
d->u.l.lens[i] = 5;
num_litlen_syms = 288;
num_offset_syms = 32;
}
/* Decompressing a Huffman block (either dynamic or static) */
SAFETY_CHECK(build_offset_decode_table(d, num_litlen_syms, num_offset_syms));
SAFETY_CHECK(build_litlen_decode_table(d, num_litlen_syms, num_offset_syms));
have_decode_tables:
litlen_tablemask = BITMASK(d->litlen_tablebits);
/*
* This is the "fastloop" for decoding literals and matches. It does
* bounds checks on in_next and out_next in the loop conditions so that
* additional bounds checks aren't needed inside the loop body.
*
* To reduce latency, the bitbuffer is refilled and the next litlen
* decode table entry is preloaded before each loop iteration.
*/
if (in_next >= in_fastloop_end || out_next >= out_fastloop_end)
goto generic_loop;
REFILL_BITS_IN_FASTLOOP();
entry = d->u.litlen_decode_table[bitbuf & litlen_tablemask];
do {
u32 length, offset, lit;
const u8 *src;
u8 *dst;
/*
* Consume the bits for the litlen decode table entry. Save the
* original bitbuf for later, in case the extra match length
* bits need to be extracted from it.
*/
saved_bitbuf = bitbuf;
bitbuf >>= (u8)entry;
bitsleft -= entry; /* optimization: subtract full entry */
/*
* Begin by checking for a "fast" literal, i.e. a literal that
* doesn't need a subtable.
*/
if (entry & HUFFDEC_LITERAL) {
/*
* On 64-bit platforms, we decode up to 2 extra fast
* literals in addition to the primary item, as this
* increases performance and still leaves enough bits
* remaining for what follows. We could actually do 3,
* assuming LITLEN_TABLEBITS=11, but that actually
* decreases performance slightly (perhaps by messing
* with the branch prediction of the conditional refill
* that happens later while decoding the match offset).
*
* Note: the definitions of FASTLOOP_MAX_BYTES_WRITTEN
* and FASTLOOP_MAX_BYTES_READ need to be updated if the
* number of extra literals decoded here is changed.
*/
if (/* enough bits for 2 fast literals + length + offset preload? */
CAN_CONSUME_AND_THEN_PRELOAD(2 * LITLEN_TABLEBITS +
LENGTH_MAXBITS,
OFFSET_TABLEBITS) &&
/* enough bits for 2 fast literals + slow literal + litlen preload? */
CAN_CONSUME_AND_THEN_PRELOAD(2 * LITLEN_TABLEBITS +
DEFLATE_MAX_LITLEN_CODEWORD_LEN,
LITLEN_TABLEBITS)) {
/* 1st extra fast literal */
lit = entry >> 16;
entry = d->u.litlen_decode_table[bitbuf & litlen_tablemask];
saved_bitbuf = bitbuf;
bitbuf >>= (u8)entry;
bitsleft -= entry;
*out_next++ = lit;
if (entry & HUFFDEC_LITERAL) {
/* 2nd extra fast literal */
lit = entry >> 16;
entry = d->u.litlen_decode_table[bitbuf & litlen_tablemask];
saved_bitbuf = bitbuf;
bitbuf >>= (u8)entry;
bitsleft -= entry;
*out_next++ = lit;
if (entry & HUFFDEC_LITERAL) {
/*
* Another fast literal, but
* this one is in lieu of the
* primary item, so it doesn't
* count as one of the extras.
*/
lit = entry >> 16;
entry = d->u.litlen_decode_table[bitbuf & litlen_tablemask];
REFILL_BITS_IN_FASTLOOP();
*out_next++ = lit;
continue;
}
}
} else {
/*
* Decode a literal. While doing so, preload
* the next litlen decode table entry and refill
* the bitbuffer. To reduce latency, we've
* arranged for there to be enough "preloadable"
* bits remaining to do the table preload
* independently of the refill.
*/
STATIC_ASSERT(CAN_CONSUME_AND_THEN_PRELOAD(
LITLEN_TABLEBITS, LITLEN_TABLEBITS));
lit = entry >> 16;
entry = d->u.litlen_decode_table[bitbuf & litlen_tablemask];
REFILL_BITS_IN_FASTLOOP();
*out_next++ = lit;
continue;
}
}
/*
* It's not a literal entry, so it can be a length entry, a
* subtable pointer entry, or an end-of-block entry. Detect the
* two unlikely cases by testing the HUFFDEC_EXCEPTIONAL flag.
*/
if (unlikely(entry & HUFFDEC_EXCEPTIONAL)) {
/* Subtable pointer or end-of-block entry */
if (unlikely(entry & HUFFDEC_END_OF_BLOCK))
goto block_done;
/*
* A subtable is required. Load and consume the
* subtable entry. The subtable entry can be of any
* type: literal, length, or end-of-block.
*/
entry = d->u.litlen_decode_table[(entry >> 16) +
EXTRACT_VARBITS(bitbuf, (entry >> 8) & 0x3F)];
saved_bitbuf = bitbuf;
bitbuf >>= (u8)entry;
bitsleft -= entry;
/*
* 32-bit platforms that use the byte-at-a-time refill
* method have to do a refill here for there to always
* be enough bits to decode a literal that requires a
* subtable, then preload the next litlen decode table
* entry; or to decode a match length that requires a
* subtable, then preload the offset decode table entry.
*/
if (!CAN_CONSUME_AND_THEN_PRELOAD(DEFLATE_MAX_LITLEN_CODEWORD_LEN,
LITLEN_TABLEBITS) ||
!CAN_CONSUME_AND_THEN_PRELOAD(LENGTH_MAXBITS,
OFFSET_TABLEBITS))
REFILL_BITS_IN_FASTLOOP();
if (entry & HUFFDEC_LITERAL) {
/* Decode a literal that required a subtable. */
lit = entry >> 16;
entry = d->u.litlen_decode_table[bitbuf & litlen_tablemask];
REFILL_BITS_IN_FASTLOOP();
*out_next++ = lit;
continue;
}
if (unlikely(entry & HUFFDEC_END_OF_BLOCK))
goto block_done;
/* Else, it's a length that required a subtable. */
}
/*
* Decode the match length: the length base value associated
* with the litlen symbol (which we extract from the decode
* table entry), plus the extra length bits. We don't need to
* consume the extra length bits here, as they were included in
* the bits consumed by the entry earlier. We also don't need
* to check for too-long matches here, as this is inside the
* fastloop where it's already been verified that the output
* buffer has enough space remaining to copy a max-length match.
*/
length = entry >> 16;
length += EXTRACT_VARBITS8(saved_bitbuf, entry) >> (u8)(entry >> 8);
/*
* Decode the match offset. There are enough "preloadable" bits
* remaining to preload the offset decode table entry, but a
* refill might be needed before consuming it.
*/
STATIC_ASSERT(CAN_CONSUME_AND_THEN_PRELOAD(LENGTH_MAXFASTBITS,
OFFSET_TABLEBITS));
entry = d->offset_decode_table[bitbuf & BITMASK(OFFSET_TABLEBITS)];
if (CAN_CONSUME_AND_THEN_PRELOAD(OFFSET_MAXBITS,
LITLEN_TABLEBITS)) {
/*
* Decoding a match offset on a 64-bit platform. We may
* need to refill once, but then we can decode the whole
* offset and preload the next litlen table entry.
*/
if (unlikely(entry & HUFFDEC_EXCEPTIONAL)) {
/* Offset codeword requires a subtable */
if (unlikely((u8)bitsleft < OFFSET_MAXBITS +
LITLEN_TABLEBITS - PRELOAD_SLACK))
REFILL_BITS_IN_FASTLOOP();
bitbuf >>= OFFSET_TABLEBITS;
bitsleft -= OFFSET_TABLEBITS;
entry = d->offset_decode_table[(entry >> 16) +
EXTRACT_VARBITS(bitbuf, (entry >> 8) & 0x3F)];
} else if (unlikely((u8)bitsleft < OFFSET_MAXFASTBITS +
LITLEN_TABLEBITS - PRELOAD_SLACK))
REFILL_BITS_IN_FASTLOOP();
} else {
/* Decoding a match offset on a 32-bit platform */
REFILL_BITS_IN_FASTLOOP();
if (unlikely(entry & HUFFDEC_EXCEPTIONAL)) {
/* Offset codeword requires a subtable */
bitbuf >>= OFFSET_TABLEBITS;
bitsleft -= OFFSET_TABLEBITS;
entry = d->offset_decode_table[(entry >> 16) +
EXTRACT_VARBITS(bitbuf, (entry >> 8) & 0x3F)];
REFILL_BITS_IN_FASTLOOP();
/* No further refill needed before extra bits */
STATIC_ASSERT(CAN_CONSUME(
OFFSET_MAXBITS - OFFSET_TABLEBITS));
} else {
/* No refill needed before extra bits */
STATIC_ASSERT(CAN_CONSUME(OFFSET_MAXFASTBITS));
}
}
saved_bitbuf = bitbuf;
bitbuf >>= (u8)entry;
bitsleft -= entry; /* optimization: subtract full entry */
offset = entry >> 16;
offset += EXTRACT_VARBITS8(saved_bitbuf, entry) >> (u8)(entry >> 8);
/* Validate the match offset; needed even in the fastloop. */
SAFETY_CHECK(offset <= out_next - (const u8 *)out);
src = out_next - offset;
dst = out_next;
out_next += length;
/*
* Before starting to issue the instructions to copy the match,
* refill the bitbuffer and preload the litlen decode table
* entry for the next loop iteration. This can increase
* performance by allowing the latency of the match copy to
* overlap with these other operations. To further reduce
* latency, we've arranged for there to be enough bits remaining
* to do the table preload independently of the refill, except
* on 32-bit platforms using the byte-at-a-time refill method.
*/
if (!CAN_CONSUME_AND_THEN_PRELOAD(
MAX(OFFSET_MAXBITS - OFFSET_TABLEBITS,
OFFSET_MAXFASTBITS),
LITLEN_TABLEBITS) &&
unlikely((u8)bitsleft < LITLEN_TABLEBITS - PRELOAD_SLACK))
REFILL_BITS_IN_FASTLOOP();
entry = d->u.litlen_decode_table[bitbuf & litlen_tablemask];
REFILL_BITS_IN_FASTLOOP();
/*
* Copy the match. On most CPUs the fastest method is a
* word-at-a-time copy, unconditionally copying about 5 words
* since this is enough for most matches without being too much.
*
* The normal word-at-a-time copy works for offset >= WORDBYTES,
* which is most cases. The case of offset == 1 is also common
* and is worth optimizing for, since it is just RLE encoding of
* the previous byte, which is the result of compressing long
* runs of the same byte.
*
* Writing past the match 'length' is allowed here, since it's
* been ensured there is enough output space left for a slight
* overrun. FASTLOOP_MAX_BYTES_WRITTEN needs to be updated if
* the maximum possible overrun here is changed.
*/
if (UNALIGNED_ACCESS_IS_FAST && offset >= WORDBYTES) {
store_word_unaligned(load_word_unaligned(src), dst);
src += WORDBYTES;
dst += WORDBYTES;
store_word_unaligned(load_word_unaligned(src), dst);
src += WORDBYTES;
dst += WORDBYTES;
store_word_unaligned(load_word_unaligned(src), dst);
src += WORDBYTES;
dst += WORDBYTES;
store_word_unaligned(load_word_unaligned(src), dst);
src += WORDBYTES;
dst += WORDBYTES;
store_word_unaligned(load_word_unaligned(src), dst);
src += WORDBYTES;
dst += WORDBYTES;
while (dst < out_next) {
store_word_unaligned(load_word_unaligned(src), dst);
src += WORDBYTES;
dst += WORDBYTES;
store_word_unaligned(load_word_unaligned(src), dst);
src += WORDBYTES;
dst += WORDBYTES;
store_word_unaligned(load_word_unaligned(src), dst);
src += WORDBYTES;
dst += WORDBYTES;
store_word_unaligned(load_word_unaligned(src), dst);
src += WORDBYTES;
dst += WORDBYTES;
store_word_unaligned(load_word_unaligned(src), dst);
src += WORDBYTES;
dst += WORDBYTES;
}
} else if (UNALIGNED_ACCESS_IS_FAST && offset == 1) {
machine_word_t v;
/*
* This part tends to get auto-vectorized, so keep it
* copying a multiple of 16 bytes at a time.
*/
v = (machine_word_t)0x0101010101010101 * src[0];
store_word_unaligned(v, dst);
dst += WORDBYTES;
store_word_unaligned(v, dst);
dst += WORDBYTES;
store_word_unaligned(v, dst);
dst += WORDBYTES;
store_word_unaligned(v, dst);
dst += WORDBYTES;
while (dst < out_next) {
store_word_unaligned(v, dst);
dst += WORDBYTES;
store_word_unaligned(v, dst);
dst += WORDBYTES;
store_word_unaligned(v, dst);
dst += WORDBYTES;
store_word_unaligned(v, dst);
dst += WORDBYTES;
}
} else if (UNALIGNED_ACCESS_IS_FAST) {
store_word_unaligned(load_word_unaligned(src), dst);
src += offset;
dst += offset;
store_word_unaligned(load_word_unaligned(src), dst);
src += offset;
dst += offset;
do {
store_word_unaligned(load_word_unaligned(src), dst);
src += offset;
dst += offset;
store_word_unaligned(load_word_unaligned(src), dst);
src += offset;
dst += offset;
} while (dst < out_next);
} else {
*dst++ = *src++;
*dst++ = *src++;
do {
*dst++ = *src++;
} while (dst < out_next);
}
} while (in_next < in_fastloop_end && out_next < out_fastloop_end);
/*
* This is the generic loop for decoding literals and matches. This
* handles cases where in_next and out_next are close to the end of
* their respective buffers. Usually this loop isn't performance-
* critical, as most time is spent in the fastloop above instead. We
* therefore omit some optimizations here in favor of smaller code.
*/
generic_loop:
for (;;) {
u32 length, offset;
const u8 *src;
u8 *dst;
REFILL_BITS();
entry = d->u.litlen_decode_table[bitbuf & litlen_tablemask];
saved_bitbuf = bitbuf;
bitbuf >>= (u8)entry;
bitsleft -= entry;
if (unlikely(entry & HUFFDEC_SUBTABLE_POINTER)) {
entry = d->u.litlen_decode_table[(entry >> 16) +
EXTRACT_VARBITS(bitbuf, (entry >> 8) & 0x3F)];
saved_bitbuf = bitbuf;
bitbuf >>= (u8)entry;
bitsleft -= entry;
}
length = entry >> 16;
if (entry & HUFFDEC_LITERAL) {
if (unlikely(out_next == out_end))
return LIBDEFLATE_INSUFFICIENT_SPACE;
*out_next++ = length;
continue;
}
if (unlikely(entry & HUFFDEC_END_OF_BLOCK))
goto block_done;
length += EXTRACT_VARBITS8(saved_bitbuf, entry) >> (u8)(entry >> 8);
if (unlikely(length > out_end - out_next))
return LIBDEFLATE_INSUFFICIENT_SPACE;
if (!CAN_CONSUME(LENGTH_MAXBITS + OFFSET_MAXBITS))
REFILL_BITS();
entry = d->offset_decode_table[bitbuf & BITMASK(OFFSET_TABLEBITS)];
if (unlikely(entry & HUFFDEC_EXCEPTIONAL)) {
bitbuf >>= OFFSET_TABLEBITS;
bitsleft -= OFFSET_TABLEBITS;
entry = d->offset_decode_table[(entry >> 16) +
EXTRACT_VARBITS(bitbuf, (entry >> 8) & 0x3F)];
if (!CAN_CONSUME(OFFSET_MAXBITS))
REFILL_BITS();
}
offset = entry >> 16;
offset += EXTRACT_VARBITS8(bitbuf, entry) >> (u8)(entry >> 8);
bitbuf >>= (u8)entry;
bitsleft -= entry;
SAFETY_CHECK(offset <= out_next - (const u8 *)out);
src = out_next - offset;
dst = out_next;
out_next += length;
STATIC_ASSERT(DEFLATE_MIN_MATCH_LEN == 3);
*dst++ = *src++;
*dst++ = *src++;
do {
*dst++ = *src++;
} while (dst < out_next);
}
block_done:
/* Finished decoding a block */
if (!is_final_block)
goto next_block;
/* That was the last block. */
bitsleft = (u8)bitsleft;
/*
* If any of the implicit appended zero bytes were consumed (not just
* refilled) before hitting end of stream, then the data is bad.
*/
SAFETY_CHECK(overread_count <= (bitsleft >> 3));
/* Optionally return the actual number of bytes consumed. */
if (actual_in_nbytes_ret) {
/* Don't count bytes that were refilled but not consumed. */
in_next -= (bitsleft >> 3) - overread_count;
*actual_in_nbytes_ret = in_next - (u8 *)in;
}
/* Optionally return the actual number of bytes written. */
if (actual_out_nbytes_ret) {
*actual_out_nbytes_ret = out_next - (u8 *)out;
} else {
if (out_next != out_end)
return LIBDEFLATE_SHORT_OUTPUT;
}
return LIBDEFLATE_SUCCESS;
}
#undef FUNCNAME
#undef ATTRIBUTES
#undef EXTRACT_VARBITS
#undef EXTRACT_VARBITS8
|