1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
package Demeter::Data::Pixel;
=for Copyright
.
Copyright (c) 2006-2019 Bruce Ravel (http://bruceravel.github.io/home).
All rights reserved.
.
This file is free software; you can redistribute it and/or
modify it under the same terms as Perl itself. See The Perl
Artistic License.
.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
=cut
use Carp;
use autodie qw(open close);
use Moose;
extends 'Demeter::Data';
use MooseX::Aliases;
use Demeter::StrTypes qw( Empty );
if ($Demeter::mode->ui eq 'screen') {
with 'Demeter::UI::Screen::Pause';
with 'Demeter::UI::Screen::Progress';
};
use List::MoreUtils qw(minmax);
#has '+name' => (default => 'pixel data',);
has '+datatype' => (default => 'xmu',);
has '+is_special' => (default => 1,);
has '+is_pixel' => (default => 1,);
has 'standard' => (is => 'rw', isa => Empty.'|Demeter::Data', default => q{},
trigger => sub{ my($self, $new) = @_;
if ($new) {
$self->standardgroup($new->group);
$self->_update('background');
$new ->_update('background');
#$self->offset($new->bkg_e0 - $self->linear*$self->bkg_e0);
}
});
has 'standardgroup' => (is => 'rw', isa => 'Str', default => q{});
has 'offset' => (is => 'rw', isa => 'LaxNum', default => 0);
has 'linear' => (is => 'rw', isa => 'LaxNum', default => 0.4);
has 'quadratic' => (is => 'rw', isa => 'LaxNum', default => sub{ shift->co->default("dispersive", "quadratic") || 0});
has 'quartic' => (is => 'rw', isa => 'LaxNum', default => 0);
sub BUILD {
my ($self, @params) = @_;
$self->mo->push_Pixel($self);
};
after read_data => sub {
my ($self) = @_;
$self->name($self->name . ' (pixel)') if ($self->name !~ m{\(pixel\)\z});
$self->source($self->name);
return $self;
};
sub _sanity {
my ($self) = @_;
if (ref($self->standard) !~ m{Data}) {
croak("** Data::Pixel: You have not set the standard for fitting your calibration parameters");
};
return $self;
};
sub guess {
my ($self, $quiet) = @_;
$self->start_spinner("Demeter is setting initial DXAS calibration parameters") if (($self->mo->ui eq 'screen') and (not $quiet));
$self->standard->bkg_e0_fraction(0.1);
my $st1 = $self->standard->e0('fraction');
$self->standard->bkg_e0_fraction(0.9);
my $st9 = $self->standard->e0('fraction');
$self->standard->e0('ifeffit');
$self->_update('background');
$self->bkg_e0_fraction(0.1);
my $da1 = $self->e0('fraction');
$self->bkg_e0_fraction(0.9);
my $da9 = $self->e0('fraction');
$self->e0('ifeffit');
#print "\n$st1 $st9 \n";
#print "\n$da1 $da9 \n";
#printf "%.9f\n", ($st9-$st1)/($da9-$da1);
#printf "%.9f\n", $st1 - (($st9-$st1)/($da9-$da1)) * $da1;
$self->linear(($st9-$st1)/($da9-$da1));
$self->offset($st1 - ($self->linear * $da1));
$self->stop_spinner if (($self->mo->ui eq 'screen') and (not $quiet));
return $self;
};
sub pixel {
my ($self, $quiet) = @_;
$self->_sanity;
$self->start_spinner("Demeter is determining DXAS calibration parameters") if (($self->mo->ui eq 'screen') and (not $quiet));
$self->_update('fft');
$self->standard->_update('fft');
$self->dispense('process', 'pixel_setup');
$self->dispense('process', 'pixel_fit');
$self->offset($self->fetch_scalar("pixel___a"));
$self->linear($self->fetch_scalar("pixel___b"));
$self->quadratic($self->fetch_scalar("pixel___c"));
#$self->quartic($self->fetch_scalar("pixel___d"));
#print $self->fetch_scalar('pixel___xmin'), " ",$self->fetch_scalar('pixel___xmax'), $/;
#print $self->linear, " ", $self->offset, " ", $self->quadratic, $/;
$self->stop_spinner if (($self->mo->ui eq 'screen') and (not $quiet));
return $self;
};
sub apply {
my ($self, $convert) = @_;
$convert ||= $self;
$convert -> _update('data');
$convert -> set(offset=>$self->offset, linear=>$self->linear, quadratic=>$self->quadratic);
my $new = Demeter::Data->new(name=>$convert->name);
$new -> source('DXAS: '.$convert->file);
$new -> mo -> standard($convert);
$new -> dispense('process', 'pixel_set');
$new -> set(update_data=>0, update_columns=>0, update_norm=>1, datatype=>'xmu');
$new -> e0;
$new -> resolve_defaults;
$new -> unset_standard;
return $new;
};
sub report {
my ($self) = @_;
return sprintf("offset = %.3f, linear = %.3f, quadratic = %.3g\n", $self->get(qw(offset linear quadratic)))
};
1;
=head1 NAME
Demeter::Data::Pixel - Handle dispersive XAS data
=head1 VERSION
This documentation refers to Demeter version 0.9.26.
=head1 SYNOPSIS
use Demeter;
my $stan = Demeter::Data->new(file=>'ESRF_ID24/cus2/cufoil_rt.txt', bkg_nor2=>1000);
$stan->set_mode(screen=>0);
my $data = Demeter::Data::Pixel->new(file=>'ESRF_ID24/cus2/cu_08', bkg_nor2=>1000);
$data->standard($stan);
$data->guess;
$data->pixel;
my $cus2 = Demeter::Data::Pixel->new(file=>$file, name=>basename($file));
$dispersive_data = $data->apply($cus2);
=head1 DESCRIPTION
The standard way of implementing a dispersive XAS measurement is to
measure a known sample such as a foil in the same dispersive geometry
as the real experiment. The function for converting from pixel
position to energy is determined by comparing the dispersively
measured sample to a conventionally measurement on the same sample.
This determines as set of conversion parameters that can then be used
on each scan in the subsequent measurement.
In the synopsis above, the conventional scan on a Cu foil is imported
as a normal Data object. The foil measured dispersively is then
imported as a Data::Pixel object. The conventional scan is
established as the standard and the conversion parameters are
determined by fitting a quadratic function relating pixels to energy.
energy = A + B*pixel + C*pixel^2
In fact, a slightly more complex function is used as the fitting
function in an attempt to to give some weight to the high energy data
where the variations in the data and thus the sensitivity to the fit
is somewhat less than near the edge where the data is changing quickly.
Once the parameters for the conversion are known, they can be applied
to the real data. Each dispersive scan is imported as a Data::Pixel
object and a normal Data object is generated from that.
=head1 ATTRIBUTES
This is inherited from the Data object, so all of the Data attributes
are inherited. Additionally, there are these attributes:
=over 4
=item C<standard>
This takes the refernece to the Data object containing the
conventionally measured standard.
=item C<offset>
The value of the offset conversion parameter, C<A> in the formula above.
=item C<linear>
The value of the linear conversion parameter, C<B> in the formula above.
=item C<quadratic>
The value of the quadratic conversion parameter, C<C> in the formula above.
=back
=head1 METHODS
=over 4
=item C<guess>
Make an initial guesss for the conversion parameters. This is done by
finding e0 values for the conventional and dispersive standard data
(normally a foil or some such) using the fraction-of-an-edge step
method described in L<Demeter::Data::E0>. The e0 position is found
for fractions of 0.1 and 0.9 in each measurement and offset and linear
terms are determined from those values. The initial quadratic value
is 0. This fills the C<offset>, C<linear>, and C<quadratic>
attributes.
=item C<pixel>
Perform the fit between the flattened, normalized conventionald and
dispersive standards to determine values for the conversion
parameters. This fills the C<offset>, C<linear>, and C<quadratic>
attributes.
=item C<apply>
This method applies the C<offset>, C<linear>, and C<quadratic>
attributes to convert a pixel data groups, returning a normal Data
object.
=item C<report>
This generates a bit of text documenting the values of the conversion
parameters.
=back
=head1 SERIALIZATION AND DESERIALIZATION
Good question ...
=head1 CONFIGURATION AND ENVIRONMENT
See L<Demeter::Config> for a description of the configuration system.
See the lcf configuration group for the relevant parameters.
=head1 DEPENDENCIES
Demeter's dependencies are in the F<Build.PL> file.
=head1 BUGS AND LIMITATIONS
=over 4
=item *
The fitting algorithm is not so robust.
=back
=head1 AUTHOR
Bruce Ravel, L<http://bruceravel.github.io/home>
L<http://bruceravel.github.io/demeter/>
=head1 LICENCE AND COPYRIGHT
Copyright (c) 2006-2019 Bruce Ravel (L<http://bruceravel.github.io/home>). All rights reserved.
This module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself. See L<perlgpl>.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
=cut
|