File: LCF.pm

package info (click to toggle)
libdemeter-perl 0.9.27%2Bds6-9
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 74,028 kB
  • sloc: perl: 73,233; python: 2,196; makefile: 1,999; ansic: 1,368; lisp: 454; sh: 74
file content (1669 lines) | stat: -rw-r--r-- 50,632 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
package Demeter::LCF;

=for Copyright
 .
 Copyright (c) 2006-2019 Bruce Ravel (http://bruceravel.github.io/home).
 All rights reserved.
 .
 This file is free software; you can redistribute it and/or
 modify it under the same terms as Perl itself. See The Perl
 Artistic License.
 .
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

=cut

use Carp;
#use Demeter::Carp;
use autodie qw(open close);

use Moose;
extends 'Demeter';
with 'Demeter::Data::Arrays';

use MooseX::Aliases;
use Moose::Util::TypeConstraints;
use Demeter::Constants qw($PI);
use Demeter::StrTypes qw( Empty );

use List::Util qw(min);
use List::MoreUtils qw(any none uniq pairwise);
use Math::Combinatorics;
use Scalar::Util qw(looks_like_number);
use Spreadsheet::WriteExcel;

if ($Demeter::mode->ui eq 'screen') {
  with 'Demeter::UI::Screen::Pause';
  with 'Demeter::UI::Screen::Progress';
};

has '+plottable'  => (default => 1);
has '+data'       => (isa => Empty.'|Demeter::Data');
has '+name'       => (default => 'LCF' );

has 'xmin'  => (is => 'rw', isa => 'LaxNum',    default => 0);
has 'xmax'  => (is => 'rw', isa => 'LaxNum',    default => 0);
has 'space' => (is => 'rw', isa => 'Str',    default => q{norm},  # deriv chi
		trigger => sub{my ($self, $new) = @_;
			       $self->suffix(q{norm}), $self->space_description('normalized mu(E)') if ((lc($new) =~ m{\Anor}) and $self->data and (not $self->data->bkg_flatten));
			       $self->suffix(q{flat}), $self->space_description('flattened mu(E)')  if ((lc($new) =~ m{\Anor}) and $self->data and ($self->data->bkg_flatten));
			       $self->suffix(q{nder}), $self->space_description('derivative mu(E)') if  (lc($new) =~ m{\An?der});
			       $self->suffix(q{chi}),  $self->space_description('chi(k)')           if  (lc($new) =~ m{\Achi});
			       $self->suffix(q{xmu}),  $self->space_description('raw mu(E)')        if  (lc($new) =~ m{\Axmu});
			      });
has 'space_description' => (is => 'rw', isa => 'Str',    default => q{flattened mu(E)});
has 'suffix'    => (is => 'rw', isa => 'Str',     default => q{flat});
has 'noise'     => (is => 'rw', isa => 'LaxNum',  default => 0);
has 'kweight'   => (is => 'rw', isa => 'LaxNum',  default => 0);
has 'slope'     => (is => 'rw', isa => 'LaxNum',  default => 0);
has 'offset'    => (is => 'rw', isa => 'LaxNum',  default => 0);
has 'delslope'  => (is => 'rw', isa => 'LaxNum',  default => 0);
has 'deloffset' => (is => 'rw', isa => 'LaxNum',  default => 0);

has 'max_standards' => (is => 'rw', isa => 'Int', default => sub{ shift->co->default("lcf", "max_standards")  || 4});

has 'linear'     => (is => 'rw', isa => 'Bool', default => 0);
has 'inclusive'  => (is => 'rw', isa => 'Bool', default => sub{ shift->co->default("lcf", "inclusive")  || 0});
has 'unity'      => (is => 'rw', isa => 'Bool', default => sub{ shift->co->default("lcf", "unity")      || 1});
has 'one_e0'     => (is => 'rw', isa => 'Bool', default => 0);
has 'has_stddev' => (is => 'rw', isa => 'Bool', default => 0);

has 'plot_components' => (is => 'rw', isa => 'Bool', default => sub{ shift->co->default("lcf", "components")  || 0});
has 'plot_difference' => (is => 'rw', isa => 'Bool', default => sub{ shift->co->default("lcf", "difference")  || 0});
has 'plot_indicators' => (is => 'rw', isa => 'Bool', default => sub{ shift->co->default("lcf", "indicators")  || 1});

has 'nstan'     => (is => 'rw', isa => 'Int',    default => 0);
has 'npoints'   => (is => 'rw', isa => 'Int',    default => 0);
has 'ninfo'     => (is => 'rw', isa => 'LaxNum', default => 0);
has 'epsilon'   => (is => 'rw', isa => 'LaxNum', default => 0);
has 'nvarys'    => (is => 'rw', isa => 'Int',    default => 0);
has 'ntitles'   => (is => 'rw', isa => 'Int',    default => 0);
has 'standards' => (
		    traits    => ['Array'],
		    is        => 'rw',
		    isa       => 'ArrayRef[Demeter::Data]',
		    default   => sub { [] },
		    handles   => {
				  'push_standards'    => 'push',
				  'pop_standards'     => 'pop',
				  'shift_standards'   => 'shift',
				  'unshift_standards' => 'unshift',
				  'clear_standards'   => 'clear',
				 },
		   );
has 'doing_combi' => (is => 'rw', isa => 'Bool', default => 0);
has 'combi_count' => (is => 'rw', isa => 'Int',  default => 0);
has 'combi_results'=> (
		       traits    => ['Array'],
		       is        => 'rw',
		       isa       => 'ArrayRef',
		       default   => sub { [] },
		       handles   => {
				     'push_combi_results'    => 'push',
				     'pop_combi_results'     => 'pop',
				     'shift_combi_results'   => 'shift',
				     'unshift_combi_results' => 'unshift',
				     'clear_combi_results'   => 'clear',
				    },
		      );

has 'doing_seq' => (is => 'rw', isa => 'Bool', default => 0);
has 'include_caller' => (is => 'rw', isa => 'Bool', default => 1);
has 'seq_count' => (is => 'rw', isa => 'Int',  default => 0);
has 'seq_results'=> (
		     traits    => ['Array'],
		     is        => 'rw',
		     isa       => 'ArrayRef',
		     default   => sub { [] },
		     handles   => {
				   'push_seq_results'    => 'push',
				   'pop_seq_results'     => 'pop',
				   'shift_seq_results'   => 'shift',
				   'unshift_seq_results' => 'unshift',
				   'clear_seq_results'   => 'clear',
				  },
		    );

has 'options' => (
		  traits    => ['Hash'],
		  is        => 'rw',
		  isa       => 'HashRef[ArrayRef]',
		  default   => sub { +{} },
		  handles   => {
				'set_option'      => 'set',
				'get_option'      => 'get',
				'get_option_list' => 'keys',
				'clear_option'    => 'clear',
				'option_exists'   => 'exists',
			       },
		 );
has 'rfactor' => (is => 'rw', isa => 'LaxNum', default => 0);
has 'chisqr'  => (is => 'rw', isa => 'LaxNum', default => 0);
has 'chinu'   => (is => 'rw', isa => 'LaxNum', default => 0);
has 'scaleby' => (is => 'rw', isa => 'LaxNum', default => 0);

has 'standardsgroups' => (
			  traits    => ['Array'],
			  is        => 'rw',
			  isa       => 'ArrayRef[Str]',
			  default   => sub { [] },
			  handles   => {
					'push_standardsgroups'    => 'push',
					'pop_standardsgroups'     => 'pop',
					'shift_standardsgroups'   => 'shift',
					'unshift_standardsgroups' => 'unshift',
					'clear_standardsgroups'   => 'clear',
				       },
			 );

sub BUILD {
  my ($self, @params) = @_;
  $self->mo->push_LCF($self);
};

override all => sub {
  my ($self) = @_;
  my %all = $self->SUPER::all;
  delete $all{$_} foreach (qw(standards));
  return %all;
};

## float_e0  require
sub add {
  my ($self, $stan, @params) = @_;
  my %hash = @params;
  $hash{float_e0} ||= 0;
  $hash{required} ||= 0;
  $hash{dweight}  ||= 0;
  $hash{e0}       ||= 0;
  $hash{de0}      ||= 0;
  my $weight_provided = exists($hash{weight});
  my @previous = @{ $self->standards };
  $self->push_standards($stan);

  my $n = $#{ $self->standards } + 1;
  $self->nstan($n);
  if (not defined($hash{weight})) {
    $hash{weight} = sprintf("%.3f", 1/$n);
  };

  my $key = $stan->group;
  $self->set_option($key, [$hash{float_e0}, $hash{required}, $hash{weight}, $hash{dweight}, $hash{e0}, $hash{de0}]); ## other 2 are dweight and de0

  return $self if $weight_provided;
  foreach my $prev (@previous) {
    $self->weight($prev, 1/$n);
  };
  return $self;
};

sub add_many {
  my ($self, @standards) = @_;
  $self->add($_) foreach (@standards);
  return $self;
};

sub float_e0 {
  my ($self, $stan, $onoff) = @_;
  $onoff ||= 0;
  my $rlist = $self->get_option($stan->group);
  return $self if not $rlist;
  my @params = @$rlist;
  $params[0] = $onoff;
  $self->set_option($stan->group, \@params);
  return $self;
};

sub required {
  my ($self, $stan, $onoff) = @_;
  $onoff ||= 0;
  my $rlist = $self->get_option($stan->group);
  return $self if not $rlist;
  my @params = @$rlist;
  $params[1] = $onoff;
  $self->set_option($stan->group, \@params);
  return $self;
};

## take reference or group (reference not working....)
sub is_e0_floated {
  my ($self, $stan) = @_;
  ($stan = $stan->group) if (ref($stan) =~ m{Data});
  my $rlist = $self->get_option($stan);
  return ((not $rlist)) ? 0 : $rlist->[0];
};
sub is_required {
  my ($self, $stan) = @_;
  ($stan = $stan->group) if (ref($stan) =~ m{Data});
  my $rlist = $self->get_option($stan);
  return ((not $rlist)) ? 0 : $rlist->[1];
};

sub weight {
  my ($self, $stan, $value, $error) = @_;
  ($stan = $stan->group) if (ref($stan) =~ m{Data});
  my $rlist = $self->get_option($stan);
  #if (not $rlist) { return wantarray ? (0,0) : 0 }; # this happens when perusing combinatoric fits
  my @params = @$rlist;
  if (not defined($value)) {
    return wantarray ? ($params[2], $params[3]) : $params[2];
  };
  $params[2] = $value;
  $params[3] = $error || 0;
  $params[3] = 0 if not looks_like_number($params[3]); # uncertainty will be "null" in larch if not varied
  $self->set_option($stan, \@params);
  return wantarray ? ($params[2], $params[3]) : $params[2];
};

sub e0 {
  my ($self, $stan, $value, $error) = @_;
  ($stan = $stan->group) if (ref($stan) =~ m{Data});
  my $rlist = $self->get_option($stan);
  #if (not $rlist) { return wantarray ? (0,0) : 0 };
  my @params = @$rlist;
  if (not defined($value)) {
    return wantarray ? ($params[4], $params[5]) : $params[4];
  };
  $params[4] = $value;
  $params[5] = $error || 0;
  $params[5] = 0 if not looks_like_number($params[5]); # uncertainty will be "null" in larch if not varied
  $self->set_option($stan, \@params);
  return wantarray ? ($params[4], $params[5]) : $params[4];
};

sub standards_list {
  my ($self) = @_;
  return map {$_->group} (@{$self->standards});
};

sub _sanity {
  my ($self) = @_;
  if (ref($self->data) !~ m{Data}) {
    croak("** LCF: You have not set the data for your LCF fit");
  };
  if ($#{$self->standards} < 1) {
    croak("** LCF: You have not set 2 or more standards for your LCF fit");
  };
  if ($self->xmin == $self->xmax) {
    croak("** LCF: zero data range: xmin = xmax = " . $self->xmin);
  };
  if ($self->xmin > $self->xmax) {
    my ($xn, $xx) = $self->get(qw(xmin xmax));
    $self->set(xmin=>$xx, xmax=>$xn);
    carp("** LCF: xmin and xmax were out of order");
  };
  return $self;
};

sub prep_arrays {
  my ($self, $how) = @_;
  my $ud = ($self->suffix eq 'chi') ? 'bft' : 'fft';

  ## prepare the data for LCF fitting
  my $n1 = $self->data->iofx('energy', $self->xmin);
  my $n2 = $self->data->iofx('energy', $self->xmax);
  $self->data -> _update($ud);
  my $which = ($self->space =~ m{\Achi}) ? "lcf_prep_k" : "lcf_prep";
  $self -> dispense("analysis", $which);

  ## interpolate all the standards onto the grid of the data
  my @all = @{ $self->standards };
  $_ -> _update($ud) foreach (@all);
  $self->mo->standard($self);
  foreach my $stan (@all[0..$#all-1]) {
    $which = ($self->space =~ m{\Achi}) ? "lcf_prep_standard_k" : "lcf_prep_standard";
    $stan -> dispense("analysis", $which);
  };
  if ($self->nstan eq 1) {
    $which = ($self->space =~ m{\Achi}) ? "lcf_prep_standard_k" : "lcf_prep_standard";
    $all[$#all] -> dispense("analysis", $which);
  } elsif ($self->unity) {
    $which = ($self->space =~ m{\Achi}) ? "lcf_prep_last_k" : "lcf_prep_last";
    $all[$#all] -> dispense("analysis", $which);
  } else {
    $which = ($self->space =~ m{\Achi}) ? "lcf_prep_standard_k" : "lcf_prep_standard";
    $all[$#all] -> dispense("analysis", $which);
  };
  $self -> dispense("analysis", 'lcf_prep_lcf', {how=>$how});
  $self->mo->standard(q{});
  return $self;
};

sub compute_ninfo {
  my ($self) = @_;
  my $ni = 0;
  ## for fit to chi(k), use the standard EXAFS definition with delta_k
  ## set to the fitting range and deltaR set arbitrarily to 3
  if ($self->space eq 'chi') {
    my $dk = $self->xmax - $self->xmin;
    my $dr = 3; ## let's assume 1 to 4
    $ni = 2*$dk*$dr/$PI + 1;
  ## for XANES (norm or deriv) divide the data range by the core-hole lifetime
  } else {
    $ni =($self->xmax - $self->xmin) / Xray::Absorption->get_gamma($self->data->bkg_z, $self->data->fft_edge);
  };
  $self->ninfo(sprintf("%.3f",$ni));
  return $ni;
};

sub fit {
  my ($self, $quiet) = @_;
  $self->_sanity;
  $self->compute_ninfo if not $self->ninfo;
  $self->has_stddev( ($self->space !~ m{\Achi}) and $self->get_array('stddev') );

  $self->start_spinner("Demeter is performing an LCF fit") if (($self->mo->ui eq 'screen') and (not $quiet));
  my @all = @{ $self->standards };

  $self->prep_arrays('def');
  ## create the array to minimize and perform the fit
  $self -> dispense("analysis", "lcf_fit");

  if (Demeter->is_ifeffit) {
    my $sumsqr = 0;
    foreach my $st (@all) {
      my ($w, $dw) = $self->weight($st, $self->fetch_scalar("aa_".$st->group), $self->fetch_scalar("delta_a_".$st->group));
      $sumsqr += $dw**2;
      if ($self->one_e0) {
	$self->e0($st, $self->fetch_scalar("e_".$st->group), $self->fetch_scalar("delta_e_".$self->group));
      } else {
	$self->e0($st, $self->fetch_scalar("e_".$st->group), $self->fetch_scalar("delta_e_".$st->group));
      };
    };
    if ($self->unity) {		# propagate uncertainty for last amplitude
      my ($w, $dw) = $self->weight($all[$#all]);
      $self->weight($all[$#all], $w, sqrt($sumsqr));
    };
  } elsif (Demeter->mo->template_analysis eq 'larch') {
    foreach my $st (@all) {
      $self->weight($st, $self->fetch_scalar("demlcf.".$st->group."_a"),
		         $self->fetch_scalar("demlcf.".$st->group."_a.stderr"));
      if ($self->one_e0) {
	$self->e0($st, $self->fetch_scalar("demlcf.".$self->group),
		       $self->fetch_scalar("demlcf.".$self->group.".stderr"));
      } else {
	$self->e0($st, $self->fetch_scalar("demlcf.".$st->group.'_e'),
 		       $self->fetch_scalar("demlcf.".$st->group.'_e.stderr'));
      };
    };
    $self->slope    ($self->fetch_scalar("demlcf._slope"));
    my $del = $self->fetch_scalar("demlcf._slope.stderr");
    $del = 0 if not looks_like_number($del);
    $self->delslope ($del);
    $self->offset   ($self->fetch_scalar("demlcf._offset"));
    $del = $self->fetch_scalar("demlcf._offset.stderr");
    $del = 0 if not looks_like_number($del);
    $self->deloffset($del);
  };
  $self->_statistics;

  $self->stop_spinner if (($self->mo->ui eq 'screen') and (not $quiet));
  #$self->ifeffit_heap;
  return $self;
};

sub _statistics {
  my ($self) = @_;
  my ($avg, $count, $rfact, $sumsqr) = (0,0,0,0);

  if (Demeter->is_ifeffit) {
    my @x     = $self->get_array('x');
    my @func  = $self->get_array('func');
    my @resid = $self->get_array('resid');
    foreach my $i (0 .. $#x) {
      next if ($x[$i] < $self->xmin);
      next if ($x[$i] > $self->xmax);
      ++$count;
      $avg += $func[$i];
    };
    $avg /= $count if $count != 0;
    foreach my $i (0 .. $#x) {
      next if ($x[$i] < $self->xmin);
      next if ($x[$i] > $self->xmax);
      $rfact  += $resid[$i]**2;
      if ($self->space =~ m{\Anor}) {
	$sumsqr += ($func[$i]-$avg)**2;
      } else {
	$sumsqr += $func[$i]**2;
      };
    };
    $self->npoints($count);
    if ($self->space eq 'nor') {
      $self->rfactor(sprintf("%.7f", $count*$rfact/$sumsqr));
    } else {
      $self->rfactor(sprintf("%.7f", $rfact/$sumsqr));
    };
    $self->chisqr(sprintf("%.5f", $self->fetch_scalar('chi_square')));
    $self->chinu(sprintf("%.7f", $self->fetch_scalar('chi_reduced')));
    $self->nvarys($self->fetch_scalar('n_varys'));
  } elsif (Demeter->is_larch) {
    $self->rfactor(sprintf("%.7f", $self->fetch_scalar('demlcf.rfactor')));
    $self->chisqr(sprintf("%.5f", $self->fetch_scalar('demlcf.chi_square')));
    $self->chinu(sprintf("%.7f", $self->fetch_scalar('demlcf.chi_reduced')));
    $self->nvarys(int($self->fetch_scalar('demlcf.nvarys')));
    my @x     = $self->get_array('x');
    foreach my $i (0 .. $#x) {
      next if ($x[$i] < $self->xmin);
      next if ($x[$i] > $self->xmax);
      ++$count;
    };
    $self->npoints($count);
  };

  my $sum = 0;
  foreach my $stan (@{ $self->standards }) {
    my ($w, $dw) = $self->weight($stan);
    $sum += $w;
  };
  $self->scaleby(sprintf("%.3f",$sum));
  $self->kweight($self->po->kweight) if ($self->space =~ m{\Achi});
  return $self;
};

sub report {
  my ($self) = @_;
  my $text = $self->template("analysis", "lcf_report");
  return $text;
};

sub plot_fit {
  my ($self) = @_;
  #$self->prep_arrays('set');
  $self->po->start_plot;
  my $step = 0;
  if ($self->space =~ m{\Achi}) {
    #$self->data->plot('k');
    $self->chart("plot", "newlcf", {suffix=>'func', yoffset=>$self->data->y_offset});
    $self->po->increment;
    my ($floor, $ceil) = $self->data->floor_ceil('chi');
    $step = min(abs($floor), abs($ceil));
  } else {
    $self->po->set(e_norm=>1, e_markers=>0, e_der=>0);
    $self->po->e_der(1) if ($self->space =~ m{\An?der});
    #self->data->plot('E');
    $self->chart("plot", "newlcf", {suffix=>'func', yoffset=>$self->data->y_offset});
    $self->po->increment;
    if ($self->space =~ m{\An?der}) {
      my ($floor, $ceil) = $self->data->floor_ceil('nder');
      $step = min(abs($floor), abs($ceil));
    };
  };
  $self->chart("plot", "overlcf", {suffix=>'lcf', yoffset=>$self->data->y_offset});
  $self->po->increment;
  if ($self->plot_difference) {
    $self->chart("plot", "overlcf", {suffix=>'resid', yoffset=>$self->data->y_offset});
    $self->po->increment;
  };
  if ($self->plot_components) {
    my $save_yoff = $self->data->y_offset;
    foreach my $stan (@{ $self->standards }) {
      if ($self->space =~ m{\A(?:chi|der)}) {
	my $yoff = $self->data->y_offset;
	$self->data->y_offset($yoff - $step);
	#print join(" ", $step, $self->data->y_offset), $/;
      };
      $self->chart("plot", "overlcf", {suffix=>$stan->group, yoffset=>$self->data->y_offset});
      $self->po->increment;
    };
    $self->data->y_offset($save_yoff);
  };
  if ($self->plot_indicators) {
    my @indic;
    $self->data->standard;
    if ($self->space =~ m{\Achi}) {
      @indic = (Demeter::Plot::Indicator->new(space=>'k', x=>$self->xmin),
		Demeter::Plot::Indicator->new(space=>'k', x=>$self->xmax));
      $_->plot('k') foreach (@indic);
    } else {
      @indic = (Demeter::Plot::Indicator->new(space=>'E', x=>$self->xmin-$self->data->bkg_e0),
		Demeter::Plot::Indicator->new(space=>'E', x=>$self->xmax-$self->data->bkg_e0));
      $_->plot('E') foreach (@indic);
    };
  };

  return $self;
};

sub plot {
  my ($self) = @_;
  my $do_plot = 0;
  ## only make a plot if the LCF meets all the conditions of the current plot
  ($do_plot = 1) if (($self->po->space eq 'k') and ($self->space =~ m{\Achi}));

  ($do_plot = 1) if (($self->po->space eq 'e') and ($self->space =~ m{\Anor}) and
		     $self->po->e_norm and (not $self->po->e_der));

  ($do_plot = 1) if (($self->po->space eq 'e') and ($self->space =~ m{\An?der}) and
		     $self->po->e_norm and $self->po->e_der);

  if ($do_plot) {
    ## if space is chi and plot ir R, do FFTs and plot those...
    $self->chart("plot", "overlcf", {suffix=>'lcf', yoffset=>$self->data->y_offset});
  };
  if (($self->po->space eq 'r') and ($self->space =~ m{\Achi})) {
    my $suff = ($self->po->r_pl eq 'm') ? 'chir_mag'
             : ($self->po->r_pl eq 'r') ? 'chir_re'
             : ($self->po->r_pl eq 'i') ? 'chir_im'
             : ($self->po->r_pl eq 'p') ? 'chir_pha'
	     :                            'chir_mag';
    $self->chart("plot", "overlcf", {suffix=>$suff, yoffset=>$self->data->y_offset});
  };

  return $self;
};


sub fft {
  my ($self) = @_;
  $self->data->_update("fft");
  $self->prep_arrays('set');

  my $group = $self->group;
  my $dobject = $self->data->group;
  my $string = $self->data->_fft_command;
  $string =~ s{\b$dobject\b}{$group}g; # replace group names
  $string =~ s{\.k\b}{.x};             # replace abscissa suffix
  $string =~ s{\.chi\b}{.lcf};         # replace ordinate suffix
  $string =~ s{\bkweight=\d\b}{kweight=0}; # replace kweighting

  #print $string;
  $self->dispose($string);
  return $string;
};


sub save {
  my ($self, $fname) = @_;

  my $text = $self->template('analysis', 'lcf_report');

  my $save_columns = {};
  my $hash = {1=>'energy eV', 2=>'data', 3=>'fit', 4=>'residual'};
  $hash->{1} = 'wavelength inverse Angstrom' if $self->space eq 'chi';
  my $i=4;
  foreach my $st (sort {$b cmp $a} @{ $self->standards }) {
    ++$i;
    (my $name = $st->name) =~ s{\s+}{_}g;
    $hash->{$i} = $name;
  };
  if ($self->data->xdi) {
    #$text = $self->template('analysis', 'lcf_report');
    $save_columns  = $self->data->xdi->metadata->{Column};
    $self->data->xdi_set_columns($hash);
  };

  $self->data->xdi_output_header('data', $text, $hash);
  $self->dispose($self->template('analysis', 'lcf_save', {filename=>$fname}));
  $self->data->xdi_set_columns($save_columns) if ($self->data->xdi);

  return $self;
};

sub clear {
  my ($self) = @_;
  $self->clear_standards;
  $self->clear_option;
  return $self;
};

sub clean {
  my ($self) = @_;
  $self->ninfo(0);
  $self->dispense('analysis', 'lcf_clean');
  return $self;
};

sub combi_size {
  my ($self) = @_;
  my @biglist = ();
  my @all_required = grep {$self->is_required($_)} $self->standards_list;
  foreach my $n (2 .. $self->max_standards) {
    my $combinat = Math::Combinatorics->new(count => $n,
					    data => [$self->standards_list],
					   );
    while (my @combo = $combinat->next_combination) {
      my $requirements_present = 1;
      foreach my $req (@all_required) {
	$requirements_present &&= any {$_ eq $req} @combo;
      };
      next if not $requirements_present;
      #my $stringified = join(",", @combo);
      push @biglist, \@combo;
    };
  };
  return wantarray ? @biglist : $#biglist+1;
};

sub combi {
  my ($self, @params) = @_;
  #my %options = @params;
  #$options{plot} ||= $self->co->default('lcf', 'combi_plot_during');

  my @biglist = $self->combi_size;
  my $nfits = $#biglist+1;
  $self->doing_combi(1);
  $self->start_counter("Performing combinatoric LCF fitting", $nfits) if ($self->mo->ui eq 'screen');
  my @results = ();
  my $count = 1;
  foreach my $this (@biglist) {
    $self->combi_count($count);
    $self->clear_standards;
    my @list = map {$self->mo->fetch('Data', $_)} @$this;
    foreach my $st (@list) {	# take care not to change contents of options attribute
      $self->push_standards($st);
      $self->weight($st, 1/($#list+1));
    };
    $self->count if ($self->mo->ui eq 'screen');
    $self->call_sentinal;
    $self->fit(1);
    $self->plot_fit if $self->co->default('lcf', 'plot_during');
    #$self->clean;

    my %fit = (
	       Rfactor => $self->rfactor,
	       Chinu   => $self->chinu,
	       Chisqr  => $self->chisqr,
	       Nvarys  => $self->nvarys,
	       Scaleby => $self->scaleby,
	      );
    foreach my $st (@list) {	# use of capitalized keys above avoid key collision
      $fit{$st->group} = [$self->weight($st), $self->e0($st)];
    };
    push @results, \%fit;
    ++$count;
  };
  $self->stop_counter if ($self->mo->ui eq 'screen');
  $self->doing_combi(0);
  @results = sort {$a->{Rfactor} <=> $b->{Rfactor}} @results;
  $self->combi_results(\@results);

  ## restore best fit
  $self->restore($results[0]);
  #print "yes!\n" if $self->is_required('hqlr');
  return $self;
};

sub restore {
  my ($self, $rhash) = @_;
  my @stats = qw(rfactor chinu chisqr nvarys scaleby);
  foreach my $p (@stats) {
    $self->$p($rhash->{ucfirst($p)});
  };
  my $stats_regex = join('|', map {ucfirst $_} @stats);
  $self->mo->standard($self);
  $self->clear_standards;
  foreach my $k (keys %$rhash) {
    next if ($k =~ m{\A(?:$stats_regex)});
    next if ($k eq 'Data');
    my $rlist = $rhash->{$k};
    my $this_data = $self->mo->fetch('Data', $k);
    my ($w, $dw, $e0, $de0) = @$rlist;
    $self->add($this_data, weight=>$w, dweight=>$dw, e0=>$e0, de0=>$de0);
    #$self->push_standards($this_data), weight=>$w, dweight=>$dw, e0=>$e0, de0=>$de0);
    #$self->weight($this_data->group, $w, $dw);
    #$self->e0($this_data->group, $e0, $de0);
    if (Demeter->mo->template_analysis eq 'larch') {
      if ($self->space =~ m{\Achi}) {
	$self->dispose($this_data->template('analysis', 'lcf_prep_standard_k'));
      } else {
	$self->dispose($this_data->template('analysis', 'lcf_prep_standard'));
      };
    } else {
      $self->dispose($this_data->template('analysis', 'lcf_sum_standard'));
    };
  };
  if (Demeter->mo->template_analysis eq 'larch') {
    $self->dispense('analysis', 'lcf_prep_lcf');
  } else {
    $self->dispense('analysis', 'lcf_sum');
  };
  $self->mo->standard(q{});
  return $self;
};


sub combi_report {
  my ($self, $fname) = @_;
  if ($self->co->default("lcf", "output") eq 'excel') {
    $self->report_excel($fname, 'combi');
  } else {
    $self->report_csv($fname, 'combi');
  };
};


sub report_excel {
  my ($self, $fname, $which) = @_;
  my @stats = qw(rfactor chinu chisqr nvarys scaleby);
  my @stand = sort {$b cmp $a} keys %{ $self->options };
  my @names = map {$self->mo->fetch('Data', $_)->name} @stand;
  #@names = map { $_ =~ s{,}{ }g; $_ } @names;

  my $workbook;
  {
    ## The evals in Spreadsheet::WriteExcel::Workbook::_get_checksum_method
    ## will set the eval error variable ($@) if any of Digest::XXX
    ## (XXX = MD4 | PERL::MD4 | MD5) are not installed on the machine.
    ## This is not a problem -- crypto is not needed in the exported
    ## Excel file.  However, setting $@ will post a warning given that
    ## $SIG{__DIE__} is defined to use Wx::Perl::Carp.  So I need to
    ## locally undefine $SIG{__DIE__} to avoid having a completely
    ## pointless error message posted to the screen when the S::WE
    ## object is instantiated
    local $SIG{__DIE__} = undef;
    $workbook = Spreadsheet::WriteExcel->new($fname);
  };
  my $worksheet = $workbook->add_worksheet();

  my $head = $workbook->add_format();
  $head -> set_bold;
  $head -> set_bg_color('grey');
  $head -> set_align('left');
  my $group = $workbook->add_format();
  $group -> set_bold;
  $group -> set_bg_color('grey');
  $group -> set_align('left');

  my $col = 0;
  if ($which eq 'seq') {
    $worksheet->write(1, $col, 'Data', $head);
    ++$col;
  };
  foreach my $s (@stats) {
    $worksheet->write(1, $col, $s, $head);
    ++$col;
  };
  foreach my $n (@names) {
    $worksheet->merge_range(0,  $col, 0, $col+3, $n, $group);
    $worksheet->write(1, $col,   'weight', $head);
    $worksheet->write(1, $col+1, 'error',  $head);
    $worksheet->write(1, $col+2, 'e0',     $head);
    $worksheet->write(1, $col+3, 'error',  $head);
    $col+=4;
  };

  my $row = 2;
  $col = 0;
  my $att = $which.'_results';
  foreach my $res (@{ $self->$att }) {
    if ($which eq 'seq') {
      $worksheet->write($row, $col, $self->mo->fetch('Data', $res->{Data})->name);
      ++$col;
    };
    foreach my $s (@stats) {
      $worksheet->write($row, $col, $res->{ucfirst($s)});
      ++$col;
    };
    foreach my $st (@stand) {
      if (exists $res->{$st}) {
	foreach my $c (@{ $res->{$st} }) {
	  $worksheet->write($row, $col, $c);
	  ++$col;
	};
      } else {
	$worksheet->write($row, $col, q{}) foreach (1..4);
	$col+=4;
      }
    };
    ++$row;
    $col=0;
  };
  $workbook->close;
};

sub report_csv {
  my ($self, $fname, $which) = @_;
  my @stats = qw(rfactor chinu chisqr nvarys scaleby);
  my @stand = sort {$b cmp $a} keys %{ $self->options };
  my @names = map {$self->mo->fetch('Data', $_)->name} @stand;
  @names = map { $_ =~ s{,}{ }g; $_ } @names;
  open(my $FH, '>', $fname);
  print $FH join(',', @stats), ',';
  print $FH join(',,,,', @names), ",,,,\n";
  my $att = $which.'_results';
  foreach my $res (@{ $self->$att }) {
    print $FH ($res->{ucfirst($_)},',') foreach @stats;
    foreach my $st (@stand) {
      if (exists $res->{$st}) {
	print $FH join(',', @{ $res->{$st} } ), ',';
      } else {
	print $FH ',,,,';
      }
    };
    print $FH $/;
  };
  close $FH;
};


sub sequence {
  my ($self, @groups) = @_;
  my $first = $self->data;
  my @data = ($self->include_caller) ? uniq($first, @groups) : uniq(@groups);
  my $nfits = $#data+1;

  $self->doing_seq(1);
  $self->start_counter("Performing a sequence of LCF fitting", $nfits) if ($self->mo->ui eq 'screen');
  my @results = ();
  my $count = 1;
  my @standards = @{$self->standards};
  foreach my $d (@data) {
    $self->clean;
    $self->seq_count($count);
    $self->count if ($self->mo->ui eq 'screen');
    $self->call_sentinal;
    $self->data($d);
    $self->clear_standards;
    foreach my $st (@standards) {
      $self->push_standards($st);
      $self->weight($st, 1/($#standards+1));
      $self->e0($st, 0);
    };
    $self->fit(1);
    $self->plot_fit if $self->co->default('lcf', 'plot_during');
    my %fit = (
	       Rfactor => $self->rfactor,
	       Chinu   => $self->chinu,
	       Chisqr  => $self->chisqr,
	       Nvarys  => $self->nvarys,
	       Scaleby => $self->scaleby,
	       Data    => $d->group,
	      );
    foreach my $st (@standards) { # use of capitalized keys above avoid key collision
      $fit{$st->group} = [$self->weight($st), $self->e0($st)];
    };
    push @results, \%fit;
    ++$count;
  };
  $self->stop_counter if ($self->mo->ui eq 'screen');
  $self->clean;
  $self->data($first);
  my $which = ($self->space =~ m{\Achi}) ? "lcf_prep_k" : "lcf_prep";
  $self->dispense("analysis", $which);
  $self->set(doing_seq=>0, seq_results=>\@results);
  $self->restore($results[0]);
  $self->plot_fit if $self->co->default('lcf', 'plot_during');
  return $self;
};


sub sequence_report {
  my ($self, $fname) = @_;
  if ($self->co->default("lcf", "output") eq 'excel') {
    $self->report_excel($fname, 'seq');
  } else {
    $self->report_csv($fname, 'seq');
  };
  return $self;
};

sub sequence_plot {
  my ($self) = @_;
  $self->po->start_plot;
  my $tempfile = $self->po->tempfile;
  open my $T, '>'.$tempfile;
  print $T $self->sequence_columns;
  close $T;

  my $first = $self->seq_results->[0];
  my @all = keys(%$first);
  my @stan = grep {$_ !~ m{\A[A-Z]}} @all;
  my $st1 = shift @stan;
  $self->chart('plot', 'newlcf_seq', {file=>$tempfile, col=>2, title=>$self->mo->fetch('Data', $st1)->name});
  my $col = 4;
  foreach my $st (@stan) {
    $self->po->increment;
    $self->chart('plot', 'overlcf_seq', {file=>$tempfile, col=>$col, title=>$self->mo->fetch('Data', $st)->name});
    $col += 2;
  };
  return $self;
};

sub sequence_columns {
  my ($self) = @_;
  my $first = $self->seq_results->[0];
  my @all = keys(%$first);
  my @stan = grep {$_ !~ m{\A[A-Z]}} @all;
  my $nstan = $#all - 5;
  my $format = ' %d' . '   %.3f' x (2*$nstan) . "\n";
  my $text = "# Linear combination results\n";
  my $count = 1;
  foreach my $res (@{ $self->seq_results }) {
    $text   .= "# $count: ". $self->mo->fetch('Data', $res->{Data})->name . "\n";
    ++$count;
  };
  $text   .= "# --------------------------\n";
  $text   .= "# N   " . join("   ", map {$_ =~ s{\s}{_}g; "$_   error_$_"} map {$self->mo->fetch('Data', $_)->name} @stan) . "\n";
  $count = 1;
  foreach my $res (@{ $self->seq_results }) {
    my @weights;
    foreach my $st (@stan) {
      push @weights, $res->{$st}->[0], $res->{$st}->[1];
    };
    $text .= sprintf($format, $count++, @weights);
  };
  return $text;
};

sub sequence_xtics {
  my ($self) = @_;
  my $text = 'set xtics (';
  my $i = 1;
  foreach my $res (@{ $self->seq_results }) {
    $text .= '"' . $self->mo->fetch('Data', $res->{Data})->name . "\" $i, ";
    ++$i;
  };
  chop $text;
  chop $text;
  $text .= ")\n";
  return $text;
};

sub make_group {
  my ($self) = @_;
  my $suff = ($self->space =~ m{\Achi}) ? "k" : "energy";
  my @x = $self->get_array('x');
  my @y = $self->get_array('lcf');
  if ($self->space =~ m{\Achi}) {
    local $SIG{__WARN__} = undef;
    @y = pairwise {$a**(-1*$self->kweight)*($b||0)} @x, @y;
  };
  my $name = "LCF " . $self->data->name;
  my $which = ($self->space =~ m{\Achi}) ? "chi" : "xmu";
  my $data = $self->data->put(\@x, \@y, datatype=>$which, is_nor=>1, name=>$name, file=>"LCF fit to ".$self->data->name);
  my %attributes = $self->data->all;
  foreach my $k (keys %attributes) {
    delete $attributes{$k} if ($k !~ m{\A(?:bkg|bft|fft|fit)_});
  };
  delete $attributes{bkg_eshift};
  #foreach my $a (qw(datatype name is_nor bkg_step bkg_eshift data datagroup)) {
  #  delete $attributes{$a};
  #};
  $data->set(%attributes);
  return $data;
};

__PACKAGE__->meta->make_immutable;
1;


=head1 NAME

Demeter::LCF - Linear combination fitting

=head1 VERSION

This documentation refers to Demeter version 0.9.26.

=head1 SYNOPSIS

   #!/usr/bin/perl
   use Demeter;

   my $prj  = Demeter::Data::Prj -> new(file=>'examples/cyanobacteria.prj');
   my $lcf  = Demeter::LCF -> new;
   my $data = $prj->record(4);
   my ($metal, $chloride, $sulfide) = $prj->records(9, 11, 15);

   $lcf -> data($data);
   $lcf -> add($metal);
   $lcf -> add($chloride);
   $lcf -> add($sulfide);

   $lcf -> xmin($data->bkg_e0-20);
   $lcf -> xmax($data->bkg_e0+60);
   $lcf -> po -> set(emin=>-30, emax=>80);
   $lcf -> fit;
   $lcf -> plot_fit;
   $lcf -> save('lcf_fit_result.dat');

=head1 DESCRIPTION

Linear combination fitting (LCF) is an analysis method for
interpreting XANES or EXAFS data using standards.  The assumption is
that the data from an unknown sample can be understood as a linear
superposition of the data from two or more known, well-understood
standards.  The LCF analysis, therefore, tells us what fraction of the
unknown sample is explained by one of the known standards.

For example, imagine mixing together quantities of iron oxide and iron
sulfide such that there are equal numbers of iron atoms surrounded by
oxygen and by sulfur.  You would then expect to be able to describe
the data from the mixure by adding together equal parts of the data
from the two pure materials.

This object provides a framework for performing this sort of analysis.
In the example shown above, data and standards are imported from an
Athena project file.  The data are fit as a linear combination of
three standards.  The result of the fit is the fraction of each
standard present in the data as well as uncertainties in those
fractions.

This object also provides methods for "combinatorial fitting".  In
this approach an ensemble of standards are compared to the data in all
possible combinations (with certain constraints).  The results are
sorted by increasing R-factor of the fit.  The first result, then, is
the combination of standards giving the closest fit to the data.

=head1 ATTRIBUTES

=head2 Parameters of the fit

=over 4

=item C<xmin>

The lower bound of the fit.  For a fit to the normalized or derivative
mu(E), this is an absolute energy value and B<not> relative to the
edge energy.

=item C<xmax>

The upper bound of the fit.  For a fit to the normalized or derivative
mu(E), this is an absolute energy value and B<not> relative to the
edge energy.

=item C<space>

The fitting space.  This can be one of C<nor>, C<der>, or C<chi>.
When fitting in C<chi>, e0 cannot be varied.

=item C<max_standards>

The maximum number of standards to use in each fit of a combinatorial
sequence.

=item C<include_caller>

A boolean.  Use in sequence fitting to determine whether the data
currently associated with the LCF object is inlcuded in the fit
sequence.  The default is true.  This is a convenience introduced for
the sake of the LCF tool in Athena.

=item C<linear>

A boolean.  When true, add a linear term to the fit.  (Not implemented
yet.)

=item C<inclusive>

A boolean.  When true, all weights are forced to be between 0 and 1
inclusive.

=item C<unity>

A boolean.  When true, the weights are forced to sum to 1.

=item C<one_e0>

A boolean.  When true, one over-all e0 parameter is used in the fit
rather than one for each standard.  In practice, the standards are
shifted by the same floated e0 value.  That is, one parameter is
floated and an e0 for each standard is def-ed to that value.

=item C<noise>

If non-zero, add artifical noise to the data.  The value is used as
the sigma of the normally distributed artifical noise.  You may need
to play around to find an appropriate value for your data.  Note that
for a fit in chi(k), the noise is added to the un-k-weighted chi(k)
data.

=item C<kweight>

The kweighting used in a fit using chi(k) data.

=item C<plot_components>

A boolean.  When true, the scaled components of the fit will be
included in a plot.

=item C<plot_difference>

A boolean.  When true, the residual of the fit will be included in a
plot.

=item C<plot_indicators>

A boolean.  When true, plot indicators will mark the boundaries of the
fit in a plot.

=back

=head2 Standards

=over 4

=item C<standards>

This attribute contains the list of standards added to this LCF problem.
The accessor returns a list reference:

  $ref_to_standards = $lcf->standards;

It is strongly recommended that you do not assign standards directly
to this.  Instead use the C<add> or C<add_many> methods.  Those
methods take care of some other chores required to keep the LCF
organized.

=back

A number of methods are provided by Moose for interacting with the
list stored in this attribute:

=over 4

=item C<push_standards>

Push a value to the list.

=item C<pop_standards>

Pop a value from the list.

=item C<shift_standards>

Shift a value from the list.

=item C<unshift_standards>

Unshift a value to the list.

=item C<clear_standards>

Assign an empty list.

=back

=head2 Statistics

Once the fit finishes, each of the following attributes is filled with
a value appropriate to recently completed fit.

=over 4

=item C<nstan>

The number of standars used in the fit.

=item C<npoints>

The number of data points included in the fit.

=item C<nvarys>

The number of variable parameters used in the fit.

=item C<rfactor>

An R-factor for the fit.  For fits to chi(k) or the derivative
spectrum, this is a normal R-factor in Ifeffit or Larch:

   sum( [data_i - fit_i]^2 ]
  --------------------------
      sum ( data_i^2 )

For a fit to normalized mu(E), that formulation for an R-factor always
results in a really tiny number.  Demeter thus scales the R-factor to
make it somewhat closer to 10^-2.

    npoints * sum( [data_i - fit_i]^2 ]
  ---------------------------------------
        sum ( [data_i - <data>]^2 )

where <data> is the geometric mean of the data in the fitting range.

=item C<chisqr>

This is the chi-square for the fit.

=item C<chinu>

This is the reduced chi-square for the fit.

=back

=head1 METHODS

=over 4

=item C<add>

Add a Data object to the LCF object for use one of the fitting
standards.  In it's simplest form, the sole argument is a Data objectL

  $lcf -> add($data_object);

You can also set certain parameters of the standard by supplying an
optional anonymous hash:

  $lcf -> add($data_object, required => 0,
                            float_e0 => 0,
                            weight   => 1/3,
                            e0       => 1/3,);

The C<required> parameter flags this standard as one that is required
to be in a combinatorial fit.  C<float_e0> is true when you wish to
float an energy shift for this standard.  The other two are used to
specify the weight and e0.

There are methods (described) below for setting each of these
parameters.

=item C<add_many>

This method provides a way of setting a group of Data objects as
standard in one shot.  It is equivalent to repeated calls to the
C<add> method without the anonymous hash.

  $lcf -> add_many(@data);

=item C<float_e0>

This method is used to turn a floating e0 value on or off for a given
standard.

  $lcf->float_e0($standard, $onoff);

The first argument is the standard in question, the second is a
boolean toggling the floating e0 on or off.

These are the same:

  $lcf->add($data);
  $lcf->float_e0($data, 1);

and

  $lcf->add($add, float_e0=>1);

=item C<required>

This method is used to require a given standard in a combinatorial
fit.

  $lcf->required($standard, $onoff);

The first argument is the standard in question, the second is a
boolean toggling the requirement on or off.

These are the same:

  $lcf->add($data);
  $lcf->required($data, 1);

and

  $lcf->add($add, required=>1);

=item C<weight>

This method is both a setter and getter of the weight for a given
standard.  As a getter:

  my ($weight, $dweight) = $lcf->weight($standard);

The weight and the uncertainty in the weight are returned as an array.

The weight can be set to an explicit value:

  my ($weight, $dweight) = $lcf->weight($standard, $value);

Again weight and the uncertainty in the weight are returned as an
array.  The uncertainty is zeroed when the weight is explicitly set.

In scalar context, this just returns the weight.

=item C<e0>

This method is both a setter and getter of the e0 shift for a given
standard.  As a getter:

  my ($e0, $e0) = $lcf->e0($standard);

The e0 and the uncertainty in the e0 are returned as an array.

The e0 can be set to an explicit value:

  my ($e0, $de0) = $lcf->e0($standard, $value);

Again e0 and the uncertainty in the e0 are returned as an array.  The
uncertainty is zeroed when the e0 is explicitly set.

In scalar context, this just returns the e0.

=item C<fit>

Perform the fit.

  $lcf->fit;

This will perform some sanity checks, including verifying that the
data has been set and that at least two standards have been defined.
It will also make sure C<xmin> and C<xmax> are in the correct order.

An optional boolean argument turns the spinner off when in screen UI
mode.  This allows use of a counter for combinatorial fits.

  $lcf->fit(1);  # true value means to turn spinner off

=item C<report>

This returns a summary of the fitting results.

  print $lcf->report;

=item C<save>

This method saves the results of a fit to a column data file
containing columns for the x-axis (energy or wavenumber), the data,
the fit, and each of the weighted components.

  $lcf -> save("file.dat");

=item C<plot_fit>

This method will generate a plot showing the data and the fit.

  $lcf -> plot_fit;

The C<plot_difference>, C<plot_components>, and C<plot_indicators>
attributes determine whether the residual, the weighted components,
and indicators marking the fitting range are included in the plot.

By default, the chi(k) and derivative components are stacked
automatically.

=item C<plot>

This is the generic plotting method for use when overplotting a large
number of objects.  In this example, the data, the standards, and the
result of the LCF fit are plotted together with the standards plotted
normally rather than as the weighted components of the fit.

   $lcf->po->start_plot;
   $lcf->po->set(e_norm=>1, e_der=>1, emin=>-30, emax=>70);
   $_->plot('e') foreach ($data, @standards, $lcf);

This method does nothing (i.e. it does not attempt to plot the LCF fit
at all) if the plot conditions do not match the fitting space of the
fit.  E.g., an LCF fit to normalized data will only be plotted if the
fit is in energy and the C<e_norm> Plot attribute is true.

=item C<clean>

This method clears all scalars and arrays out of the memory of the
data processing backend (Ifeffit/Larch).

  $lcf->clean;

=back

Note that there is not a C<remove> method to do the opposite of
C<add>.  This seems to me unnecessarily difficult to use.  I suggest
explicitly clearing the standards list and then C<add>ing a new set of
standards.  This is how the combinatorial fitting loop works.

  $lcf->add(@data);
   ... do stuff, then
  $lcf->clear_standards;
  $lcf->add(@new_data);

Explain these:

				  'push'    => 'push_standards',
				  'pop'     => 'pop_standards',
				  'shift'   => 'shift_standards',
				  'unshift' => 'unshift_standards',
				  'clear'   => 'clear_standards',

=head1 COMBINATORIAL FITTING

These attributes and methods are specifically related to combinatorial
fitting.  A combinatorial fit is one in which all possible
combinations (within certain constraints) are compared to the data.

=head2 Attributes for combinatorial fitting

=over 4

=item C<max_standards>

The maximum number of standards to use in each fit of a combinatorial
sequence.  Note that the size of the combinatorial problem grows
geometrically in the value of this parameter and in the number of
possible standards.

If, for example, this is set to 4, then in a combinatorial fit, all
possible combinations of 2, 3, or 4 standards will be fit to the data.

Note that the size of the combinatorial problem gets very large as
this number grows.

=item C<combi_results>

This is an array of hashes, sorted by rfactor, containing all the
results of fitting sequence.

Each hash in the array looks like this:

  {
   Rfactor => Num,
   Chinu   => Num,
   Chisqr  => Num,
   Nvarys  => Num,
   Scaleby => Num,
   aaaaa   => [weight, dweight, e0, de0],
   bbbbb   => [weight, dweight, e0, de0],
   ....
  }

A key like "aaaaa" is the group attribute of a Data object used in the
fit.  From this, the final state of each fit can be recovered using
the C<restore> method.

=back

=head2 Methods of combinatorial fitting

=over 4

=item C<combi>

Perform a combinatorial sequence of fits, that is, perform all fits
using all combinations of standards up to the number in
C<max_standards>.  If C<max_standards> is 4, then all combinations of
2, 3, or 4 of all the standards added to the object will considered.

  $lcf->combi;

At the end of the fit, the C<combi_results> attribute is filled with
an array of hashes containing the sorted results of the fit.  The
first item in the array contains th results from the fit with the
lowest R-factor (that is, the combinationof standards that most
closely describes the data).

One or more standards can be flagged as being required in a fit.  That
is, each fit will include the flagged standards.  This will
significantly reduce the size of the combinatorial problem.  See the
discussion of the C<add>, C<required>, and C<is_required> methods
above.

At the end of the combinatorial sequence of fits, the fit with the
lowest R-factor will be restored.  Calling C<plot_fit>, C<report>, or
C<save> will act on that fit.  To examine other fits from the
sequence, the C<restore> must be called using one of the results from
the C<combi_results> attribute.

=item C<combi_report>

Write an Excel or CSV (comma separated value) file that can be
imported into a spreadsheet with the results of the combinatorial fit.

  $lcf->combi_report("results.xls");

The argument is the name of the output file (which you probably want
to give a ".csv" or ".xls" extension so your spreadsheet will know to
import it as such.  The choice of file type is controlled by the value
of the C<lcf -E<gt>; output> configuration parameter.

Note that care is taken to strip any commas from the names of the
standards before writing the CSV file.  Also note that this does not
make the most elegant spreadsheet, but it is certainly functional and
it certainly allows you to examine all of your results.

=back

=head1 SEQUENCE FITTING

These attributes and methods are specifically related to combinatorial
fitting.  A combinatorial fit is one in which all possible
combinations (within certain constraints) are compared to the data.

=head2 Attributes for combinatorial fitting

=over 4

=item C<seq_results>

This is an array of hashes, sorted by rfactor, containing all the
results of fitting sequence.

Each hash in the array looks like this:

  {
   Rfactor => Num,
   Chinu   => Num,
   Chisqr  => Num,
   Nvarys  => Num,
   Scaleby => Num,
   aaaaa   => [weight, dweight, e0, de0],
   bbbbb   => [weight, dweight, e0, de0],
   ....
  }

A key like "aaaaa" is the group attribute of a Data object used in the
fit.  From this, the final state of each fit can be recovered using
the C<restore> method.

=back

=head2 Methods of sequence fitting

=over 4

=item C<sequence>

Perform a sequence of fits to a group data.

  $lcf->sequence(@data);

The data in C<$lcf> is appended to the beginning of C<@data> unless
the C<include_caller> attribute is false. Care is taken to remove
repeats from C<@data>.

At the end of the fit, the C<seq_results> attribute is filled with an
array of hashes containing the results of each fit.  This array is in
the same order as C<@data>.

At the end of the sequence of fits, the fit to the data originally in
C<$lcf> will be restored.  Calling C<plot_fit>, C<report>, or C<save>
will act on that fit.  To examine other fits from the sequence, the
C<restore> must be called using one of the results from the
C<seq_results> attribute.

=item C<sequence_report>

Write an Excel or CSV (comma separated value) file that can be
imported into a spreadsheet with the results of the combinatorial fit.

  $lcf->sequence_report("results.csv");

The argument is the name of the output file (which you probably want
to give a ".csv" or ".xls" extension so your spreadsheet will know to
import it as such.  The choice of file type is controlled by the value
of the C<lcf -E<gt>; output> configuration parameter.

Note that care is taken to strip any commas from the names of the
standards before writing the CSV file.  Also note that this does not
make the most elegant spreadsheet, but it is certainly functional and
it certainly allows you to examine all of your results.

=item C<sequence_plot>

Make a plot of the component weights as a function of data set.

=back

=head1 SERIALIZATION AND DESERIALIZATION

Good question ...

=head1 CONFIGURATION AND ENVIRONMENT

See L<Demeter::Config> for a description of the configuration system.
See the C<lcf> configuration group for the relevant parameters.

=head1 DEPENDENCIES

Demeter's dependencies are in the F<Build.PL> file.

=head1 BUGS AND LIMITATIONS

=over 4

=item *

noise

=item *

Serialization and deserialization

=item *

linear term

=item *

better sanity method that provides usable feedback for a GUI

=item *

singlefile plot

=item *

further processing of LCF result (i.e. bkg removal, FTs).  This seems
better than converting the fit into a normal Data object

=back

Please report problems to the Ifeffit Mailing List
(L<http://cars9.uchicago.edu/mailman/listinfo/ifeffit/>)

Patches are welcome.

=head1 AUTHOR

Bruce Ravel, L<http://bruceravel.github.io/home>

L<http://bruceravel.github.io/demeter/>


=head1 LICENCE AND COPYRIGHT

Copyright (c) 2006-2019 Bruce Ravel (L<http://bruceravel.github.io/home>). All rights reserved.

This module is free software; you can redistribute it and/or
modify it under the same terms as Perl itself. See L<perlgpl>.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

=cut