File: acosd32.c

package info (click to toggle)
libdfp 1.0.13-1
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 6,236 kB
  • ctags: 5,157
  • sloc: ansic: 48,837; sh: 6,219; asm: 1,911; makefile: 660; awk: 455; python: 396; cpp: 254
file content (358 lines) | stat: -rw-r--r-- 10,672 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/* Calculates the arccos(x)

   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
   Copyright (C) 2006 IBM Corporation.
   Copyright (C) 2001-2015 Free Software Foundation, Inc.

   This file is part of the Decimal Floating Point C Library.

   Author(s): Joseph Kerian <jkerian@us.ibm.com>

   The Decimal Floating Point C Library is free software; you can
   redistribute it and/or modify it under the terms of the GNU Lesser
   General Public License version 2.1.

   The Decimal Floating Point C Library is distributed in the hope that
   it will be useful, but WITHOUT ANY WARRANTY; without even the implied
   warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
   the GNU Lesser General Public License version 2.1 for more details.

   You should have received a copy of the GNU Lesser General Public
   License version 2.1 along with the Decimal Floating Point C Library;
   if not, write to the Free Software Foundation, Inc., 59 Temple Place,
   Suite 330, Boston, MA 02111-1307 USA.

   Please see libdfp/COPYING.txt for more information.  */

#ifndef _DECIMAL_SIZE
#  include <decimal32.h>
#  define _DECIMAL_SIZE 32
#endif
#include <math.h>
#include <errno.h>
#include <ieee754r_private.h>

/* Portions of this code are:
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 *
 * This was adapted for glibc in 2001.
 * This was adapted for Libdfp in 2006, and those changes donated to the FSF in
 * 2007.
 *
 * __ieee754_acosl(x)
 * Method :
 *      acos(x)  = pi/2 - asin(x)
 *      acos(-x) = pi/2 + asin(x)
 * For |x| <= 0.375
 *      acos(x) = pi/2 - asin(x)
 * Between .375 and .5 the approximation is
 *      acos(0.4375 + x) = acos(0.4375) + x P(x) / Q(x)
 * Between .5 and .625 the approximation is
 *      acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
 * For x > 0.625,
 *      acos(x) = 2 asin(sqrt((1-x)/2))
 *      computed with an extended precision square root in the leading term.
 * For x < -0.625
 *      acos(x) = pi - 2 asin(sqrt((1-|x|)/2))
 *
 * Special cases:
 *      if x is NaN, return x itself;
 *      if |x|>1, return NaN with invalid signal.
 *
 * Functions needed: __ieee754_sqrtl.
 */


#ifdef __STDC__
static const _Decimal128
#else
static _Decimal128
#endif
  one = 1.0DL,
  pio2_hi = 1.5707963267948966192313216916397514420986DL,
  pio2_lo = 4.3359050650618905123985220130216759843812E-35DL,

  /* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x)
     -0.0625 <= x <= 0.0625
     peak relative error 3.3e-35  */

  rS0 =  5.619049346208901520945464704848780243887E0DL,
  rS1 = -4.460504162777731472539175700169871920352E1DL,
  rS2 =  1.317669505315409261479577040530751477488E2DL,
  rS3 = -1.626532582423661989632442410808596009227E2DL,
  rS4 =  3.144806644195158614904369445440583873264E1DL,
  rS5 =  9.806674443470740708765165604769099559553E1DL,
  rS6 = -5.708468492052010816555762842394927806920E1DL,
  rS7 = -1.396540499232262112248553357962639431922E1DL,
  rS8 =  1.126243289311910363001762058295832610344E1DL,
  rS9 =  4.956179821329901954211277873774472383512E-1DL,
  rS10 = -3.313227657082367169241333738391762525780E-1DL,

  sS0 = -4.645814742084009935700221277307007679325E0DL,
  sS1 =  3.879074822457694323970438316317961918430E1DL,
  sS2 = -1.221986588013474694623973554726201001066E2DL,
  sS3 =  1.658821150347718105012079876756201905822E2DL,
  sS4 = -4.804379630977558197953176474426239748977E1DL,
  sS5 = -1.004296417397316948114344573811562952793E2DL,
  sS6 =  7.530281592861320234941101403870010111138E1DL,
  sS7 =  1.270735595411673647119592092304357226607E1DL,
  sS8 = -1.815144839646376500705105967064792930282E1DL,
  sS9 = -7.821597334910963922204235247786840828217E-2DL,
  /* 1.000000000000000000000000000000000000000E0 */

  acosr5625 = 9.7338991014954640492751132535550279812151E-1DL,
  pimacosr5625 = 2.1682027434402468335351320579240000860757E0DL,

  /* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x)
     -0.0625 <= x <= 0.0625
     peak relative error 2.1e-35  */

  P0 =  2.177690192235413635229046633751390484892E0DL,
  P1 = -2.848698225706605746657192566166142909573E1DL,
  P2 =  1.040076477655245590871244795403659880304E2DL,
  P3 = -1.400087608918906358323551402881238180553E2DL,
  P4 =  2.221047917671449176051896400503615543757E1DL,
  P5 =  9.643714856395587663736110523917499638702E1DL,
  P6 = -5.158406639829833829027457284942389079196E1DL,
  P7 = -1.578651828337585944715290382181219741813E1DL,
  P8 =  1.093632715903802870546857764647931045906E1DL,
  P9 =  5.448925479898460003048760932274085300103E-1DL,
  P10 = -3.315886001095605268470690485170092986337E-1DL,
  Q0 = -1.958219113487162405143608843774587557016E0DL,
  Q1 =  2.614577866876185080678907676023269360520E1DL,
  Q2 = -9.990858606464150981009763389881793660938E1DL,
  Q3 =  1.443958741356995763628660823395334281596E2DL,
  Q4 = -3.206441012484232867657763518369723873129E1DL,
  Q5 = -1.048560885341833443564920145642588991492E2DL,
  Q6 =  6.745883931909770880159915641984874746358E1DL,
  Q7 =  1.806809656342804436118449982647641392951E1DL,
  Q8 = -1.770150690652438294290020775359580915464E1DL,
  Q9 = -5.659156469628629327045433069052560211164E-1DL,
  /* 1.000000000000000000000000000000000000000E0 */

  acosr4375 = 1.1179797320499710475919903296900511518755E0DL,
  pimacosr4375 = 2.0236129215398221908706530535894517323217E0DL,

  /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
     0 <= x <= 0.5
     peak relative error 1.9e-35  */
  pS0 = -8.358099012470680544198472400254596543711E2DL,
  pS1 =  3.674973957689619490312782828051860366493E3DL,
  pS2 = -6.730729094812979665807581609853656623219E3DL,
  pS3 =  6.643843795209060298375552684423454077633E3DL,
  pS4 = -3.817341990928606692235481812252049415993E3DL,
  pS5 =  1.284635388402653715636722822195716476156E3DL,
  pS6 = -2.410736125231549204856567737329112037867E2DL,
  pS7 =  2.219191969382402856557594215833622156220E1DL,
  pS8 = -7.249056260830627156600112195061001036533E-1DL,
  pS9 =  1.055923570937755300061509030361395604448E-3DL,

  qS0 = -5.014859407482408326519083440151745519205E3DL,
  qS1 =  2.430653047950480068881028451580393430537E4DL,
  qS2 = -4.997904737193653607449250593976069726962E4DL,
  qS3 =  5.675712336110456923807959930107347511086E4DL,
  qS4 = -3.881523118339661268482937768522572588022E4DL,
  qS5 =  1.634202194895541569749717032234510811216E4DL,
  qS6 = -4.151452662440709301601820849901296953752E3DL,
  qS7 =  5.956050864057192019085175976175695342168E2DL,
  qS8 = -4.175375777334867025769346564600396877176E1DL;
  /* 1.000000000000000000000000000000000000000E0 */

#include <math.h>

#define FUNCTION_NAME acos

#include <dfpmacro.h>

static DEC_TYPE
IEEE_FUNCTION_NAME (DEC_TYPE x)
{
  _Decimal128 z, r, w, p, q, s, t, f2, ix;
  int32_t sign;

  if(isnan(x))
    return x+x;

  sign = (x > 0.0DL)?0:1;
  ix = FUNC_D(__fabs) (x);

  if (ix >= 1.0DL)		/* |x| >= 1 */
    {
      if (ix == 1.0DL)
	{			/* |x| == 1 */
	  if (sign == 0)
	    return (DEC_TYPE)(0.0DL);		/* acos(1) = 0  */
	  else
	    return (DEC_TYPE)((2.0DL * pio2_hi) + (2.0DL * pio2_lo));	/* acos(-1)= pi */
	}
      /* acos(|x| > 1) is NaN */
      DFP_EXCEPT (FE_INVALID);
      return DFP_NAN;
    }
  else if (ix < 0.5DL)	/* |x| < 0.5 */
    {
      /* |x| < 2**-57 */
      if (ix < 0.000000000000000000000000000000000000000000000000000000002DL)
	return (DEC_TYPE)(pio2_hi + pio2_lo); //Should raise INEXACT
      if (ix < 0.4375DL)	/* |x| < .4375 */
	{
	  /* Arcsine of x.  */
	  z = x * x;
	  p = (((((((((pS9 * z
		       + pS8) * z
		      + pS7) * z
		     + pS6) * z
		    + pS5) * z
		   + pS4) * z
		  + pS3) * z
		 + pS2) * z
		+ pS1) * z
	       + pS0) * z;
	  q = (((((((( z
		       + qS8) * z
		     + qS7) * z
		    + qS6) * z
		   + qS5) * z
		  + qS4) * z
		 + qS3) * z
		+ qS2) * z
	       + qS1) * z
	    + qS0;
	  r = x + x * p / q;
	  z = pio2_hi - (r - pio2_lo);
	  return (DEC_TYPE)z;
	}
      /* .4375 <= |x| < .5 */
      t = ix - 0.4375DL;
      p = ((((((((((P10 * t
		    + P9) * t
		   + P8) * t
		  + P7) * t
		 + P6) * t
		+ P5) * t
	       + P4) * t
	      + P3) * t
	     + P2) * t
	    + P1) * t
	   + P0) * t;

      q = (((((((((t
		   + Q9) * t
		  + Q8) * t
		 + Q7) * t
		+ Q6) * t
	       + Q5) * t
	      + Q4) * t
	     + Q3) * t
	    + Q2) * t
	   + Q1) * t
	+ Q0;
      r = p / q;
      if (sign)
	r = pimacosr4375 - r;
      else
	r = acosr4375 + r;
      return (DEC_TYPE)r;
    }
  else if (ix < 0.625DL)	/* |x| < 0.625 */
    {
      t = ix - 0.5625DL;
      p = ((((((((((rS10 * t
		    + rS9) * t
		   + rS8) * t
		  + rS7) * t
		 + rS6) * t
		+ rS5) * t
	       + rS4) * t
	      + rS3) * t
	     + rS2) * t
	    + rS1) * t
	   + rS0) * t;

      q = (((((((((t
		   + sS9) * t
		  + sS8) * t
		 + sS7) * t
		+ sS6) * t
	       + sS5) * t
	      + sS4) * t
	     + sS3) * t
	    + sS2) * t
	   + sS1) * t
	+ sS0;
      if (sign)
	r = pimacosr5625 - p / q;
      else
	r = acosr5625 + p / q;
      return (DEC_TYPE)r;
    }
  else
    {				/* |x| >= .625 */
      z = (one - ix) * 0.5DL;
      s = __sqrtd128 (z);
      /* Compute an extended precision square root from
	 the Newton iteration  s -> 0.5 * (s + z / s).
         The change w from s to the improved value is
	    w = 0.5 * (s + z / s) - s  = (s^2 + z)/2s - s = (z - s^2)/2s.
          Express s = f1 + f2 where f1 * f1 is exactly representable.
	  w = (z - s^2)/2s = (z - f1^2 - 2 f1 f2 - f2^2)/2s .
          s + w has extended precision.  */
      p = s;
     /*
      u.value = s;
      u.parts32.w2 = 0;
      u.parts32.w3 = 0;
      */
      f2 = s - p;
      w = z - p * p;
      w = w - 2.0DL * p * f2;
      w = w - f2 * f2;
      w = w / (2.0DL * s);
      /* Arcsine of s.  */
      p = (((((((((pS9 * z
		   + pS8) * z
		  + pS7) * z
		 + pS6) * z
		+ pS5) * z
	       + pS4) * z
	      + pS3) * z
	     + pS2) * z
	    + pS1) * z
	   + pS0) * z;
      q = (((((((( z
		   + qS8) * z
		 + qS7) * z
		+ qS6) * z
	       + qS5) * z
	      + qS4) * z
	     + qS3) * z
	    + qS2) * z
	   + qS1) * z
	+ qS0;
      r = s + (w + s * p / q);

      if (sign)
	w = pio2_hi + (pio2_lo - r);
      else
	w = r;
      return (DEC_TYPE)(2.0DL * w);
    }
}

DEC_TYPE
INTERNAL_FUNCTION_NAME (DEC_TYPE x)
{
  DEC_TYPE z = IEEE_FUNCTION_NAME (x);
  if (x > DFP_CONSTANT(1.0) || x < DFP_CONSTANT(-1.0))
    DFP_ERRNO (EDOM);
  return z;
}

weak_alias (INTERNAL_FUNCTION_NAME, EXTERNAL_FUNCTION_NAME)