1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
/* Calculates the arcsin(x)
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
Copyright (C) 2006 IBM Corporation.
Copyright (C) 2001-2015 Free Software Foundation, Inc.
This file is part of the Decimal Floating Point C Library.
Author(s) Joseph Kerian <jkerian@us.ibm.com>
The Decimal Floating Point C Library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser
General Public License version 2.1.
The Decimal Floating Point C Library is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License version 2.1 for more details.
You should have received a copy of the GNU Lesser General Public
License version 2.1 along with the Decimal Floating Point C Library;
if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA.
Please see libdfp/COPYING.txt for more information. */
#ifndef _DECIMAL_SIZE
# include <decimal32.h>
# define _DECIMAL_SIZE 32
#endif
#include <math.h>
#include <errno.h>
#include <ieee754r_private.h>
/* Portions of this code are:
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* This was adapted for glibc in 2001.
* This was adapted for Libdfp in 2006, and those changes donated to the FSF in
* 2007.
*
* __ieee754_asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
* Between .5 and .625 the approximation is
* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
* For x in [0.625,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#ifdef __STDC__
static const _Decimal128
#else
static _Decimal128
#endif
one = 1.0DL,
huge = 1.0e+300DL,
pio2_hi = 1.5707963267948966192313216916397514420986DL,
pio2_lo = 4.3359050650618905123985220130216759843812E-35DL,
pio4_hi = 7.8539816339744830961566084581987569936977E-1DL,
/* coefficient for R(x^2) */
/* asin(x) = x + x^3 pS(x^2) / qS(x^2)
0 <= x <= 0.5
peak relative error 1.9e-35 */
pS0 = -8.358099012470680544198472400254596543711E2DL,
pS1 = 3.674973957689619490312782828051860366493E3DL,
pS2 = -6.730729094812979665807581609853656623219E3DL,
pS3 = 6.643843795209060298375552684423454077633E3DL,
pS4 = -3.817341990928606692235481812252049415993E3DL,
pS5 = 1.284635388402653715636722822195716476156E3DL,
pS6 = -2.410736125231549204856567737329112037867E2DL,
pS7 = 2.219191969382402856557594215833622156220E1DL,
pS8 = -7.249056260830627156600112195061001036533E-1DL,
pS9 = 1.055923570937755300061509030361395604448E-3DL,
qS0 = -5.014859407482408326519083440151745519205E3DL,
qS1 = 2.430653047950480068881028451580393430537E4DL,
qS2 = -4.997904737193653607449250593976069726962E4DL,
qS3 = 5.675712336110456923807959930107347511086E4DL,
qS4 = -3.881523118339661268482937768522572588022E4DL,
qS5 = 1.634202194895541569749717032234510811216E4DL,
qS6 = -4.151452662440709301601820849901296953752E3DL,
qS7 = 5.956050864057192019085175976175695342168E2DL,
qS8 = -4.175375777334867025769346564600396877176E1DL,
/* 1.000000000000000000000000000000000000000E0 */
/* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
-0.0625 <= x <= 0.0625
peak relative error 3.3e-35 */
rS0 = -5.619049346208901520945464704848780243887E0DL,
rS1 = 4.460504162777731472539175700169871920352E1DL,
rS2 = -1.317669505315409261479577040530751477488E2DL,
rS3 = 1.626532582423661989632442410808596009227E2DL,
rS4 = -3.144806644195158614904369445440583873264E1DL,
rS5 = -9.806674443470740708765165604769099559553E1DL,
rS6 = 5.708468492052010816555762842394927806920E1DL,
rS7 = 1.396540499232262112248553357962639431922E1DL,
rS8 = -1.126243289311910363001762058295832610344E1DL,
rS9 = -4.956179821329901954211277873774472383512E-1DL,
rS10 = 3.313227657082367169241333738391762525780E-1DL,
sS0 = -4.645814742084009935700221277307007679325E0DL,
sS1 = 3.879074822457694323970438316317961918430E1DL,
sS2 = -1.221986588013474694623973554726201001066E2DL,
sS3 = 1.658821150347718105012079876756201905822E2DL,
sS4 = -4.804379630977558197953176474426239748977E1DL,
sS5 = -1.004296417397316948114344573811562952793E2DL,
sS6 = 7.530281592861320234941101403870010111138E1DL,
sS7 = 1.270735595411673647119592092304357226607E1DL,
sS8 = -1.815144839646376500705105967064792930282E1DL,
sS9 = -7.821597334910963922204235247786840828217E-2DL,
/* 1.000000000000000000000000000000000000000E0 */
asinr5625 = 5.9740641664535021430381036628424864397707E-1DL;
#include <math.h>
#define FUNCTION_NAME asin
#include <dfpmacro.h>
//#include "math_private.h"
//long double sqrtl (long double);
static DEC_TYPE
IEEE_FUNCTION_NAME (DEC_TYPE x)
{
_Decimal128 t, w, p, q, c, r, s, ix;
int32_t sign, flag;
if(isnan(x))
return x+x;
flag = 0;
sign = (x < 0.0DL)?1:0;
ix = FUNC_D(__fabs) (x);
if (ix >= 1.0DL) /* |x|>= 1 */
{
/* asin(1)=+-pi/2 with inexact */
if (ix == 1.0DL)
return (DEC_TYPE)(x * pio2_hi + x * pio2_lo);
/* asin(|x|>1) is NaN */
DFP_EXCEPT (FE_INVALID);
return DFP_NAN;
}
else if (ix < 0.5DL) /* |x| < 0.5 */
{
if (ix < 0.000000000000000000000000000000000000000000000000000000002DL) /* |x| < 2**-57 */
{
if (huge + x > one)
return x; /* return x with inexact if x!=0 */
t = 0.0DL;
}
else
{
t = x * x;
/* Mark to use pS, qS later on. */
flag = 1;
}
}
else if (ix < 0.625DL) /* 0.625 */
{
t = ix - 0.5625DL;
p = ((((((((((rS10 * t
+ rS9) * t
+ rS8) * t
+ rS7) * t
+ rS6) * t
+ rS5) * t
+ rS4) * t
+ rS3) * t
+ rS2) * t
+ rS1) * t
+ rS0) * t;
q = ((((((((( t
+ sS9) * t
+ sS8) * t
+ sS7) * t
+ sS6) * t
+ sS5) * t
+ sS4) * t
+ sS3) * t
+ sS2) * t
+ sS1) * t
+ sS0;
t = asinr5625 + p / q;
if (sign == 0)
return (DEC_TYPE)t;
else
return (DEC_TYPE)(-t);
}
else
{
/* 1 > |x| >= 0.625 */
w = one - ix;
t = w * 0.5DL;
}
p = (((((((((pS9 * t
+ pS8) * t
+ pS7) * t
+ pS6) * t
+ pS5) * t
+ pS4) * t
+ pS3) * t
+ pS2) * t
+ pS1) * t
+ pS0) * t;
q = (((((((( t
+ qS8) * t
+ qS7) * t
+ qS6) * t
+ qS5) * t
+ qS4) * t
+ qS3) * t
+ qS2) * t
+ qS1) * t
+ qS0;
if (flag) /* 2^-57 < |x| < 0.5 */
{
w = p / q;
return (DEC_TYPE)(x + x * w);
}
s = __sqrtd128 (t);
if (ix >= 0.975DL) /* |x| > 0.975 */
{
w = p / q;
t = pio2_hi - (2.0DL * (s + s * w) - pio2_lo);
}
else
{
w = s;
/* Look into the reason this code was here
u.value = s;
u.parts32.w3 = 0;
u.parts32.w2 = 0;
w = u.value;
*/
c = (t - w * w) / (s + w);
r = p / q;
p = 2.0DL * s * r - (pio2_lo - 2.0DL * c);
q = pio4_hi - 2.0DL * w;
t = pio4_hi - (p - q);
}
if (sign == 0)
return (DEC_TYPE)t;
else
return (DEC_TYPE)(-t);
}
DEC_TYPE
INTERNAL_FUNCTION_NAME (DEC_TYPE x)
{
DEC_TYPE z = IEEE_FUNCTION_NAME (x);
if (x > DFP_CONSTANT(1.0) || x < DFP_CONSTANT(-1.0))
DFP_ERRNO (EDOM);
return z;
}
weak_alias (INTERNAL_FUNCTION_NAME, EXTERNAL_FUNCTION_NAME)
|