File: cbrtd32.c

package info (click to toggle)
libdfp 1.0.13-1
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 6,236 kB
  • ctags: 5,157
  • sloc: ansic: 48,837; sh: 6,219; asm: 1,911; makefile: 660; awk: 455; python: 396; cpp: 254
file content (157 lines) | stat: -rw-r--r-- 4,572 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/* Calculates the cube root function of _Decimal32 type x

   Copyright (C) 1984, 1991 Stephen L. Moshier.
   Copyright (C) 2006 IBM Corporation.
   Copyright (C) 2001-2015 Free Software Foundation, Inc.

   This file is part of the Decimal Floating Point C Library.

   Author(s): Joseph Kerian <jkerian@us.ibm.com>

   The Decimal Floating Point C Library is free software; you can
   redistribute it and/or modify it under the terms of the GNU Lesser
   General Public License version 2.1.

   The Decimal Floating Point C Library is distributed in the hope that
   it will be useful, but WITHOUT ANY WARRANTY; without even the implied
   warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
   the GNU Lesser General Public License version 2.1 for more details.

   You should have received a copy of the GNU Lesser General Public
   License version 2.1 along with the Decimal Floating Point C Library;
   if not, write to the Free Software Foundation, Inc., 59 Temple Place,
   Suite 330, Boston, MA 02111-1307 USA.

   Please see libdfp/COPYING.txt for more information.  */

#ifndef _DECIMAL_SIZE
#  include <decimal32.h>
#  define _DECIMAL_SIZE 32
#endif

#include <math.h>
#include <ieee754r_private.h>

#define FUNCTION_NAME cbrt

#include <dfpmacro.h>

/*
 *  Provided by the Cephes Math Library Release 2.2: January, 1991
 *  By Stephen L. Moshier
 *  Adapted for glibc October, 2001.
 *  Adapted for libdfp 2006, and donated to the FSF in 2007.
 *
 * DESCRIPTION:
 * Returns the cube root of the argument, which may be negative.
 *
 * Range reduction involves determining the power of 2 of
 * the argument.  A polynomial of degree 2 applied to the
 * mantissa, and multiplication by the cube root of 1, 2, or 4
 * approximates the root to within about 0.1%.  Then Newton's
 * iteration is used three times to converge to an accurate
 * result.
 *
 * ACCURACY:
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       -8,8       100000      1.3e-34     3.9e-35
 *    IEEE    exp(+-707)    100000      1.3e-34     4.3e-35
 */

/* Replace with:
 * cbrt(10) and cbrt(100)
 * and
 * cbrt(-10) and cbrt(-100)
 *
 * used 'bc' to get these and then trunced by hand.
 *  echo 'scale=44;e(1/3*(l(10)))' | bc -l
 *  echo 'scale=44;e(1/3*(l(100)))' | bc -l
 *  echo 'scale=45;e(1/3*(l(1/10)))' | bc -l
 *  echo 'scale=45;e(1/3*(l(1/100)))' | bc -l
 */
static const _Decimal128
	CBRT10   = 2.154434690031883721759293566519350495259345DL,
	CBRT100  = 4.641588833612778892410076350919446576551349DL,
	CBRT10I  = 0.4641588833612778892410076350919446576551349DL,
	CBRT100I = 0.2154434690031883721759293566519350495259345DL;

//	CBRT2 = 1.259921049894873164767210607278228350570251DL,
//	CBRT4 = 1.587401051968199474751705639272308260391493DL,
//	CBRT2I= 0.7937005259840997373758528196361541301957467DL,
//	CBRT4I= 0.6299605249474365823836053036391141752851257DL;

DEC_TYPE
INTERNAL_FUNCTION_NAME (DEC_TYPE x)
{
  int e, rem, sign;
  _Decimal128 z;

  if (! FUNC_D(__isfinite) (x)) /* cbrt(x:x=inf/nan/-inf) = x+x (for sNaN) */
    return x + x;

  if (x == DFP_CONSTANT(0.0)) /*  cbrt(0) = 0 */
    return (x);

  if (x > DFP_CONSTANT(0.0))
    sign = 1;
  else
    {
      sign = -1;
      x = -x;
    }

  z = x;
 /* extract power of 2, leaving mantissa between 0.5 and 1  */
  x = FUNC_D(__frexp) (x, &e);

  /* Approximate cube root of number between .5 and 1,
     peak relative error = 1.2e-6  */
  x = ((((1.3584464340920900529734e-1DL * x
	  - 6.3986917220457538402318e-1DL) * x
	 + 1.2875551670318751538055e0DL) * x
	- 1.4897083391357284957891e0DL) * x
       + 1.3304961236013647092521e0DL) * x + 3.7568280825958912391243e-1DL;

  /* exponent divided by 3 */
  if (e >= 0)
    {
      rem = e;
      e /= 3;
      rem -= 3 * e;
      if (rem == 1)
	//x *= CBRT2;
	x *= CBRT10;
      else if (rem == 2)
	//x *= CBRT4;
	x *= CBRT100;
    }
  else
    {				/* argument less than 1 */
      e = -e;
      rem = e;
      e /= 3;
      rem -= 3 * e;
      if (rem == 1)
	//x *= CBRT2I;
	x *= CBRT10I;
      else if (rem == 2)
	//x *= CBRT4I;
	x *= CBRT100I;
      e = -e;
    }

  /* multiply by power of 2 */
  x = FUNC_D(__ldexp) (x, e);

  /* Newton iteration */
  x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333DL;
  x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333DL;
  x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333DL;

  if (sign < 0)
    x = -x;
  return (x);
}

weak_alias (INTERNAL_FUNCTION_NAME, EXTERNAL_FUNCTION_NAME)