1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
/* Calculate x^y, where x and y are _Decimal32 types
Copyright (C) 2006 IBM Corporation.
Copyright (C) 2007-2015 Free Software Foundation, Inc.
This file is part of the Decimal Floating Point C Library.
Author(s): Joseph Kerian <jkerian@us.ibm.com>
The Decimal Floating Point C Library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser
General Public License version 2.1.
The Decimal Floating Point C Library is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License version 2.1 for more details.
You should have received a copy of the GNU Lesser General Public
License version 2.1 along with the Decimal Floating Point C Library;
if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA.
Please see libdfp/COPYING.txt for more information. */
#ifndef _DECIMAL_SIZE
# define _DECIMAL_SIZE 32
# include <decimal32.h>
#endif
#include <decContext.h>
#include <decNumber.h>
#include <math.h>
#include <errno.h>
#include <ieee754r_private.h>
#include <decNumberMath.h>
#define FUNCTION_NAME pow
#include <dfpmacro.h>
static DEC_TYPE
IEEE_FUNCTION_NAME (DEC_TYPE x, DEC_TYPE y)
{
decContext context;
decNumber dn_result;
DEC_TYPE result;
DEC_TYPE absx;
decNumber dn_x;
decNumber dn_absx;
decNumber dn_y;
decNumber dn_one;
decNumber dn_two;
decNumber dn_temp;
decNumber dn_temp2;
decNumber dn_temp3;
int y_is_int;
int y_is_oddint=0;
int abs_x_vs_1;
DEC_TYPE one = DFP_CONSTANT(1.0);
DEC_TYPE two = DFP_CONSTANT(2.0);
FUNC_CONVERT_TO_DN (&x, &dn_x);
FUNC_CONVERT_TO_DN (&y, &dn_y);
FUNC_CONVERT_TO_DN (&one, &dn_one);
decContextDefault (&context, DEFAULT_CONTEXT);
if (decNumberIsZero (&dn_y))
return one;
if (decNumberIsNaN (&dn_x))
return x+x;
decNumberAbs (&dn_absx, &dn_x, &context);
FUNC_CONVERT_FROM_DN (&dn_absx, &absx, &context);
if(absx<one)
abs_x_vs_1 = -1;
else if (absx==one)
abs_x_vs_1 = 0;
else
abs_x_vs_1 = 1;
/* abs_x_vs_1 = decCompare(&dn_absx, &dn_one); */
if(abs_x_vs_1 == 0 && !decNumberIsNegative (&dn_x)) /* If x == +1 */
return one;
if (decNumberIsNaN (&dn_y))
return y+y;
/* Detect if y is odd/an integer */
decNumberToIntegralValue (&dn_temp, &dn_y, &context);
decNumberSubtract (&dn_temp2, &dn_temp, &dn_y, &context);
y_is_int = decNumberIsZero (&dn_temp2);
if (y_is_int)
{
FUNC_CONVERT_TO_DN (&two, &dn_two);
decNumberDivide (&dn_temp, &dn_y, &dn_two, &context);
decNumberToIntegralValue (&dn_temp2, &dn_temp, &context);
decNumberSubtract (&dn_temp3, &dn_temp2, &dn_temp, &context);
y_is_oddint = !decNumberIsZero (&dn_temp3);
}
/* Handle all special cases for which x = +-0 */
if (decNumberIsZero (&dn_x))
{
if(decNumberIsNegative (&dn_y))
{
if (decNumberIsInfinite (&dn_y)) /* +-0^-Inf = +Inf */
return -y;
/* Pole Error for x = +-0, y < 0 */
DFP_EXCEPT (FE_DIVBYZERO);
return decNumberIsNegative(&dn_x) && y_is_oddint ?
-DFP_HUGE_VAL : DFP_HUGE_VAL;
}
return decNumberIsNegative(&dn_x) && y_is_oddint ?
-DFP_CONSTANT(0.0) : DFP_CONSTANT(0.0);
}
/* Handle remaining special cases for x = +-Inf or y = +-Inf */
if (decNumberIsInfinite (&dn_x) || decNumberIsInfinite (&dn_y))
{
if (abs_x_vs_1 == 0) /* If (-1)^(+-Inf) */
return one;
if (abs_x_vs_1 < 0) /* x^(+-Inf), where 0<x<1 */
return decNumberIsNegative (&dn_y) ? DFP_HUGE_VAL
: DFP_CONSTANT(0.0);
if (decNumberIsNegative (&dn_y))
result = DFP_CONSTANT(0.0);
else
result = (DEC_TYPE)DEC_INFINITY;
if (y_is_oddint && decNumberIsNegative(&dn_x))
result = -result;
return result;
}
/* Domain Error: x < 0 && y is a finite non-int */
if (decNumberIsNegative (&dn_x) && !y_is_int)
{
DFP_EXCEPT (FE_INVALID);
return DFP_NAN;
}
decNumberPower (&dn_result, &dn_x, &dn_y, &context);
FUNC_CONVERT_FROM_DN (&dn_result, &result, &context);
if (context.status & DEC_Overflow)
DFP_EXCEPT (FE_OVERFLOW);
if (context.status & DEC_Underflow)
DFP_EXCEPT (FE_UNDERFLOW);
return result;
}
DEC_TYPE
INTERNAL_FUNCTION_NAME (DEC_TYPE x, DEC_TYPE y)
{
DEC_TYPE z = IEEE_FUNCTION_NAME (x, y);
/* Pole error: x = 0, y < 0 (non-inf). Set ERANGE in accordance with C99 */
if (x == DFP_CONSTANT(0.0) && FUNC_D(__isfinite)(y) && y < DFP_CONSTANT(0.0))
DFP_ERRNO (ERANGE);
if (!FUNC_D(__isfinite) (z) && FUNC_D(__isfinite) (x) && FUNC_D(__isfinite) (y))
{
if (FUNC_D(__isnan) (z)) /* Domain error was triggered, x < 0 and y was not an
odd int */
DFP_ERRNO (EDOM);
else /* Overflow */
DFP_ERRNO (ERANGE);
}
return z;
}
weak_alias (INTERNAL_FUNCTION_NAME, EXTERNAL_FUNCTION_NAME)
|