1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
/* Function definition to convert DFP values to strings
Copyright (C) 2006-2015 Free Software Foundation, Inc.
This file is part of the Decimal Floating Point C Library.
Author(s): Ryan S. Arnold <rsa@us.ibm.com>
Pete Eberlein <eberlein@us.ibm.com>
The Decimal Floating Point C Library is free software; you can
redistribute it and/or modify it under the terms of the GNU Lesser
General Public License version 2.1.
The Decimal Floating Point C Library is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License version 2.1 for more details.
You should have received a copy of the GNU Lesser General Public
License version 2.1 along with the Decimal Floating Point C Library;
if not, write to the Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301 USA.
Please see libdfp/COPYING.txt for more information. */
/* Based on GLIBC stdio-common/printf_fp.c by:
Ulrich Drepper <drepper@gnu.ai.mit.edu> */
#include "printf_dfp.h"
#include <unistd.h>
/* wchar.h has to be included BEFORE stdio.h or it loses function
* definitions when dfp/wchar.h uses #include_next <wchar.h>. */
#include <wchar.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <assert.h>
#include <fenv.h>
#include <langinfo.h>
#include <wctype.h>
#include <limits.h> /* For CHAR_MAX */
#include <stdio.h>
#include <get_digits.h>
#define _DECIMAL_SIZE 128
#define DEC_TYPE _Decimal128
#include <numdigits.h>
#undef _DECIMAL_SIZE
#undef DEC_TYPE
#undef ADJUST
#undef Q
#undef DECIMAL_BIAS
#define _DECIMAL_SIZE 64
#define DEC_TYPE _Decimal64
#include <numdigits.h>
#undef _DECIMAL_SIZE
#undef DEC_TYPE
#undef ADJUST
#undef Q
#undef DECIMAL_BIAS
#define _DECIMAL_SIZE 32
#define DEC_TYPE _Decimal32
#include <numdigits.h>
static int
wpadn (FILE *fp, wint_t pad, int count)
{
int i;
int written = 0;
for (i=0;i<count;i++)
if(putwc(pad,fp) != WEOF)
written++;
return written;
}
static int
padn (FILE *fp, int pad, int count)
{
int i;
int written = 0;
for (i=0;i<count;i++)
if(putc(pad,fp) != EOF)
written++;
return written;
}
#ifdef COMPILE_WIDE
# ifndef L
# define L(c) L##c
# endif
# ifndef CHAR_T
# define CHAR_T wchar_t
# endif
# ifndef PUT
# define PUT(x,y) putwc(x,y)
# endif
#else
# ifndef L
# define L(c) c
# endif
# ifndef CHAR_T
# define CHAR_T char
# endif
# ifndef PUT
# define PUT(x,y) putc(x,y)
# endif
#endif
#define PAD(f, c, n) (wide ? wpadn (f, c, n) : padn (f, c, n))
/* Macros for doing the actual output. */
#define outchar(ch) \
do \
{ \
register const int outc = (ch); \
if (PUT(outc, fp) == EOF) \
{ \
return -1; \
} \
++done; \
} while (0)
#define PADN(ch, len) \
do \
{ \
if ((PAD (fp, ch, len)) != len) \
{ \
return -1; \
} \
done += len; \
} \
while (0)
#define _OUT(pr) \
do \
{ \
int t_pr = 0; \
if (pr < 0) \
outchar('-');\
if (__builtin_abs(pr) > 999)\
{\
outchar('0' + __builtin_abs(pr) / 1000);\
t_pr = (__builtin_abs(pr) % 1000);\
outchar('0' + t_pr/100);\
t_pr = (__builtin_abs(t_pr) % 100);\
outchar('0' + t_pr/10);\
t_pr = (__builtin_abs(t_pr) % 10);\
outchar('0' + t_pr);\
}\
else if (__builtin_abs(pr) > 99)\
{\
outchar('0' + __builtin_abs(pr)/100);\
t_pr = (__builtin_abs(pr) % 100);\
outchar('0' + t_pr/10);\
t_pr = (__builtin_abs(t_pr) % 10);\
outchar('0' + t_pr);\
}\
else if (__builtin_abs(pr) > 9)\
{\
outchar('0' + __builtin_abs(pr)/10);\
t_pr = (__builtin_abs(pr) % 10);\
outchar('0' + t_pr);\
}\
else\
{\
outchar('0' + __builtin_abs(pr));\
}\
} while (0)
#define OUT_DIGITS(xp) \
do \
{ \
int ia; \
outchar('['); \
outchar('d'); \
outchar('i'); \
outchar('g'); \
outchar('i'); \
outchar('t'); \
outchar('s'); \
outchar(':'); \
for (ia = 0; digits[ia] != '\0'; ia++) \
outchar(digits[ia]); \
outchar('e'); \
_OUT(xp); \
outchar(']');\
} while (0)
#define OUT(pr,val) \
do \
{ \
int slen = strlen(pr); \
int ia; \
outchar('['); \
for (ia = 0; ia < slen; ia++) \
outchar(pr[ia]); \
outchar(':'); \
_OUT(val); \
outchar(']');\
} while (0)
#define OUT_PREC(pr) \
do \
{ \
OUT("prec",pr); \
} while (0)
#define OUT_INPUT_PREC(pr) \
do \
{ \
OUT("input_prec",pr); \
} while (0)
#define OUT_INDEX(idx) \
do \
{ \
OUT("index",idx); \
} while (0)
#define OUT_DEFAULT_PREC(pr) \
do \
{ \
OUT("default_prec",pr); \
} while (0)
#define OUT_LEN(ln) \
do \
{ \
OUT("len",ln); \
} while (0)
#define OUT_SIG(sg) \
do \
{ \
OUT("sig",sg); \
} while (0)
#define OUT_N(na) \
do \
{ \
OUT("n",na); \
} while (0)
#define OUT_WIDTH(wd) \
do \
{ \
OUT("width",wd); \
} while (0)
#define OUT_DECPT(dpt) \
do \
{ \
OUT("decpt",dpt); \
} while (0)
static int pa_d128;
static int pa_d64;
static int pa_d32;
/* Assign these a unique 2^n value in case printf registration is not used
as this support is used to implement strfromdN. */
int mod_H = 1;
int mod_D = 2;
int mod_DD = 4;
void
__d128_va (void *mem, va_list *ap)
{
_Decimal128 d = va_arg (*ap, _Decimal128);
memcpy (mem, &d, sizeof (d));
}
strong_alias(__d128_va, d128_va)
hidden_def(__d128_va)
void
__d64_va (void *mem, va_list *ap)
{
_Decimal64 d = va_arg (*ap, _Decimal64);
memcpy (mem, &d, sizeof (d));
}
strong_alias(__d64_va, d64_va)
hidden_def(__d64_va)
void
__d32_va (void *mem, va_list *ap)
{
_Decimal32 d = va_arg (*ap, _Decimal32);
memcpy (mem, &d, sizeof (d));
}
strong_alias(__d32_va, d32_va)
hidden_def(__d32_va)
int
__dfp_ais (const struct printf_info *info, size_t n __attribute__ ((unused)), int *argtype, int *size)
{
if ((info->user & mod_D) == mod_D)
{
argtype[0] = pa_d64;
size[0] = sizeof (_Decimal64);
return 1;
}
else if ((info->user & mod_DD) == mod_DD)
{
argtype[0] = pa_d128;
size[0] = sizeof (_Decimal128);
return 1;
}
else if ((info->user & mod_H) == mod_H)
{
argtype[0] = pa_d32;
size[0] = sizeof (_Decimal32);
return 1;
}
return -1;
}
strong_alias(__dfp_ais, dfp_ais)
hidden_def(__dfp_ais)
#define EXP_BIAS_D128 -6109
#define EXP_BIAS_D64 -368
#define EXP_BIAS_D32 -87
/* this includes the max digits in a _Decimal128, plus a bunch of formatting
* characters. */
#define DECIMAL_PRINTF_BUF_SIZE 65 /* ((DECIMAL128_PMAX + 14) * 2) + 1 */
/* fe_decround.c will initialize this function pointer to fe_decgetround */
int (*__printf_dfp_getround_callback)(void) = NULL;
int
__printf_dfp (FILE *fp,
const struct printf_info *info,
const void *const *args)
{
int wide = info->wide;
/* Counter for number of written characters. */
int done = 0;
/* Locale-dependent representation of decimal point. */
const char *decimal;
union { const char *mb; int wc; } decimalwc;
char spec = tolower(info->spec);
/* Locale-dependent thousands separator and grouping specification. */
const char *thousands_sep = NULL;
wchar_t thousands_sepwc = 0;
const char * thousands_sepmb;
const char *grouping;
if (info->extra == 0)
{
decimal = nl_langinfo (__DECIMAL_POINT);
decimalwc.mb = nl_langinfo (_NL_NUMERIC_DECIMAL_POINT_WC);
}
else
{
decimal = nl_langinfo (__MON_DECIMAL_POINT);
if (*decimal == '\0')
decimal = nl_langinfo (__DECIMAL_POINT);
decimalwc.mb = nl_langinfo (_NL_MONETARY_DECIMAL_POINT_WC);
if (decimalwc.wc == L'\0')
decimalwc.mb = nl_langinfo (_NL_NUMERIC_DECIMAL_POINT_WC);
}
/* The decimal point character must not be zero. */
assert (*decimal != '\0');
assert (decimalwc.wc != L'\0');
if (info->group)
{
if (info->extra == 0)
grouping = nl_langinfo (__GROUPING);
else
grouping = nl_langinfo (__MON_GROUPING);
if (*grouping <= 0 || *grouping == CHAR_MAX)
grouping = NULL;
else
{
/* Figure out the thousands separator character. */
if (wide)
{
if (info->extra == 0)
{
thousands_sepmb = nl_langinfo (_NL_NUMERIC_THOUSANDS_SEP_WC);
mbrtowc(&thousands_sepwc,thousands_sepmb, CHAR_MAX, NULL);
}
else
{
thousands_sepmb = nl_langinfo (_NL_MONETARY_THOUSANDS_SEP_WC);
mbrtowc(&thousands_sepwc,thousands_sepmb, CHAR_MAX, NULL);
}
}
else
{
if (info->extra == 0)
thousands_sep = nl_langinfo (__THOUSANDS_SEP);
else
thousands_sep = nl_langinfo (__MON_THOUSANDS_SEP);
}
if ((wide && thousands_sepwc == L'\0')
|| (! wide && *thousands_sep == '\0'))
grouping = NULL;
else if (thousands_sepwc == L'\0')
/* If we are printing multibyte characters and there is a
multibyte representation for the thousands separator,
we must ensure the wide character thousands separator
is available, even if it is fake. */
thousands_sepwc = 0xfffffffe;
}
}
else
grouping = NULL;
/* Seriously, only touch this code if you MUST. */
{
char digits[DECIMAL_PRINTF_BUF_SIZE];
int exp, /* The exponent. */
is_neg, /* Is negative? */
is_nan, /* Is not a number? */
is_inf, /* Is infinite? */
decpt = 2, /* decimal point offset into digits[] */
prec, /* number of digits that follow the decimal point, or number of significant digits for %g */
default_prec = 6, /* Default precision, per the C Spec. */
input_prec = 0, /* Precision of the _Decimal* value. */
mw, /* Mantissa Width */
n, /* Current digit offset into digits[] */
nd, /* num_digits before the get_digits call. */
width, /* Width of the field */
is_zero = 0; /* Used in some of the output tests. */
digits[0] = '0'; /* need an extra digit for rounding up */
if (info->user & mod_D)
{
_Decimal64 d64;
memcpy (&d64, *(void* const *)args[0], sizeof(d64));
if (d64 == 0) is_zero = 1;
nd = numdigitsd64(d64);
__get_digits_d64 (d64, digits+1, &exp, &is_neg, &is_nan, &is_inf);
mw = __DEC64_MANT_DIG__ + 1;
}
else if (info->user & mod_DD)
{
_Decimal128 d128;
memcpy (&d128, *(void* const *)args[0], sizeof(d128));
if (d128 == 0) is_zero = 1;
nd = numdigitsd128(d128);
__get_digits_d128 (d128, digits+1, &exp, &is_neg, &is_nan, &is_inf);
mw = __DEC128_MANT_DIG__ + 1;
}
else if (info->user & mod_H)
{
_Decimal32 d32;
memcpy (&d32, *(void* const *)args[0], sizeof(d32));
if (d32 == 0) is_zero = 1;
nd = numdigitsd32(d32);
__get_digits_d32 (d32, digits+1, &exp, &is_neg, &is_nan, &is_inf);
mw = __DEC32_MANT_DIG__ + 1;
}
else /* We shouldn't get here, but it is possible. */
return -2;
/* The first digit is always a zero to allow rounding. */
n = 0;
/* 'n' = position of first non-zero digit in the right-justified mantissa. */
n = mw - nd;
/* Width and precision can not both be set or the results are undefined per
* the C Spec. */
width = info->width;
/* The user specified precision overrides the input's inherent precision.
* This gets complicated quickly. */
prec = info->prec;
if (is_nan || is_inf)
{
width -= 3;
/*if (is_nan) is_neg = 0;*/
if (is_neg || info->showsign || info->space) width--;
if (!info->left && width > 0)
PADN (' ', width);
if (is_neg)
outchar ('-');
else if (info->showsign)
outchar ('+');
else if (info->space)
outchar (' ');
if (is_nan)
{
if (isupper(info->spec))
{ outchar ('N'); outchar ('A'); outchar ('N'); }
else
{ outchar ('n'); outchar ('a'); outchar ('n'); }
}
else
{
if (isupper(info->spec))
{ outchar ('I'); outchar ('N'); outchar ('F'); }
else
{ outchar ('i'); outchar ('n'); outchar ('f'); }
}
if (info->left && width > 0)
PADN (' ', width);
return 0;
}
/* The term "precision" refers to the number of significant digits right of
* the decimal place. Determine the implicit precision of the input value.
* There are special rules for each of the supported flags.*/
switch (spec)
{
case 'a':
{
/* The DFP spec addition for %a refers to all of the significant
* digits in the precision. */
input_prec = nd;
/* This same check is done in two different places but it'll only
* effect a single pass through once. If prec is not set it'll hit
* this instance. If prec is set it'll hit the next instance. This
* is because the DFP spec requires this to be run after rounding
* when prec < input_prec. */
if (prec < 0 || prec >= input_prec)
{
/* Per the DFP specification (s,c,q), c == digits, q = exp, s ==
* is_neg. */
if (exp >= -(nd+5) && exp <= 0)
{
prec = -exp;
spec = 'f';
}
else
{
prec = nd - 1;
spec = 'e';
input_prec = nd - 1;
}
}
break;
}
case 'g':
{
int P = prec;
/* When the C specification refers to X as the exponent it means the
* exponent when the input value encoding is normalized to the form
* d.dddd. This means we have to do that before we can do the goof
* check.
*
* e.g., 123.456E-5
* right-justified -> 00123456E-9
* normalized -> 1.23456E-4
*
* Normalize X to d.ddd... form by taking (exp) + (nd - 1)
*
* X == -4 */
int X = exp + (nd -1);
/* The C Specification also indicates how to compute P. */
if (prec < 0)
P = 6;
else if (prec == 0)
P = 1;
/* Straight from the specification which assumes X is exponent normalized to
* d.ddd... form. */
if (X >= -4 && P > X)
{
prec = (P - (X + 1));
spec = 'f';
}
else
{
prec = P - 1;
spec = 'e';
}
input_prec = nd - 1;
break;
}
case 'e':
input_prec = nd - 1;
break;
case 'f':
if(exp < 0 && (-exp) > default_prec)
/* 00123456E-7 has an input_prec of 7. */
input_prec = (-exp);
else
/* 01234567E-6 has an input_prec of 6. */
/* 00000190E6 has an input_prec of 6. */
/* 00000123E1 has an input_prec of 6. */
/* 00000123E0 has an input_prec of 6. */
input_prec = default_prec;
break;
}
/* The specs 'g' and 'a' may have already modified prec so this won't happen for
* those cases. */
if (prec < 0)
prec = default_prec;
/* Do rounding if precision is less than the decimal type. On hardware DFP
* this could probably easily be done with quantize but on soft-dfp the
* existing method would be faster. */
if (prec < input_prec)
{
int index, roundmode = 0;
char rounddigit = '4';
if (spec == 'f')
/* This may force index to negative, in which case we ignore it at a
* later time. */
index = n + nd + exp + prec;
/* Goofy special case where we round significant digits which aren't
* right of the decimal place. */
else if (tolower(info->spec) == 'a' && prec > 0)
{
index = n + prec;
}
else
index = n + prec + 1;
/* FIXME: we should check rounding mode for %a */
if (__printf_dfp_getround_callback)
{
roundmode = (*__printf_dfp_getround_callback)();
switch (roundmode)
{
case FE_DEC_TONEAREST: rounddigit = '4'; break;
case FE_DEC_TOWARDZERO: rounddigit = '9'; break;
case FE_DEC_UPWARD: rounddigit = (is_neg ? '9' : '0'-1); break;
case FE_DEC_DOWNWARD: rounddigit = (is_neg ? '0'-1 : '9'); break;
case FE_DEC_TONEARESTFROMZERO: rounddigit = '4'; break;
case 5: rounddigit = '4'; break; /* nearest, ties toward zero */
case 6: rounddigit = '0'-1; break; /* away from zero */
case 7: rounddigit = '4'; break; /* round for shorter precision */
default: rounddigit = '4'; break;
}
}
/* If this is true then the requested precision is smaller than the
* default and rounding is required. If 'exp' was sufficiently negative
* 'index' may be negative, in which case we don't need to round. */
if (index > 0 && index < mw && digits[index] > rounddigit)
do {
int trailzero = index+1;
if (digits[index] == rounddigit+1)
{
while (trailzero < mw)
{
if (digits[trailzero] != '0')
{
trailzero = 0;
break;
}
++trailzero;
}
if (roundmode == FE_DEC_TONEAREST && trailzero &&
(digits[index-1] & 1) == 0) break;
if (roundmode == FE_DEC_UPWARD && !trailzero) break;
if (roundmode == FE_DEC_DOWNWARD && !trailzero) break;
if (roundmode == 5 && trailzero) break;
if (roundmode == 6 && trailzero) break;
}
while (digits[--index] == '9')
digits[index] = '0';
digits[index]++;
if (index < n)
{
n--;
nd++;
}
} while (0);
} /* Done rounding. */
/* If spec == 'a' at this point it means that prec was set by the user
* and rounding had to be considered. The spec now requires that the
* 'a' format presentation algorithm be calculated again. If prec
* wasn't set by the user then this was handled earlier and spec has already
* been set to either 'e' or 'f'. */
if (spec == 'a')
{
int old_exp = exp;
/* The goofy DFP specification requires that we now assume that after
* rounding the digits are right justified and truncated and the
* algorithm recomputed using the new values for nd and exp, e.g.,
*
* 00654300E-2 with %.1Hf -> 00000007E3. */
exp = nd + exp - prec;
nd = prec;
/* Per the DFP specification (s,c,q), c == digits, q = exp, s ==
* is_neg. */
if (exp >= -(nd+5) && exp <= 0)
{
prec = -exp;
spec = 'f';
}
else
{
prec = nd - 1;
if (prec < 0) prec = 0;
spec = 'e';
input_prec = nd - 1;
/* Return exp to the original value because the 'e' case below will
* recompute it. */
exp = old_exp;
}
/* spec will have been changed to 'e' or 'f' at this point, so determine
* the decimal point now. */
}
/* Calculate decimal point, adjust prec and exp if necessary.
* By this point everything should be represented as either %e or %f. */
if (spec == 'f')
{
if (exp < 0)
decpt = exp + nd + n;
else if (is_zero)
decpt = n + 1;
else
decpt = n + nd + exp;
}
else if (spec == 'e')
{
decpt = n + 1;
exp = mw + exp - decpt;
}
/* Remove trailing zeroes for %g */
if (tolower(info->spec) == 'g' && !info->alt)
{
while (prec > 0 && decpt+prec > mw) prec--;
while (prec > 0 && digits[decpt+prec-1] == '0') prec--;
}
/* Remove trailing zeroes for %a, but only if they are not significant. */
if (tolower(info->spec) == 'a')
{
while (prec > 0 && decpt+prec > mw) prec--;
while (prec > 0 && decpt+prec > n+nd && digits[decpt+prec-1] == '0') prec--;
}
/* Digits to the left of the decimal pt. */
if (n < decpt)
{
width -= decpt - n;
if (grouping) width -= (decpt-n)/3;
}
else width--; /* none to the left of the decimal point */
/* Digits to the right of the decimal pt. */
if (prec > 0) width -= 1 + prec;
else if (info->alt) width -= 1;
if (spec != 'f')
{
width -= 3;
if (0!=(exp/10) || spec!='a') --width;
if (0!=(exp/100)) --width;
if (0!=(exp/1000)) --width;
}
if (is_neg || info->showsign || info->space) width--;
if (!info->left && info->pad != '0' && width > 0)
PADN (info->pad, width);
if (is_neg)
outchar ('-');
else if (info->showsign)
outchar ('+');
else if (info->space)
outchar (' ');
if (!info->left && info->pad == '0' && width > 0)
PADN ('0', width);
/* Print zero, decimal point and leading zeroes if needed */
if (decpt <= n)
{
n = decpt;
outchar ('0');
if (n < 0)
{
outchar (wide ? decimalwc.wc : *decimal);
while (n < 0 && n < decpt + prec)
{
outchar ('0');
n++;
}
}
}
/* Print the digits. If decpt exceeds mw then we know that
* they're simply trailing zeros and we don't need to display them. */
while (n < mw && n < decpt + prec)
{
if (n == decpt)
{
outchar (wide ? decimalwc.wc : *decimal);
}
else if (grouping && n < decpt && (decpt-n)%3 == 0)
outchar (wide ? thousands_sepwc : *thousands_sep);
outchar (digits[n]);
n++;
}
/* print trailing zeroes */
while (n < decpt + prec)
{
if (n == decpt)
outchar (wide ? decimalwc.wc : *decimal);
else if (grouping && n < decpt && (decpt-n)%3 == 0)
outchar (wide ? thousands_sepwc : *thousands_sep);
outchar ('0');
n++;
}
/* print decimal point, if needed */
if (n == decpt && info->alt) outchar (wide ? decimalwc.wc : *decimal);
/* The C spec says that for %e, if the value is zero the exponent is zero.
* This isn't true for the DFP spec for %a so make sure to check info->spec
* and not spec since it could have promoted 'a' to 'e'. */
if(spec == 'e' && (tolower(info->spec) != 'a' && is_zero))
exp = 0;
/* Don't display the exponent part for 'f' because it is never used and don't
* do it for 'g' if the value is zero. */
if (spec != 'f' && !((tolower(info->spec) == 'g') && is_zero))
{
outchar (isupper(info->spec) ? 'E' : 'e');
if (exp < 0)
{ outchar ('-'); n = -exp; }
else
{ outchar ('+'); n = exp; }
if (n >= 1000) outchar ('0'+((n/1000)%10));
if (n >= 100) outchar ('0'+((n/100)%10));
if (n >= 10 || (tolower(info->spec) != 'a')) outchar ('0'+((n/10)%10));
outchar ('0'+(n%10));
}
if (info->left && width > 0)
PADN (info->pad, width);
} /* Done output block. */
return done;
}
strong_alias (__printf_dfp, printf_dfp)
hidden_def (__printf_dfp)
int __register_printf_dfp (void)
{
pa_d128 = register_printf_type (d128_va);
pa_d32 = register_printf_type (d32_va);
pa_d64 = register_printf_type (d64_va);
mod_DD = register_printf_modifier (L"DD");
mod_H = register_printf_modifier (L"H");
mod_D = register_printf_modifier (L"D");
register_printf_specifier ('f', printf_dfp, dfp_ais);
register_printf_specifier ('F', printf_dfp, dfp_ais);
register_printf_specifier ('e', printf_dfp, dfp_ais);
register_printf_specifier ('E', printf_dfp, dfp_ais);
register_printf_specifier ('g', printf_dfp, dfp_ais);
register_printf_specifier ('G', printf_dfp, dfp_ais);
register_printf_specifier ('a', printf_dfp, dfp_ais);
register_printf_specifier ('A', printf_dfp, dfp_ais);
return 0;
}
strong_alias (__register_printf_dfp, register_printf_dfp)
hidden_def (__register_printf_dfp)
|