1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
// Shared bench marking code
#pragma once
#include <inttypes.h>
#include <stdio.h>
#if defined(__AVR__)
#include "avr_type_helpers.h"
#else
#include <algorithm>
#include <limits>
#include <type_traits>
#endif
#undef UNUSED
#define UNUSED(x) (void)(x)
#if defined(_WIN32) || defined(WIN32)
#define NOMINMAX
#define WIN32_LEAN_AND_MEAN
#define VC_EXTRALEAN
#include <windows.h>
#define LIBDIVIDE_WINDOWS
#endif
#include "libdivide.h"
#include "outputs.h"
#include "random_numerators.hpp"
#include "timer.hpp"
#include "type_mappings.h"
using namespace libdivide;
#if defined(__GNUC__)
#define NOINLINE __attribute__((__noinline__))
#elif defined(_MSC_VER)
#define NOINLINE __declspec(noinline)
#pragma warning(disable : 4146)
#else
#define NOINLINE
#endif
#if defined(LIBDIVIDE_AVX512)
#define x86_VECTOR_TYPE __m512i
#define SETZERO_SI _mm512_setzero_si512
#define LOAD_SI _mm512_load_si512
#define ADD_EPI64 _mm512_add_epi64
#define ADD_EPI32 _mm512_add_epi32
#define ADD_EPI16 _mm512_add_epi16
#elif defined(LIBDIVIDE_AVX2)
#define x86_VECTOR_TYPE __m256i
#define SETZERO_SI _mm256_setzero_si256
#define LOAD_SI _mm256_load_si256
#define ADD_EPI64 _mm256_add_epi64
#define ADD_EPI32 _mm256_add_epi32
#define ADD_EPI16 _mm256_add_epi16
#elif defined(LIBDIVIDE_SSE2)
#define x86_VECTOR_TYPE __m128i
#define SETZERO_SI _mm_setzero_si128
#define LOAD_SI _mm_load_si128
#define ADD_EPI64 _mm_add_epi64
#define ADD_EPI32 _mm_add_epi32
#define ADD_EPI16 _mm_add_epi16
#endif
// Helper - given a vector of some type, convert it to unsigned and sum it.
// This is factored out in this funny way to avoid signed integer overflow.
template <typename IntT>
inline uint64_t unsigned_sum_vals(const IntT *vals, size_t count) {
typedef typename std::make_unsigned<IntT>::type UIntT;
UIntT sum = 0;
for (size_t i = 0; i < count; i++) {
sum += static_cast<UIntT>(vals[i]);
}
return sum;
}
template <typename IntT, typename Divisor>
NOINLINE uint64_t sum_quotients(const random_numerators<IntT> &vals, const Divisor &div) {
// Need to use unsigned to avoid signed integer overlow.
typedef typename std::make_unsigned<IntT>::type UIntT;
UIntT sum = 0;
for (auto iter = vals.begin(); iter != vals.end(); ++iter) {
sum += (UIntT)(*iter / div);
}
return (uint64_t)sum;
}
#ifdef x86_VECTOR_TYPE
template <size_t IntSize>
inline x86_VECTOR_TYPE add_vector(x86_VECTOR_TYPE sumX4, x86_VECTOR_TYPE numers) {
UNUSED(numers);
abort();
return sumX4;
}
template <>
inline x86_VECTOR_TYPE add_vector<2U>(x86_VECTOR_TYPE sumX4, x86_VECTOR_TYPE numers) {
return ADD_EPI16(sumX4, numers);
}
template <>
inline x86_VECTOR_TYPE add_vector<4U>(x86_VECTOR_TYPE sumX4, x86_VECTOR_TYPE numers) {
return ADD_EPI32(sumX4, numers);
}
template <>
inline x86_VECTOR_TYPE add_vector<8U>(x86_VECTOR_TYPE sumX4, x86_VECTOR_TYPE numers) {
return ADD_EPI64(sumX4, numers);
}
template <typename IntT, typename Divisor>
NOINLINE uint64_t sum_quotients_vec(const random_numerators<IntT> &vals, const Divisor &div) {
size_t count = sizeof(x86_VECTOR_TYPE) / sizeof(IntT);
x86_VECTOR_TYPE sumX4 = SETZERO_SI();
for (auto iter = vals.begin(); iter != vals.end(); iter += count) {
x86_VECTOR_TYPE numers = LOAD_SI((const x86_VECTOR_TYPE *)iter);
numers = numers / div;
sumX4 = add_vector<sizeof(IntT)>(sumX4, numers);
}
return unsigned_sum_vals((const IntT *)&sumX4, count);
}
#elif defined(LIBDIVIDE_NEON)
// Helper to deduce NEON vector type for integral type.
template <typename T>
struct NeonVecFuncs {};
template <>
struct NeonVecFuncs<uint16_t> {
static inline uint16x8_t dup(uint16_t value) { return vdupq_n_u16(value); }
static inline uint16x8_t add(uint16x8_t a, uint16x8_t b) { return vaddq_u16(a, b); }
};
template <>
struct NeonVecFuncs<int16_t> {
static inline int16x8_t dup(int16_t value) { return vdupq_n_s16(value); }
static inline int16x8_t add(int16x8_t a, int16x8_t b) { return vaddq_s16(a, b); }
};
template <>
struct NeonVecFuncs<uint32_t> {
static inline uint32x4_t dup(uint32_t value) { return vdupq_n_u32(value); }
static inline uint32x4_t add(uint32x4_t a, uint32x4_t b) { return vaddq_u32(a, b); }
};
template <>
struct NeonVecFuncs<int32_t> {
static inline int32x4_t dup(int32_t value) { return vdupq_n_s32(value); }
static inline int32x4_t add(int32x4_t a, int32x4_t b) { return vaddq_s32(a, b); }
};
template <>
struct NeonVecFuncs<uint64_t> {
static inline uint64x2_t dup(uint64_t value) { return vdupq_n_u64(value); }
static inline uint64x2_t add(uint64x2_t a, uint64x2_t b) { return vaddq_u64(a, b); }
};
template <>
struct NeonVecFuncs<int64_t> {
static inline int64x2_t dup(int64_t value) { return vdupq_n_s64(value); }
static inline int64x2_t add(int64x2_t a, int64x2_t b) { return vaddq_s64(a, b); }
};
template <typename IntT, typename Divisor>
NOINLINE uint64_t sum_quotients_vec(const random_numerators<IntT> &vals, const Divisor &div) {
typedef typename NeonVecFor<IntT>::type NeonVectorType;
size_t count = sizeof(NeonVectorType) / sizeof(IntT);
NeonVectorType sumX4 = NeonVecFuncs<IntT>::dup(0);
for (auto iter = vals.begin(); iter != vals.end(); iter += count) {
NeonVectorType numers = *(NeonVectorType *)iter;
numers = numers / div;
sumX4 = NeonVecFuncs<IntT>::add(sumX4, numers);
}
return unsigned_sum_vals((const IntT *)&sumX4, count);
}
#endif
// noinline to force compiler to emit this
template <typename IntT>
NOINLINE divider<IntT> generate_1_divisor(IntT d) {
return divider<IntT>(d);
}
template <typename IntT>
NOINLINE void generate_divisor(const random_numerators<IntT> &vals, IntT denom) {
for (size_t iter = 0; iter < vals.length(); iter++) {
(void)generate_1_divisor(denom);
}
}
struct time_double {
uint64_t time; // in nanoseconds
uint64_t result;
};
template <typename IntT, class DenomT>
using pFuncToTime = uint64_t (*)(const random_numerators<IntT> &, const DenomT &);
template <typename IntT, class DenomT>
NOINLINE static time_double time_function(
const random_numerators<IntT> &vals, DenomT denom, pFuncToTime<IntT, DenomT> timeFunc) {
time_double tresult;
timer t;
t.start();
tresult.result = timeFunc(vals, denom);
t.stop();
tresult.time = t.duration_nano();
return tresult;
}
struct TestResult {
double hardware_time;
double base_time;
double branchfree_time;
double vector_time;
double vector_branchfree_time;
double gen_time;
int algo;
};
#define TEST_COUNT 30
inline void check_result(uint64_t expected, uint64_t actual, uint32_t line_no) {
if ((actual) != (expected)) {
PRINT_ERROR("Failure on line ");
PRINT_ERROR(line_no);
PRINT_ERROR("\n");
}
}
template <typename IntT>
NOINLINE TestResult test_one(const random_numerators<IntT> &vals, IntT denom) {
const bool testBranchfree = (denom != 1);
divider<IntT, BRANCHFULL> div_bfull(denom);
divider<IntT, BRANCHFREE> div_bfree(testBranchfree ? denom : 2);
uint64_t min_my_time = INT64_MAX, min_my_time_branchfree = INT64_MAX,
min_my_time_vector = INT64_MAX, min_my_time_vector_branchfree = INT64_MAX,
min_his_time = INT64_MAX, min_gen_time = INT64_MAX;
time_double tresult;
for (size_t iter = 0; iter < TEST_COUNT; iter++) {
tresult = time_function(vals, denom, sum_quotients);
min_his_time = (std::min)(min_his_time, tresult.time);
const uint64_t expected = tresult.result;
tresult = time_function(vals, div_bfull, sum_quotients);
min_my_time = (std::min)(min_my_time, tresult.time);
check_result(tresult.result, expected, __LINE__);
if (testBranchfree) {
tresult = time_function(vals, div_bfree, sum_quotients);
min_my_time_branchfree = (std::min)(min_my_time_branchfree, tresult.time);
check_result(tresult.result, expected, __LINE__);
}
#if defined(x86_VECTOR_TYPE) || defined(LIBDIVIDE_NEON)
tresult = time_function(vals, div_bfull, sum_quotients_vec);
min_my_time_vector = (std::min)(min_my_time_vector, tresult.time);
check_result(tresult.result, expected, __LINE__);
if (testBranchfree) {
tresult = time_function(vals, div_bfree, sum_quotients_vec);
min_my_time_vector_branchfree = (std::min)(min_my_time_vector_branchfree, tresult.time);
check_result(tresult.result, expected, __LINE__);
}
#else
min_my_time_vector = 0;
min_my_time_vector_branchfree = 0;
#endif
{
timer t;
t.start();
generate_divisor(vals, denom);
t.stop();
min_gen_time = (std::min)(min_gen_time, t.duration_nano());
}
}
TestResult result;
result.gen_time = min_gen_time / (double)vals.length();
result.base_time = min_my_time / (double)vals.length();
result.branchfree_time = testBranchfree ? min_my_time_branchfree / (double)vals.length() : -1;
result.vector_time = min_my_time_vector / (double)vals.length();
result.vector_branchfree_time =
testBranchfree ? min_my_time_vector_branchfree / (double)vals.length() : -1;
result.hardware_time = min_his_time / (double)vals.length();
return result;
}
template <typename _IntT>
int32_t get_algorithm(_IntT d) {
const auto denom = libdivide_gen(d);
uint8_t more = denom.more;
if (!denom.magic)
return 0;
else if (!(more & LIBDIVIDE_ADD_MARKER))
return 1;
else
return 2;
}
template <typename _IntT>
NOINLINE TestResult test_one(_IntT d, const random_numerators<_IntT> &data) {
struct TestResult result = test_one(data, d);
result.algo = get_algorithm(d);
return result;
}
// Result column width
#define PRIcw "10"
inline static void print_report_header(void) {
char buffer[256];
snprintf(buffer, sizeof buffer,
"%6s %" PRIcw "s %" PRIcw "s %" PRIcw "s %" PRIcw "s %" PRIcw "s %" PRIcw "s %6s\n", "#",
"system", "scalar", "scl_bf", "vector", "vec_bf", "gener", "algo");
PRINT_INFO(buffer);
}
// Result column format spec
#define PRIrc PRIcw ".3f"
template <typename _IntT>
static void print_report_result(_IntT d, struct TestResult result) {
char denom_buff[32];
char *pDenom = to_str(denom_buff, d);
char report_buff[256];
snprintf(report_buff, sizeof report_buff,
"%6s %" PRIrc " %" PRIrc " %" PRIrc " %" PRIrc " %" PRIrc " %" PRIrc " %4d\n", pDenom,
result.hardware_time, result.base_time, result.branchfree_time, result.vector_time,
result.vector_branchfree_time, result.gen_time, result.algo);
PRINT_INFO(report_buff);
}
template <typename _IntT>
static void print_banner() {
char type_buffer[64];
snprintf(type_buffer, sizeof type_buffer,
"=== libdivide %s benchmark ===", type_tag<_IntT>::get_tag());
char buffer[128];
snprintf(buffer, sizeof buffer, "\n%50s\n\n", type_buffer);
PRINT_INFO(buffer);
}
template <typename _IntT>
void test_many() {
print_banner<_IntT>();
print_report_header();
random_numerators<_IntT> data;
_IntT d = 1;
while (true) {
print_report_result(d, test_one(d, data));
if (std::numeric_limits<_IntT>::is_signed) {
d = -d;
if (d > 0) d++;
} else {
d++;
}
}
}
|