1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/**
* libdmtx - Data Matrix Encoding/Decoding Library
* Copyright 2011 Mike Laughton. All rights reserved.
* Copyright 2012-2016 Vadim A. Misbakh-Soloviov. All rights reserved.
*
* See LICENSE file in the main project directory for full
* terms of use and distribution.
*
* Contact:
* Vadim A. Misbakh-Soloviov <dmtx@mva.name>
* Mike Laughton <mike@dragonflylogic.com>
*
* \file dmtxencodeedifact.c
* \brief Edifact encoding rules
*/
/**
*
*
*/
static void
EncodeNextChunkEdifact(DmtxEncodeStream *stream)
{
DmtxByte value;
if(StreamInputHasNext(stream))
{
/* Check for FNC1 character, which needs to be sent in ASCII */
value = StreamInputPeekNext(stream); CHKERR;
if((value < 32 || value > 94)) {
StreamMarkInvalid(stream, DmtxChannelUnsupportedChar);
return;
}
if (stream->fnc1 != DmtxUndefined && (int)value == stream->fnc1) {
EncodeChangeScheme(stream, DmtxSchemeAscii, DmtxUnlatchExplicit); CHKERR;
StreamInputAdvanceNext(stream); CHKERR;
AppendValueAscii(stream, DmtxValueFNC1); CHKERR;
return;
}
value = StreamInputAdvanceNext(stream); CHKERR;
AppendValueEdifact(stream, value); CHKERR;
}
}
/**
*
*
*/
static void
AppendValueEdifact(DmtxEncodeStream *stream, DmtxByte value)
{
DmtxByte edifactValue, previousOutput;
CHKSCHEME(DmtxSchemeEdifact);
/*
* TODO: KECA -> korean, circles
* TODO: UNOX -> ISO-2022-JP
* TODO: and so on
*/
if(value < 31 || value > 94)
{
StreamMarkInvalid(stream, DmtxChannelUnsupportedChar);
return;
}
edifactValue = (value & 0x3f) << 2;
switch(stream->outputChainValueCount % 4)
{
case 0:
StreamOutputChainAppend(stream, edifactValue); CHKERR;
break;
case 1:
previousOutput = StreamOutputChainRemoveLast(stream); CHKERR;
StreamOutputChainAppend(stream, previousOutput | (edifactValue >> 6)); CHKERR;
StreamOutputChainAppend(stream, edifactValue << 2); CHKERR;
break;
case 2:
previousOutput = StreamOutputChainRemoveLast(stream); CHKERR;
StreamOutputChainAppend(stream, previousOutput | (edifactValue >> 4)); CHKERR;
StreamOutputChainAppend(stream, edifactValue << 4); CHKERR;
break;
case 3:
previousOutput = StreamOutputChainRemoveLast(stream); CHKERR;
StreamOutputChainAppend(stream, previousOutput | (edifactValue >> 2)); CHKERR;
break;
}
stream->outputChainValueCount++;
}
/**
* Complete EDIFACT encoding if it matches a known end-of-symbol condition.
*
* Term Clean Symbol ASCII Codeword
* Cond Bound Remain Remain Sequence
* ---- ----- ------ ------ -----------
* (a) Y 0 0 [none]
* (b) Y 1 0 PAD
* (c) Y 1 1 ASCII
* (d) Y 2 0 PAD PAD
* (e) Y 2 1 ASCII PAD
* (f) Y 2 2 ASCII ASCII
* - - 0 UNLATCH
*
* If not matching any of the above, continue without doing anything.
*/
static void
CompleteIfDoneEdifact(DmtxEncodeStream *stream, int sizeIdxRequest)
{
int i;
int sizeIdx;
int symbolRemaining;
DmtxBoolean cleanBoundary;
DmtxPassFail passFail;
DmtxByte outputTmpStorage[3];
DmtxByteList outputTmp;
if(stream->status == DmtxStatusComplete)
return;
/*
* If we just completed a triplet (cleanBoundary), 1 or 2 symbol codewords
* remain, and our remaining inputs (if any) represented in ASCII would fit
* in the remaining space, encode them in ASCII with an implicit unlatch.
*/
cleanBoundary = (stream->outputChainValueCount % 4 == 0) ? DmtxTrue : DmtxFalse;
if(cleanBoundary == DmtxTrue)
{
/* Encode up to 3 codewords to a temporary stream */
outputTmp = EncodeTmpRemainingInAscii(stream, outputTmpStorage,
sizeof(outputTmpStorage), &passFail);
if(passFail == DmtxFail)
{
StreamMarkFatal(stream, DmtxErrorUnknown);
return;
}
if(outputTmp.length < 3)
{
/* Find minimum symbol size for projected length */
sizeIdx = FindSymbolSize(stream->output->length + outputTmp.length, sizeIdxRequest); CHKSIZE;
/* Find remaining capacity over current length */
symbolRemaining = GetRemainingSymbolCapacity(stream->output->length, sizeIdx); CHKERR;
if(symbolRemaining < 3 && outputTmp.length <= symbolRemaining)
{
EncodeChangeScheme(stream, DmtxSchemeAscii, DmtxUnlatchImplicit); CHKERR;
for(i = 0; i < outputTmp.length; i++)
{
AppendValueAscii(stream, outputTmp.b[i]); CHKERR;
}
/* Register progress since encoding happened outside normal path */
stream->inputNext = stream->input->length;
/* Pad remaining if necessary */
PadRemainingInAscii(stream, sizeIdx); CHKERR;
StreamMarkComplete(stream, sizeIdx);
return;
}
}
}
if(!StreamInputHasNext(stream))
{
sizeIdx = FindSymbolSize(stream->output->length, sizeIdxRequest); CHKSIZE;
symbolRemaining = GetRemainingSymbolCapacity(stream->output->length, sizeIdx); CHKERR;
/* Explicit unlatch required unless on clean boundary and full symbol */
if(cleanBoundary == DmtxFalse || symbolRemaining > 0)
{
EncodeChangeScheme(stream, DmtxSchemeAscii, DmtxUnlatchExplicit); CHKERR;
sizeIdx = FindSymbolSize(stream->output->length, sizeIdxRequest); CHKSIZE;
PadRemainingInAscii(stream, sizeIdx); CHKERR;
}
StreamMarkComplete(stream, sizeIdx);
}
}
|