1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
/**
* libdmtx - Data Matrix Encoding/Decoding Library
* Copyright 2008, 2009 Mike Laughton. All rights reserved.
* Copyright 2012-2016 Vadim A. Misbakh-Soloviov. All rights reserved.
*
* See LICENSE file in the main project directory for full
* terms of use and distribution.
*
* Contact:
* Vadim A. Misbakh-Soloviov <dmtx@mva.name>
* Mike Laughton <mike@dragonflylogic.com>
*
* \file dmtxmatrix3.c
* \brief 2D Matrix (3x3) math
*/
/**
* \brief Copy matrix contents
* \param m0 Copy target
* \param m1 Copy source
* \return void
*/
extern void
dmtxMatrix3Copy(DmtxMatrix3 m0, DmtxMatrix3 m1)
{
memcpy(m0, m1, sizeof(DmtxMatrix3));
}
/**
* \brief Generate identity transformation matrix
* \param m Generated matrix
* \return void
*
* | 1 0 0 |
* m = | 0 1 0 |
* | 0 0 1 |
*
* Transform "m"
* (doesn't change anything)
* |\
* (0,1) x----o +--+ \ (0,1) x----o
* | | | \ | |
* | | | / | |
* +----* +--+ / +----*
* (0,0) (1,0) |/ (0,0) (1,0)
*
*/
extern void
dmtxMatrix3Identity(DmtxMatrix3 m)
{
static DmtxMatrix3 tmp = { {1, 0, 0},
{0, 1, 0},
{0, 0, 1} };
dmtxMatrix3Copy(m, tmp);
}
/**
* \brief Generate translate transformation matrix
* \param m Generated matrix
* \param tx
* \param ty
* \return void
*
* | 1 0 0 |
* m = | 0 1 0 |
* | tx ty 1 |
*
* Transform "m"
* _____ (tx,1+ty) x----o (1+tx,1+ty)
* \ | | |
* (0,1) x----o / | (0,1) +-|--+ |
* | | / /\| | +----* (1+tx,ty)
* | | \ / | |
* +----* ` +----+
* (0,0) (1,0) (0,0) (1,0)
*
*/
void dmtxMatrix3Translate(DmtxMatrix3 m, double tx, double ty)
{
dmtxMatrix3Identity(m);
m[2][0] = tx;
m[2][1] = ty;
}
/**
* \brief Generate rotate transformation
* \param m Generated matrix
* \param angle
* \return void
*
* | cos(a) sin(a) 0 |
* m = | -sin(a) cos(a) 0 |
* | 0 0 1 |
* o
* Transform "m" / `
* ___ / `
* (0,1) x----o |/ \ x * (cos(a),sin(a))
* | | '-- | ` /
* | | ___/ ` / a
* +----* `+ - - - - - -
* (0,0) (1,0) (0,0)
*
*/
extern void
dmtxMatrix3Rotate(DmtxMatrix3 m, double angle)
{
double sinAngle, cosAngle;
sinAngle = sin(angle);
cosAngle = cos(angle);
dmtxMatrix3Identity(m);
m[0][0] = cosAngle;
m[0][1] = sinAngle;
m[1][0] = -sinAngle;
m[1][1] = cosAngle;
}
/**
* \brief Generate scale transformation matrix
* \param m Generated matrix
* \param sx
* \param sy
* \return void
*
* | sx 0 0 |
* m = | 0 sy 0 |
* | 0 0 1 |
*
* Transform "m"
* _____ (0,sy) x-------o (sx,sy)
* \ | | |
* (0,1) x----o / | (0,1) +----+ |
* | | / /\| | | |
* | | \ / | | |
* +----* ` +----+--*
* (0,0) (1,0) (0,0) (sx,0)
*
*/
extern void
dmtxMatrix3Scale(DmtxMatrix3 m, double sx, double sy)
{
dmtxMatrix3Identity(m);
m[0][0] = sx;
m[1][1] = sy;
}
/**
* \brief Generate shear transformation matrix
* \param m Generated matrix
* \param shx
* \param shy
* \return void
*
* | 0 shy 0 |
* m = | shx 0 0 |
* | 0 0 1 |
*/
extern void
dmtxMatrix3Shear(DmtxMatrix3 m, double shx, double shy)
{
dmtxMatrix3Identity(m);
m[1][0] = shx;
m[0][1] = shy;
}
/**
* \brief Generate top line skew transformation
* \param m
* \param b0
* \param b1
* \param sz
* \return void
*
* | b1/b0 0 (b1-b0)/(sz*b0) |
* m = | 0 sz/b0 0 |
* | 0 0 1 |
*
* (sz,b1) o
* /| Transform "m"
* / |
* / | +--+
* / | | |
* (0,b0) x | | |
* | | +-+ +-+
* (0,sz) +----+ \ / (0,sz) x----o
* | | \ / | |
* | | \/ | |
* +----+ +----+
* (0,0) (sz,0) (0,0) (sz,0)
*
*/
extern void
dmtxMatrix3LineSkewTop(DmtxMatrix3 m, double b0, double b1, double sz)
{
assert(b0 >= DmtxAlmostZero);
dmtxMatrix3Identity(m);
m[0][0] = b1/b0;
m[1][1] = sz/b0;
m[0][2] = (b1 - b0)/(sz*b0);
}
/**
* \brief Generate top line skew transformation (inverse)
* \param m
* \param b0
* \param b1
* \param sz
* \return void
*/
extern void
dmtxMatrix3LineSkewTopInv(DmtxMatrix3 m, double b0, double b1, double sz)
{
assert(b1 >= DmtxAlmostZero);
dmtxMatrix3Identity(m);
m[0][0] = b0/b1;
m[1][1] = b0/sz;
m[0][2] = (b0 - b1)/(sz*b1);
}
/**
* \brief Generate side line skew transformation
* \param m
* \param b0
* \param b1
* \param sz
* \return void
*/
extern void
dmtxMatrix3LineSkewSide(DmtxMatrix3 m, double b0, double b1, double sz)
{
assert(b0 >= DmtxAlmostZero);
dmtxMatrix3Identity(m);
m[0][0] = sz/b0;
m[1][1] = b1/b0;
m[1][2] = (b1 - b0)/(sz*b0);
}
/**
* \brief Generate side line skew transformation (inverse)
* \param m
* \param b0
* \param b1
* \param sz
* \return void
*/
extern void
dmtxMatrix3LineSkewSideInv(DmtxMatrix3 m, double b0, double b1, double sz)
{
assert(b1 >= DmtxAlmostZero);
dmtxMatrix3Identity(m);
m[0][0] = b0/sz;
m[1][1] = b0/b1;
m[1][2] = (b0 - b1)/(sz*b1);
}
/**
* \brief Multiply two matrices to create a third
* \param mOut
* \param m0
* \param m1
* \return void
*/
extern void
dmtxMatrix3Multiply(DmtxMatrix3 mOut, DmtxMatrix3 m0, DmtxMatrix3 m1)
{
int i, j, k;
double val;
for(i = 0; i < 3; i++) {
for(j = 0; j < 3; j++) {
val = 0.0;
for(k = 0; k < 3; k++) {
val += m0[i][k] * m1[k][j];
}
mOut[i][j] = val;
}
}
}
/**
* \brief Multiply two matrices in place
* \param m0
* \param m1
* \return void
*/
extern void
dmtxMatrix3MultiplyBy(DmtxMatrix3 m0, DmtxMatrix3 m1)
{
DmtxMatrix3 mTmp;
dmtxMatrix3Copy(mTmp, m0);
dmtxMatrix3Multiply(m0, mTmp, m1);
}
/**
* \brief Multiply vector and matrix
* \param vOut Vector (output)
* \param vIn Vector (input)
* \param m Matrix to be multiplied
* \return DmtxPass | DmtxFail
*/
extern int
dmtxMatrix3VMultiply(DmtxVector2 *vOut, DmtxVector2 *vIn, DmtxMatrix3 m)
{
double w;
w = vIn->X*m[0][2] + vIn->Y*m[1][2] + m[2][2];
if(fabs(w) <= DmtxAlmostZero) {
vOut->X = FLT_MAX;
vOut->Y = FLT_MAX;
return DmtxFail;
}
vOut->X = (vIn->X*m[0][0] + vIn->Y*m[1][0] + m[2][0])/w;
vOut->Y = (vIn->X*m[0][1] + vIn->Y*m[1][1] + m[2][1])/w;
return DmtxPass;
}
/**
* \brief Multiply vector and matrix in place
* \param v Vector (input and output)
* \param m Matrix to be multiplied
* \return DmtxPass | DmtxFail
*/
extern int
dmtxMatrix3VMultiplyBy(DmtxVector2 *v, DmtxMatrix3 m)
{
int success;
DmtxVector2 vOut;
success = dmtxMatrix3VMultiply(&vOut, v, m);
*v = vOut;
return success;
}
/**
* \brief Print matrix contents to STDOUT
* \param m
* \return void
*/
extern void
dmtxMatrix3Print(DmtxMatrix3 m)
{
fprintf(stdout, "%8.8f\t%8.8f\t%8.8f\n", m[0][0], m[0][1], m[0][2]);
fprintf(stdout, "%8.8f\t%8.8f\t%8.8f\n", m[1][0], m[1][1], m[1][2]);
fprintf(stdout, "%8.8f\t%8.8f\t%8.8f\n", m[2][0], m[2][1], m[2][2]);
fprintf(stdout, "\n");
}
|