1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
// -*- mode: C; c-basic-offset: 2 -*-
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include "dogleg.h"
// This is a trivial sample application to demonstrate libdogleg in action.
// Let's say that I have a simple non-linear model
//
// a*b * x**2 + b*c * y**2 + c * x*y + d * x + e * y * f = measurements
//
// here I'm trying to estimate the vector (a,b,c,d,e,f) to most closely fit the
// data vector measurements. This problem is clearly non-sparse, but both sparse
// and dense versions of libdogleg are demonstrated here.
//
// First I generate some noise-corrupted data, and then use libdogleg to solve
// the problem.
// My state vector (a,b,c,d,e,f) has 6 elements
#define Nstate 6
// I simulate my measurements using these as the TRUE values for the model
#define REFERENCE_A 1.0
#define REFERENCE_B 2.0
#define REFERENCE_C 3.0
#define REFERENCE_D 4.0
#define REFERENCE_E 5.0
#define REFERENCE_F 6.0
// I simulate by sampling the x-y space in a grid. This grid is defined here
#define SIMULATION_GRID_WIDTH 10
#define SIMULATION_GRID_MIN -10
#define SIMULATION_GRID_DELTA 2.0
#define Nmeasurements (SIMULATION_GRID_WIDTH*SIMULATION_GRID_WIDTH)
static double allx [Nmeasurements];
static double ally [Nmeasurements];
static double allm_simulated_noisy[Nmeasurements];
static void simulate(void)
{
for(int i=0; i<Nmeasurements; i++)
{
double x = allx[i];
double y = ally[i];
allm_simulated_noisy[i] =
REFERENCE_A*REFERENCE_B * x*x +
REFERENCE_B*REFERENCE_C * y*y +
REFERENCE_C * x*y +
REFERENCE_D * x +
REFERENCE_E * y +
REFERENCE_F +
((double)random() / (double)RAND_MAX - 0.5) * 1.0; // +- 0.5 units of uniformly-random noise
}
}
static void generateSimulationGrid(void)
{
int i = 0;
for(int ix=0; ix<SIMULATION_GRID_WIDTH; ix++)
{
double x = SIMULATION_GRID_MIN + ix*SIMULATION_GRID_DELTA;
for(int iy=0; iy<SIMULATION_GRID_WIDTH; iy++)
{
double y = SIMULATION_GRID_MIN + iy*SIMULATION_GRID_DELTA;
allx[i] = x;
ally[i] = y;
i++;
}
}
}
static void optimizerCallback(const double* p,
double* x,
cholmod_sparse* Jt,
void* cookie __attribute__ ((unused)) )
{
// These are convenient so that I only apply the casts once
int* Jrowptr = (int*)Jt->p;
int* Jcolidx = (int*)Jt->i;
double* Jval = (double*)Jt->x;
int iJacobian = 0;
#define STORE_JACOBIAN(col, g) \
do \
{ \
Jcolidx[ iJacobian ] = col; \
Jval [ iJacobian ] = g; \
iJacobian++; \
} while(0)
double norm2_x = 0.0;
for(int i=0; i<Nmeasurements; i++)
{
x[i] =
p[0] * p[1] * allx[i]*allx[i] +
p[1] * p[2] * ally[i]*ally[i] +
p[2] * allx[i]*ally[i] +
p[3] * allx[i] +
p[4] * ally[i] +
p[5]
- allm_simulated_noisy[i];
norm2_x += x[i]*x[i];
// In this sample problem, every measurement depends on every element of the
// state vector, so I loop through all the state vectors here. In practice
// libdogleg is meant to be applied to sparse problems, where this internal
// loop would be MUCH shorter than Nstate long
Jrowptr[i] = iJacobian;
STORE_JACOBIAN( 0, p[1]*allx[i]*allx[i] );
STORE_JACOBIAN( 1, p[0]*allx[i]*allx[i] + p[2] * ally[i]*ally[i] );
STORE_JACOBIAN( 2, p[1] * ally[i]*ally[i] + allx[i]*ally[i] );
STORE_JACOBIAN( 3, allx[i] );
STORE_JACOBIAN( 4, ally[i] );
STORE_JACOBIAN( 5, 1.0 );
}
Jrowptr[Nmeasurements] = iJacobian;
#undef STORE_JACOBIAN
}
static void optimizerCallback_dense(const double* p,
double* x,
double* J,
void* cookie __attribute__ ((unused)) )
{
int iJacobian = 0;
#define STORE_JACOBIAN(col, g) J[ iJacobian++ ] = g
double norm2_x = 0.0;
for(int i=0; i<Nmeasurements; i++)
{
x[i] =
p[0] * p[1] * allx[i]*allx[i] +
p[1] * p[2] * ally[i]*ally[i] +
p[2] * allx[i]*ally[i] +
p[3] * allx[i] +
p[4] * ally[i] +
p[5]
- allm_simulated_noisy[i];
norm2_x += x[i]*x[i];
// In this sample problem, every measurement depends on every element of the
// state vector, so I loop through all the state vectors here. In practice
// libdogleg is meant to be applied to sparse problems, where this internal
// loop would be MUCH shorter than Nstate long
STORE_JACOBIAN( 0, p[1]*allx[i]*allx[i] );
STORE_JACOBIAN( 1, p[0]*allx[i]*allx[i] + p[2] * ally[i]*ally[i] );
STORE_JACOBIAN( 2, p[1] * ally[i]*ally[i] + allx[i]*ally[i] );
STORE_JACOBIAN( 3, allx[i] );
STORE_JACOBIAN( 4, ally[i] );
STORE_JACOBIAN( 5, 1.0 );
}
#undef STORE_JACOBIAN
}
int main(int argc, char* argv[] )
{
const char* usage = "Usage: %s [--diag-vnlog] [--diag-human] sparse|dense [test-gradients]\n";
int is_sparse;
int test_gradients = 0;
int debug = 0;
{
// argument parsing
int iarg = 1;
for(int i=0; i<2; i++)
{
if(iarg >= argc)
{
fprintf(stderr, usage, argv[0]);
return 1;
}
if(0 == strcmp("--diag-vnlog", argv[iarg]))
{
debug |= DOGLEG_DEBUG_VNLOG;
iarg++;
continue;
}
if(0 == strcmp("--diag-human", argv[iarg]))
{
debug |= 1;
iarg++;
continue;
}
break;
}
if(iarg >= argc)
{
fprintf(stderr, usage, argv[0]);
return 1;
}
if( 0 == strcmp(argv[iarg], "dense") )
{
fprintf(stderr, "Using DENSE math\n");
is_sparse = 0;
}
else if( 0 == strcmp(argv[iarg], "sparse") )
{
fprintf(stderr, "Using SPARSE math\n");
is_sparse = 1;
}
else
{
fprintf(stderr, usage, argv[0]);
return 1;
}
iarg++;
if(iarg == argc-1)
{
if( 0 != strcmp("test-gradients", argv[iarg]))
{
fprintf(stderr, usage, argv[0]);
return 1;
}
fprintf(stderr, "Testing the gradients only\n");
test_gradients = 1;
}
else if(iarg == argc)
{
// not testing gradients. We're good
}
else
{
fprintf(stderr, usage, argv[0]);
return 1;
}
}
srandom( 0 ); // I want determinism here
generateSimulationGrid();
simulate();
dogleg_parameters2_t dogleg_parameters;
dogleg_getDefaultParameters(&dogleg_parameters);
dogleg_parameters.dogleg_debug = debug;
double p[Nstate];
// I start solving with all my state variables set to some random noise
for(int i=0; i<Nstate; i++)
p[i] = ((double)random() / (double)RAND_MAX - 0.1) * 1.0; // +- 0.1 units of uniformly-random noise
fprintf(stderr, "starting state:\n");
for(int i=0; i<Nstate; i++)
fprintf(stderr, " p[%d] = %f\n", i, p[i]);
// This demo problem is dense, so every measurement depends on every state
// variable. Thus ever element of the jacobian is non-zero
int Jnnz = Nmeasurements * Nstate;
// first, let's test our gradients. This is just a verification step to make
// sure the optimizerCallback() is written correctly. Normally, you would do
// this as a check when developing your program, but would turn this off in
// the final application. This will generate LOTS of output. You need to make
// sure that the reported and observed gradients match (the relative error is
// low)
fprintf(stderr, "have %d variables\n", Nstate);
if( test_gradients )
{
for(int i=0; i<Nstate; i++)
{
fprintf(stderr, "checking gradients for variable %d\n", i);
if( is_sparse )
dogleg_testGradient(i, p, Nstate, Nmeasurements, Jnnz, &optimizerCallback, NULL);
else
dogleg_testGradient_dense(i, p, Nstate, Nmeasurements, &optimizerCallback_dense, NULL);
}
return 0;
}
fprintf(stderr, "SOLVING:\n");
double optimum;
if( is_sparse )
optimum = dogleg_optimize2(p, Nstate, Nmeasurements, Jnnz,
&optimizerCallback, NULL,
&dogleg_parameters, NULL);
else
optimum = dogleg_optimize_dense2(p, Nstate, Nmeasurements,
&optimizerCallback_dense, NULL,
&dogleg_parameters, NULL);
fprintf(stderr, "Done. Optimum = %f\n", optimum);
fprintf(stderr, "optimal state:\n");
for(int i=0; i<Nstate; i++)
fprintf(stderr, " p[%d] = %f\n", i, p[i]);
return 0;
}
|