1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
/*
* idct_248.c
*
* Copyright (C) Charles 'Buck' Krasic - May 2000
* Copyright (C) Erik Walthinsen - May 2000
*
* This file is part of libdv, a free DV (IEC 61834/SMPTE 314M)
* codec.
*
* libdv is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser Public License as published by
* the Free Software Foundation; either version 2.1, or (at your
* option) any later version.
*
* libdv is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser Public License for more details.
*
* You should have received a copy of the GNU Lesser Public License
* along with libdv; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* The libdv homepage is http://libdv.sourceforge.net/.
*/
/* Attempt at efficient (?) 2-4-8 IDCT as defined by the DV standard,
* based on matrix factorizations presented in "Direct Conversions
* Between DV Format DCT and Ordinary DCT". Neri Merhav. Technical
* Report: HP Laboratories Israel HPL-98-140. August, 1988.
*
* Note: this is very much an interim solution. It is based on the
* same foundation (AAN algorithm) as the 88 MMX idct from Intel.
*
* This version uses 32 bit math. For MMX we will use 16bit, but that
* is fairly subtle. We also need to think hard about the best way to
* merge quant/weight/prescale without jeprodizing precision.
*
* That said, this is way faster the brute force float version.
*/
#if HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdio.h>
#include <math.h>
#include "idct_248.h"
#define IDCT_248_UNIT_TEST 0
dv_248_coeff_t dv_idct_248_prescale[64];
/*
beta2 = cos(M_PI/4);
beta0 = beta2 - 0.5;
beta1 = -1 - beta0;
beta3 = -cos(3 * M_PI / 8);
beta4 = cos(M_PI / 8);
*/
static int32_t beta0;
static int32_t beta1;
static int32_t beta2;
static int32_t beta3;
static int32_t beta4;
static double C(int u) {
double result;
if(u == 0) {
result = 0.5 / sqrt(2.0);
} else {
result = 0.5;
} // else
return(result);
} // C
static double tickC(int u)
{
double result;
if(u == 0) {
result = 1.0 / sqrt(2.0);
} else {
result = 0.5;
} // else
return(result);
} // tickC
#if (ARCH_X86 || ARCH_X86_64) && defined(__GNUC__)
static inline int32_t fixed_multiply(int32_t a, int32_t b) {
register int32_t eax asm("ax");
register int32_t edx asm("dx");
eax = a;
__asm__("imull %2"
:"=a" (eax), "=d" (edx)
:"g" (b),
"0" (eax));
return(edx << 2);
} // fixed_multiply
#else
/* Will this actually compile? I dunno */
static inline int32_t fixed_multiply(int32_t a, int32_t b) {
int64_t product;
product = (int64_t)a * (int64_t)b;
product >>= (32 - 2);
return(product);
} // fixed_multiply
#endif
/* Compute the prescale vector.
* (verify against matlab result for kron(inv(D2),D))
*/
void dv_dct_248_init() {
extern double dv_weight_inverse_248_matrix[];
int k, l;
double d;
double diag[2][8];
double dbeta0, dbeta1, dbeta2, dbeta3, dbeta4;
dbeta2 = cos(M_PI/4);
dbeta0 = dbeta2 - 0.5;
dbeta1 = -1 - dbeta0;
dbeta3 = -cos(3 * M_PI / 8);
dbeta4 = cos(M_PI / 8);
beta0 = dbeta0 * pow(2,30);
beta1 = dbeta1 * pow(2,30);
beta2 = dbeta2 * pow(2,30);
beta3 = dbeta3 * pow(2,30);
beta4 = dbeta4 * pow(2,30);
for(k=0; k<4;k++) {
d = C(k) / (2.0 * cos( (M_PI * (double)k) / 8.0 ));
diag[0][k] = diag[0][k+4] = d;
} // for
for(k=0; k<8;k++) {
diag[1][k] = tickC(k) / (2.0 * cos( M_PI * k / 16.0 ));
} // for
for(k=0; k<8;k++) {
for(l= 0; l<8 ; l++) {
// Note the 2^16 shift is for fixed point precision.
dv_idct_248_prescale[k*8+l] = 1.0/diag[0][k] * diag[1][l] * pow(2.0,14.0);
dv_idct_248_prescale[k*8+l] *= dv_weight_inverse_248_matrix[k*8+l];
} // for
} // for
} // dv_dct_248_init
/* Total cost: 144 mults, 576 adds, 144 shifts. AAN is cited as having
cost 144 mults, 464 mults. Doing some CSE below would probably get
us there. In principle, 2-4-8 is less complex than 88, since one
of the 1D's consists of 2 order 4 DCTS instead of an order 8, and
DCT's complexity is super-linear.
Even so, this is a big improvement over brute force, which requires
4096 floating point multiplies. */
/* Let gcc make these into shifts if it wants... */
#define DIV_TWO(A) ((A) / 2)
#define DIV_FOUR(A) ((A) / 4)
void dv_idct_248(dv_248_coeff_t *x248, dv_coeff_t *out)
{
dv_248_coeff_t tmp[64];
dv_248_coeff_t *in, *lhs;
dv_248_coeff_t u,v,w,z;
dv_248_coeff_t in0, in1, in2, in3, in4, in5, in6, in7;
int i;
#if 0
/* This is to identify visually where 248 blocks are... */
for(i=0;i<64;i++) {
out[i] = 235 - 128;
}
return;
#endif
// Now, tmp = inv(h2) * inv(g2) * (prescale = inv(d2) * x248 * d)
// 32 mults, 64 adds, 80 shifts, 16 negates
in = x248;
lhs = tmp;
#if IDCT_248_UNIT_TEST
printf("\nt0:\n");
for(i=0;i<64; i++) {
printf("%d ", (in[i] + 0x2000) >> 14);
if((i+1) % 8 == 0) printf("\n");
} // for
#endif // IDCT_248_UNIT_TEST
for(i=0; i<8; i++) {
u = in[0+i];
v = in[2*8+i];
w = in[1*8+i];
z = in[3*8+i];
lhs[0*8+i] = DIV_FOUR(u) + DIV_TWO(v);
lhs[1*8+i] = DIV_FOUR(u) - DIV_TWO(v);
lhs[2*8+i] = fixed_multiply(w,beta0) + fixed_multiply(z,beta1);
lhs[3*8+i] = -(DIV_TWO(w+z));
u = in[4*8+i];
v = in[6*8+i];
w = in[5*8+i];
z = in[7*8+i];
lhs[4*8+i] = DIV_FOUR(u) + DIV_TWO(v);
lhs[5*8+i] = DIV_FOUR(u) - DIV_TWO(v);
lhs[6*8+i] = fixed_multiply(w,beta0) + fixed_multiply(z,beta1);
lhs[7*8+i] = -(DIV_TWO(w+z));
} // for
#if IDCT_248_UNIT_TEST
printf("\nt1:\n");
for(i=0;i<64; i++) {
printf("%d ", (lhs[i] + 0x2000) >> 14);
if((i+1) % 8 == 0) printf("\n");
} // for
#endif // IDCT_248_UNIT_TEST
in = tmp;
lhs = x248;
// Do lhs = inv(f) * inv(L2) * in (butterfly)
// 192 adds, 64 shifts
for(i=0; i<8; i++) {
u = in[8*0+i];
v = in[8*3+i];
w = in[8*4+i];
z = in[8*7+i];
lhs[8*0+i] = DIV_FOUR(u - v + w - z);
lhs[8*1+i] = DIV_FOUR(u - v - w + z);
lhs[8*6+i] = DIV_FOUR(u + v + w + z);
lhs[8*7+i] = DIV_FOUR(u + v - w - z);
u = in[8*1+i];
v = in[8*2+i];
w = in[8*5+i];
z = in[8*6+i];
lhs[i+8*2] = DIV_FOUR(u + v + w + z);
lhs[i+8*3] = DIV_FOUR(u + v - w - z);
lhs[i+8*4] = DIV_FOUR(u - v + w - z);
lhs[i+8*5] = DIV_FOUR(u - v - w + z);
} // for
#if IDCT_248_UNIT_TEST
printf("\nt2:\n");
for(i=0;i<64; i++) {
printf("%d ", (lhs[i] + 0x2000) >> 14);
if((i+1) % 8 == 0) printf("\n");
} // for
#endif // IDCT_248_UNIT_TEST
in = x248;
lhs = tmp;
// Do lhs = in * p * b1 * b2 * m
// 48 mults, 48 adds
for(i=0; i<8; i++) {
lhs[i*8+0] = in[i*8+0];
lhs[i*8+1] = in[i*8+4];
u = in[i*8+2];
v = in[i*8+6];
lhs[i*8+2] = fixed_multiply(u - v,beta2);
lhs[i*8+3] = u + v;
u = in[i*8+1];
v = in[i*8+3];
w = in[i*8+5];
z = in[i*8+7];
lhs[i*8+4] = fixed_multiply(u - z,beta3) + fixed_multiply(v - w,beta4);
lhs[i*8+5] = fixed_multiply(u - v - w + z,beta2);
lhs[i*8+6] = fixed_multiply(u - z,beta4) + fixed_multiply(w - v,beta3);
lhs[i*8+7] = u + v + w + z;
} // for
#if IDCT_248_UNIT_TEST
printf("\nt3:\n");
for(i=0;i<64; i++) {
printf("%d ", (lhs[i] + 0x2000) >> 14);
if((i+1) % 8 == 0) printf("\n");
} // for
#endif // IDCT_248_UNIT_TEST
in = lhs;
lhs = x248;
// Do lhs = in * a1 * a2 * a3 (butterflys...)
// 272 adds (will gcc factor some of these out?)
for(i=0; i<8; i++) {
in0 = in[i*8+0];
in1 = in[i*8+1];
in2 = in[i*8+2];
in3 = in[i*8+3];
in4 = in[i*8+4];
in5 = in[i*8+5];
in6 = in[i*8+6];
in7 = in[i*8+7];
lhs[i*8+0] = in0 + in1 + in2 + in3 + in6 + in7;
lhs[i*8+1] = in0 - in1 + in2 + in5 + in6;
lhs[i*8+2] = in0 - in1 - in2 - in4 + in5;
lhs[i*8+3] = in0 + in1 - in2 - in3 - in4;
lhs[i*8+4] = in0 + in1 - in2 - in3 + in4;
lhs[i*8+5] = in0 - in1 - in2 + in4 - in5;
lhs[i*8+6] = in0 - in1 + in2 - in5 - in6;
lhs[i*8+7] = in0 + in1 + in2 + in3 - in6 - in7;
} // for
#if IDCT_248_UNIT_TEST
printf("\nout:\n");
for(i=0;i<64; i++) {
printf("%d ", (lhs[i] + 0x2000) >> 14);
if((i+1) % 8 == 0) printf("\n");
} // for
#endif // IDCT_248_UNIT_TEST
for(i=0; i<64; i++)
out [i] = (lhs[i] + 0x2000) >> 14;
} // dv_idct_248
#if IDCT_248_UNIT_TEST
// This is a test matrix generated from forward 2-4-8 dct using matlab
static double dv_idct_248_test_x248[64] = {
-126.6250, -227.4838, -111.9136, 0.2316, 19.8750, 0.3386, -0.0514,
-0.0334, 14.7008, 17.6504, -8.5810, -16.1455, -0.0676, 0.1048, 0.2134,
-0.7044, 0.1250, 0.5249, -0.1633, -0.5139, 0.1250, -0.1308, -0.0676,
-0.0758, 0.5404, -0.4475, -0.0366, 0.3909, 0.1633, 0.0426, 0.0810,
0.2244, 25.8750, 15.7781, -15.5290, -22.2636, -0.6250, 4.3342, 0.0733,
-0.4023, 1.6544, -3.9592, 4.2829, -0.1547, -3.8753, 0.0593, -0.2866,
0.8777, -0.3750, -3.9695, -0.1633, 4.5689, 0.6250, 0.3619, -0.0676,
-0.5475, 4.3208, 0.2903, 0.4634, -0.5293, 0.1169, 0.4600, 0.2171,
-0.2753
}; // dv_idct24_test_x248
int main(int argc, char **argv) {
int i;
dv_248_coeff_t x248[64];
dv_init_dct248();
/* prescale - 64 mults */
for(i=0; i<64; i++) {
x248[i] = dv_idct_248_test_x248[i] * dv_idct_248_prescale[i];
}
dv_idct_248(x248);
exit(0);
} // main
#endif //IDCT_248_UNIT_TEST
|