File: idct_248.c

package info (click to toggle)
libdv 1.0.0-6
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 3,864 kB
  • ctags: 2,284
  • sloc: ansic: 14,669; sh: 8,725; asm: 7,250; makefile: 127
file content (343 lines) | stat: -rw-r--r-- 9,445 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/* 
 *  idct_248.c
 *
 *     Copyright (C) Charles 'Buck' Krasic - May 2000
 *     Copyright (C) Erik Walthinsen - May 2000
 *
 *  This file is part of libdv, a free DV (IEC 61834/SMPTE 314M)
 *  codec.
 *
 *  libdv is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU Lesser Public License as published by
 *  the Free Software Foundation; either version 2.1, or (at your
 *  option) any later version.
 *   
 *  libdv is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser Public License for more details.
 *   
 *  You should have received a copy of the GNU Lesser Public License
 *  along with libdv; see the file COPYING.  If not, write to
 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 
 *
 *  The libdv homepage is http://libdv.sourceforge.net/.  
 */

/* Attempt at efficient (?) 2-4-8 IDCT as defined by the DV standard,
 * based on matrix factorizations presented in "Direct Conversions
 * Between DV Format DCT and Ordinary DCT".  Neri Merhav.  Technical
 * Report: HP Laboratories Israel HPL-98-140.  August, 1988. 
 *
 * Note: this is very much an interim solution.  It is based on the 
 * same foundation (AAN algorithm) as the 88 MMX idct from Intel.
 * 
 * This version uses 32 bit math.  For MMX we will use 16bit, but that
 * is fairly subtle.  We also need to think hard about the best way to
 * merge quant/weight/prescale without jeprodizing precision.
 *
 * That said, this is way faster the brute force float version.
 */


#if HAVE_CONFIG_H
# include <config.h>
#endif

#include <stdio.h>
#include <math.h>

#include "idct_248.h"

#define IDCT_248_UNIT_TEST 0

dv_248_coeff_t dv_idct_248_prescale[64];

/*
  beta2 = cos(M_PI/4);
  beta0 = beta2 - 0.5;
  beta1 = -1 - beta0;
  beta3 = -cos(3 * M_PI / 8);
  beta4 = cos(M_PI / 8);
*/
  

static int32_t beta0;
static int32_t beta1;
static int32_t beta2;
static int32_t beta3;
static int32_t beta4;

static double C(int u) {
  double result;
  if(u == 0) {
    result = 0.5 / sqrt(2.0);
  } else {
    result = 0.5;
  } // else
  return(result);
} // C

static double tickC(int u) 
{
  double result;
  if(u == 0) {
    result = 1.0 / sqrt(2.0);
  } else {
    result = 0.5;
  } // else
  return(result);
} // tickC

#if (ARCH_X86 || ARCH_X86_64) && defined(__GNUC__)

static inline int32_t fixed_multiply(int32_t a, int32_t b) {
  register int32_t eax asm("ax");
  register int32_t edx asm("dx");

  eax = a;

  __asm__("imull %2"
	  :"=a" (eax), "=d" (edx)
	  :"g" (b),
	  "0" (eax));
  return(edx << 2);
} // fixed_multiply

#else

/* Will this actually compile?  I dunno */
static inline int32_t fixed_multiply(int32_t a, int32_t b) {
  int64_t product;

  product = (int64_t)a * (int64_t)b;
  product >>= (32 - 2);
  return(product);
} // fixed_multiply

#endif

/* Compute the prescale vector.
 * (verify against  matlab result for kron(inv(D2),D))
 */
void dv_dct_248_init() {
  extern double dv_weight_inverse_248_matrix[];
  int k, l;
  double d;
  double diag[2][8];
  double dbeta0, dbeta1, dbeta2, dbeta3, dbeta4;

  dbeta2 = cos(M_PI/4);
  dbeta0 = dbeta2 - 0.5;
  dbeta1 = -1 - dbeta0;
  dbeta3 = -cos(3 * M_PI / 8);
  dbeta4 = cos(M_PI / 8);

  beta0 = dbeta0 * pow(2,30);
  beta1 = dbeta1 * pow(2,30);
  beta2 = dbeta2 * pow(2,30);
  beta3 = dbeta3 * pow(2,30);
  beta4 = dbeta4 * pow(2,30);

  for(k=0; k<4;k++) {
    d = C(k) / (2.0 * cos( (M_PI * (double)k) / 8.0 ));
    diag[0][k] = diag[0][k+4] = d;
  } // for
  for(k=0; k<8;k++) {
    diag[1][k] = tickC(k) / (2.0 * cos( M_PI * k / 16.0 ));
  } // for
  for(k=0; k<8;k++) {
    for(l= 0; l<8 ; l++) {
      // Note the 2^16 shift is for fixed point precision.
      dv_idct_248_prescale[k*8+l] = 1.0/diag[0][k] * diag[1][l] * pow(2.0,14.0);
      dv_idct_248_prescale[k*8+l] *= dv_weight_inverse_248_matrix[k*8+l];
    } // for
  } // for
} // dv_dct_248_init

/* Total cost: 144 mults, 576 adds, 144 shifts. AAN is cited as having
   cost 144 mults, 464 mults. Doing some CSE below would probably get
   us there.  In principle, 2-4-8 is less complex than 88, since one
   of the 1D's consists of 2 order 4 DCTS instead of an order 8, and
   DCT's complexity is super-linear. 

   Even so, this is a big improvement over brute force, which requires
   4096 floating point multiplies. */

/* Let gcc make these into shifts if it wants... */   
#define DIV_TWO(A) ((A) / 2) 
#define DIV_FOUR(A) ((A) / 4)

void dv_idct_248(dv_248_coeff_t *x248, dv_coeff_t *out)
{
	dv_248_coeff_t tmp[64];
	dv_248_coeff_t *in, *lhs;
	dv_248_coeff_t u,v,w,z;
	dv_248_coeff_t in0, in1, in2, in3, in4, in5, in6, in7;
	int i;

#if 0
	/* This is to identify visually where 248 blocks are... */
	for(i=0;i<64;i++) {
		out[i] = 235 - 128;
	}
	return;
#endif

	// Now, tmp = inv(h2) * inv(g2) * (prescale = inv(d2) * x248 * d)
	// 32 mults, 64 adds, 80 shifts, 16 negates 
	in = x248;
	lhs = tmp;

#if IDCT_248_UNIT_TEST
	printf("\nt0:\n");
	for(i=0;i<64; i++) {
	  printf("%d ", (in[i] + 0x2000) >> 14);
	  if((i+1) % 8 == 0) printf("\n");
	} // for
#endif // IDCT_248_UNIT_TEST
	for(i=0; i<8; i++) {
		u = in[0+i];
		v = in[2*8+i];
		w = in[1*8+i];
		z = in[3*8+i];
		lhs[0*8+i] = DIV_FOUR(u) + DIV_TWO(v);
		lhs[1*8+i] = DIV_FOUR(u) - DIV_TWO(v);
		lhs[2*8+i] = fixed_multiply(w,beta0) + fixed_multiply(z,beta1);
                lhs[3*8+i] = -(DIV_TWO(w+z));
		u = in[4*8+i];
		v = in[6*8+i];
		w = in[5*8+i];
		z = in[7*8+i];
		lhs[4*8+i] = DIV_FOUR(u) + DIV_TWO(v);
		lhs[5*8+i] = DIV_FOUR(u) - DIV_TWO(v);
		lhs[6*8+i] = fixed_multiply(w,beta0) + fixed_multiply(z,beta1);
                lhs[7*8+i] = -(DIV_TWO(w+z));
	} // for 
#if IDCT_248_UNIT_TEST
	printf("\nt1:\n");
	for(i=0;i<64; i++) {
	  printf("%d ", (lhs[i] + 0x2000) >> 14);
	  if((i+1) % 8 == 0) printf("\n");
	} // for
#endif // IDCT_248_UNIT_TEST
	in = tmp;
	lhs = x248;
	// Do lhs  = inv(f) * inv(L2) * in  (butterfly) 
        // 192 adds, 64 shifts
	for(i=0; i<8; i++) {
		u = in[8*0+i];
		v = in[8*3+i];
		w = in[8*4+i];
		z = in[8*7+i];
		lhs[8*0+i] = DIV_FOUR(u - v + w - z);
		lhs[8*1+i] = DIV_FOUR(u - v - w + z);
		lhs[8*6+i] = DIV_FOUR(u + v + w + z);
		lhs[8*7+i] = DIV_FOUR(u + v - w - z);
		u = in[8*1+i];
		v = in[8*2+i];
		w = in[8*5+i];
		z = in[8*6+i];
		lhs[i+8*2] = DIV_FOUR(u + v + w + z);
		lhs[i+8*3] = DIV_FOUR(u + v - w - z);
		lhs[i+8*4] = DIV_FOUR(u - v + w - z);
		lhs[i+8*5] = DIV_FOUR(u - v - w + z);
	} // for
#if IDCT_248_UNIT_TEST
	printf("\nt2:\n");
	for(i=0;i<64; i++) {
	  printf("%d ", (lhs[i] + 0x2000) >> 14);
	  if((i+1) % 8 == 0) printf("\n");
	} // for
#endif // IDCT_248_UNIT_TEST
	in = x248;
	lhs = tmp;
	// Do lhs = in * p * b1 * b2 * m 
	// 48 mults, 48 adds 
	for(i=0; i<8; i++) {
		lhs[i*8+0] = in[i*8+0];
		lhs[i*8+1] = in[i*8+4];
		u = in[i*8+2];
		v = in[i*8+6];
		lhs[i*8+2] = fixed_multiply(u - v,beta2);
		lhs[i*8+3] = u + v;
		u = in[i*8+1];
		v = in[i*8+3];
                w = in[i*8+5];
		z = in[i*8+7];
		lhs[i*8+4] = fixed_multiply(u - z,beta3) + fixed_multiply(v - w,beta4);
		lhs[i*8+5] = fixed_multiply(u - v - w + z,beta2);
		lhs[i*8+6] = fixed_multiply(u - z,beta4) + fixed_multiply(w - v,beta3);
		lhs[i*8+7] = u + v + w + z;
	} // for
#if IDCT_248_UNIT_TEST
	printf("\nt3:\n");
	for(i=0;i<64; i++) {
	  printf("%d ", (lhs[i] + 0x2000) >> 14);
	  if((i+1) % 8 == 0) printf("\n");
	} // for
#endif // IDCT_248_UNIT_TEST
	in = lhs;
	lhs = x248;
	// Do lhs = in * a1 * a2 * a3  (butterflys...) 
	// 272 adds (will gcc factor some of these out?)
	for(i=0; i<8; i++) {
		in0 = in[i*8+0];
		in1 = in[i*8+1];
		in2 = in[i*8+2];
		in3 = in[i*8+3];
		in4 = in[i*8+4];
		in5 = in[i*8+5];
		in6 = in[i*8+6];
		in7 = in[i*8+7];
		lhs[i*8+0] = in0 + in1 + in2 + in3 + in6 + in7;
		lhs[i*8+1] = in0 - in1 + in2 + in5 + in6;
		lhs[i*8+2] = in0 - in1 - in2 - in4 + in5;
		lhs[i*8+3] = in0 + in1 - in2 - in3 - in4;
		lhs[i*8+4] = in0 + in1 - in2 - in3 + in4;
		lhs[i*8+5] = in0 - in1 - in2 + in4 - in5;
		lhs[i*8+6] = in0 - in1 + in2 - in5 - in6;
		lhs[i*8+7] = in0 + in1 + in2 + in3 - in6 - in7;
	} // for
#if IDCT_248_UNIT_TEST
	printf("\nout:\n");
	for(i=0;i<64; i++) {
	  printf("%d ", (lhs[i] + 0x2000) >> 14);
	  if((i+1) % 8 == 0) printf("\n");
	} // for
#endif // IDCT_248_UNIT_TEST
	for(i=0; i<64; i++)
	  out [i] = (lhs[i] + 0x2000) >> 14;
} // dv_idct_248

#if IDCT_248_UNIT_TEST

// This is a test matrix generated from forward 2-4-8 dct using matlab
static double dv_idct_248_test_x248[64] = {  
  -126.6250, -227.4838, -111.9136, 0.2316, 19.8750, 0.3386, -0.0514,
  -0.0334, 14.7008, 17.6504, -8.5810, -16.1455, -0.0676, 0.1048, 0.2134,
  -0.7044, 0.1250, 0.5249, -0.1633, -0.5139, 0.1250, -0.1308, -0.0676,
  -0.0758, 0.5404, -0.4475, -0.0366, 0.3909, 0.1633, 0.0426, 0.0810,
  0.2244, 25.8750, 15.7781, -15.5290, -22.2636, -0.6250, 4.3342, 0.0733,
  -0.4023, 1.6544, -3.9592, 4.2829, -0.1547, -3.8753, 0.0593, -0.2866,
  0.8777, -0.3750, -3.9695, -0.1633, 4.5689, 0.6250, 0.3619, -0.0676,
  -0.5475, 4.3208, 0.2903, 0.4634, -0.5293, 0.1169, 0.4600, 0.2171,
  -0.2753
}; // dv_idct24_test_x248

int main(int argc, char **argv) {
  int i;
  dv_248_coeff_t x248[64];
  dv_init_dct248();
  /* prescale - 64 mults */
  for(i=0; i<64; i++) {
    x248[i]  = dv_idct_248_test_x248[i] * dv_idct_248_prescale[i];
  }
  dv_idct_248(x248);
  exit(0);
} // main 

#endif //IDCT_248_UNIT_TEST