1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/* Example file for using µnit.
*
* µnit is MIT-licensed, but for this file and this file alone:
*
* To the extent possible under law, the author(s) of this file have
* waived all copyright and related or neighboring rights to this
* work. See <https://creativecommons.org/publicdomain/zero/1.0/> for
* details.
*********************************************************************/
#include "munit.h"
/* This is just to disable an MSVC warning about conditional
* expressions being constant, which you shouldn't have to do for your
* code. It's only here because we want to be able to do silly things
* like assert that 0 != 1 for our demo. */
#if defined(_MSC_VER)
#pragma warning(disable: 4127)
#endif
/* Tests are functions that return void, and take a single void*
* parameter. We'll get to what that parameter is later. */
static MunitResult
test_compare(const MunitParameter params[], void* data) {
/* We'll use these later */
const unsigned char val_uchar = 'b';
const short val_short = 1729;
double pi = 3.141592654;
char* stewardesses = "stewardesses";
char* most_fun_word_to_type;
/* These are just to silence compiler warnings about the parameters
* being unused. */
(void) params;
(void) data;
/* Let's start with the basics. */
munit_assert(0 != 1);
/* There is also the more verbose, though slightly more descriptive
munit_assert_true/false: */
munit_assert_false(0);
/* You can also call munit_error and munit_errorf yourself. We
* won't do it is used to indicate a failure, but here is what it
* would look like: */
/* munit_error("FAIL"); */
/* munit_errorf("Goodbye, cruel %s", "world"); */
/* There are macros for comparing lots of types. */
munit_assert_char('a', ==, 'a');
/* Sure, you could just assert('a' == 'a'), but if you did that, a
* failed assertion would just say something like "assertion failed:
* val_uchar == 'b'". µnit will tell you the actual values, so a
* failure here would result in something like "assertion failed:
* val_uchar == 'b' ('X' == 'b')." */
munit_assert_uchar(val_uchar, ==, 'b');
/* Obviously we can handle values larger than 'char' and 'uchar'.
* There are versions for char, short, int, long, long long,
* int8/16/32/64_t, as well as the unsigned versions of them all. */
munit_assert_short(42, <, val_short);
/* There is also support for size_t.
*
* The longest word in English without repeating any letters is
* "uncopyrightables", which has uncopyrightable (and
* dermatoglyphics, which is the study of fingerprints) beat by a
* character */
munit_assert_size(strlen("uncopyrightables"), >, strlen("dermatoglyphics"));
/* Of course there is also support for doubles and floats. */
munit_assert_double(pi, ==, 3.141592654);
/* If you want to compare two doubles for equality, you might want
* to consider using munit_assert_double_equal. It compares two
* doubles for equality within a precison of 1.0 x 10^-(precision).
* Note that precision (the third argument to the macro) needs to be
* fully evaluated to an integer by the preprocessor so µnit doesn't
* have to depend pow, which is often in libm not libc. */
munit_assert_double_equal(3.141592654, 3.141592653589793, 9);
/* And if you want to check strings for equality (or inequality),
* there is munit_assert_string_equal/not_equal.
*
* "stewardesses" is the longest word you can type on a QWERTY
* keyboard with only one hand, which makes it loads of fun to type.
* If I'm going to have to type a string repeatedly, let's make it a
* good one! */
munit_assert_string_equal(stewardesses, "stewardesses");
/* A personal favorite macro which is fantastic if you're working
* with binary data, is the one which naïvely checks two blobs of
* memory for equality. If this fails it will tell you the offset
* of the first differing byte. */
munit_assert_memory_equal(7, stewardesses, "steward");
/* You can also make sure that two blobs differ *somewhere*: */
munit_assert_memory_not_equal(8, stewardesses, "steward");
/* There are equal/not_equal macros for pointers, too: */
most_fun_word_to_type = stewardesses;
munit_assert_ptr_equal(most_fun_word_to_type, stewardesses);
/* And null/not_null */
munit_assert_null(NULL);
munit_assert_not_null(most_fun_word_to_type);
/* Lets verify that the data parameter is what we expected. We'll
* see where this comes from in a bit.
*
* Note that the casting isn't usually required; if you give this
* function a real pointer (instead of a number like 0xdeadbeef) it
* would work as expected. */
munit_assert_ptr_equal(data, (void*)(uintptr_t)0xdeadbeef);
return MUNIT_OK;
}
static MunitResult
test_rand(const MunitParameter params[], void* user_data) {
int random_int;
double random_dbl;
munit_uint8_t data[5];
(void) params;
(void) user_data;
/* One thing missing from a lot of unit testing frameworks is a
* random number generator. You can't just use srand/rand because
* the implementation varies across different platforms, and it's
* important to be able to look at the seed used in a failing test
* to see if you can reproduce it. Some randomness is a fantastic
* thing to have in your tests, I don't know why more people don't
* do it...
*
* µnit's PRNG is re-seeded with the same value for each iteration
* of each test. The seed is retrieved from the MUNIT_SEED
* envirnment variable or, if none is provided, one will be
* (pseudo-)randomly generated. */
/* If you need an integer in a given range */
random_int = munit_rand_int_range(128, 4096);
munit_assert_int(random_int, >=, 128);
munit_assert_int(random_int, <=, 4096);
/* Or maybe you want a double, between 0 and 1: */
random_dbl = munit_rand_double();
munit_assert_double(random_dbl, >=, 0.0);
munit_assert_double(random_dbl, <=, 1.0);
/* Of course, you want to be able to reproduce bugs discovered
* during testing, so every time the tests are run they print the
* random seed used. When you want to reproduce a result, just put
* that random seed in the MUNIT_SEED environment variable; it even
* works on different platforms.
*
* If you want this to pass, use 0xdeadbeef as the random seed and
* uncomment the next line of code. Note that the PRNG is not
* re-seeded between iterations of the same test, so this will only
* work on the first iteration. */
/* munit_assert_uint32(munit_rand_uint32(), ==, 1306447409); */
/* You can also get blobs of random memory: */
munit_rand_memory(sizeof(data), data);
return MUNIT_OK;
}
/* This test case shows how to accept parameters. We'll see how to
* specify them soon.
*
* By default, every possible variation of a parameterized test is
* run, but you can specify parameters manually if you want to only
* run specific test(s), or you can pass the --single argument to the
* CLI to have the harness simply choose one variation at random
* instead of running them all. */
static MunitResult
test_parameters(const MunitParameter params[], void* user_data) {
const char* foo;
const char* bar;
(void) user_data;
/* The "foo" parameter is specified as one of the following values:
* "one", "two", or "three". */
foo = munit_parameters_get(params, "foo");
/* Similarly, "bar" is one of "four", "five", or "six". */
bar = munit_parameters_get(params, "bar");
/* "baz" is a bit more complicated. We don't actually specify a
* list of valid values, so by default NULL is passed. However, the
* CLI will accept any value. This is a good way to have a value
* that is usually selected randomly by the test, but can be
* overridden on the command line if desired. */
/* const char* baz = munit_parameters_get(params, "baz"); */
/* Notice that we're returning MUNIT_FAIL instead of writing an
* error message. Error messages are generally preferable, since
* they make it easier to diagnose the issue, but this is an
* option.
*
* Possible values are:
* - MUNIT_OK: Sucess
* - MUNIT_FAIL: Failure
* - MUNIT_SKIP: The test was skipped; usually this happens when a
* particular feature isn't in use. For example, if you're
* writing a test which uses a Wayland-only feature, but your
* application is running on X11.
* - MUNIT_ERROR: The test failed, but not because of anything you
* wanted to test. For example, maybe your test downloads a
* remote resource and tries to parse it, but the network was
* down.
*/
if (strcmp(foo, "one") != 0 &&
strcmp(foo, "two") != 0 &&
strcmp(foo, "three") != 0)
return MUNIT_FAIL;
if (strcmp(bar, "red") != 0 &&
strcmp(bar, "green") != 0 &&
strcmp(bar, "blue") != 0)
return MUNIT_FAIL;
return MUNIT_OK;
}
/* The setup function, if you provide one, for a test will be run
* before the test, and the return value will be passed as the sole
* parameter to the test function. */
static void*
test_compare_setup(const MunitParameter params[], void* user_data) {
(void) params;
munit_assert_string_equal(user_data, "µnit");
return (void*) (uintptr_t) 0xdeadbeef;
}
/* To clean up after a test, you can use a tear down function. The
* fixture argument is the value returned by the setup function
* above. */
static void
test_compare_tear_down(void* fixture) {
munit_assert_ptr_equal(fixture, (void*)(uintptr_t)0xdeadbeef);
}
static char* foo_params[] = {
(char*) "one", (char*) "two", (char*) "three", NULL
};
static char* bar_params[] = {
(char*) "red", (char*) "green", (char*) "blue", NULL
};
static MunitParameterEnum test_params[] = {
{ (char*) "foo", foo_params },
{ (char*) "bar", bar_params },
{ (char*) "baz", NULL },
{ NULL, NULL },
};
/* Creating a test suite is pretty simple. First, you'll need an
* array of tests: */
static MunitTest test_suite_tests[] = {
{
/* The name is just a unique human-readable way to identify the
* test. You can use it to run a specific test if you want, but
* usually it's mostly decorative. */
(char*) "/example/compare",
/* You probably won't be surprised to learn that the tests are
* functions. */
test_compare,
/* If you want, you can supply a function to set up a fixture. If
* you supply NULL, the user_data parameter from munit_suite_main
* will be used directly. If, however, you provide a callback
* here the user_data parameter will be passed to this callback,
* and the return value from this callback will be passed to the
* test function.
*
* For our example we don't really need a fixture, but lets
* provide one anyways. */
test_compare_setup,
/* If you passed a callback for the fixture setup function, you
* may want to pass a corresponding callback here to reverse the
* operation. */
test_compare_tear_down,
/* Finally, there is a bitmask for options you can pass here. You
* can provide either MUNIT_TEST_OPTION_NONE or 0 here to use the
* defaults. */
MUNIT_TEST_OPTION_NONE,
NULL
},
/* Usually this is written in a much more compact format; all these
* comments kind of ruin that, though. Here is how you'll usually
* see entries written: */
{ (char*) "/example/rand", test_rand, NULL, NULL, MUNIT_TEST_OPTION_NONE, NULL },
/* To tell the test runner when the array is over, just add a NULL
* entry at the end. */
{ (char*) "/example/parameters", test_parameters, NULL, NULL, MUNIT_TEST_OPTION_NONE, test_params },
{ NULL, NULL, NULL, NULL, MUNIT_TEST_OPTION_NONE, NULL }
};
/* If you wanted to have your test suite run other test suites you
* could declare an array of them. Of course each sub-suite can
* contain more suites, etc. */
/* static const MunitSuite other_suites[] = { */
/* { "/second", test_suite_tests, NULL, 1, MUNIT_SUITE_OPTION_NONE }, */
/* { NULL, NULL, NULL, 0, MUNIT_SUITE_OPTION_NONE } */
/* }; */
/* Now we'll actually declare the test suite. You could do this in
* the main function, or on the heap, or whatever you want. */
static const MunitSuite test_suite = {
/* This string will be prepended to all test names in this suite;
* for example, "/example/rand" will become "/µnit/example/rand".
* Note that, while it doesn't really matter for the top-level
* suite, NULL signal the end of an array of tests; you should use
* an empty string ("") instead. */
(char*) "",
/* The first parameter is the array of test suites. */
test_suite_tests,
/* In addition to containing test cases, suites can contain other
* test suites. This isn't necessary in this example, but it can be
* a great help to projects with lots of tests by making it easier
* to spread the tests across many files. This is where you would
* put "other_suites" (which is commented out above). */
NULL,
/* An interesting feature of µnit is that it supports automatically
* running multiple iterations of the tests. This is usually only
* interesting if you make use of the PRNG to randomize your tests
* cases a bit, or if you are doing performance testing and want to
* average multiple runs. 0 is an alias for 1. */
1,
/* Just like MUNIT_TEST_OPTION_NONE, you can provide
* MUNIT_SUITE_OPTION_NONE or 0 to use the default settings. */
MUNIT_SUITE_OPTION_NONE
};
/* This is only necessary for EXIT_SUCCESS and EXIT_FAILURE, which you
* *should* be using but probably aren't (no, zero and non-zero don't
* always mean success and failure). I guess my point is that nothing
* about µnit requires it. */
#include <stdlib.h>
int main(int argc, char* argv[MUNIT_ARRAY_PARAM(argc + 1)]) {
/* Finally, we'll actually run our test suite! That second argument
* is the user_data parameter which will be passed either to the
* test or (if provided) the fixture setup function. */
return munit_suite_main(&test_suite, (void*) "µnit", argc, argv);
}
|