1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/*
* Copyright (c) 2009-2018, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ejml.example;
import org.ejml.EjmlUnitTests;
import org.ejml.UtilEjml;
import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.RandomMatrices_DDRM;
import org.junit.Test;
import java.util.Random;
import static org.junit.Assert.assertEquals;
/**
* @author Peter Abeles
*/
public class TestLevenbergMarquardt {
int NUM_PTS = 50;
Random rand = new Random(7264);
/**
* Give it a simple function and see if it computes something close to it for its results.
*/
@Test
public void testNumericalJacobian() {
DMatrixRMaj param = new DMatrixRMaj(3,1, true, 2, -1, 4);
LevenbergMarquardt alg = new LevenbergMarquardt(1);
DMatrixRMaj X = RandomMatrices_DDRM.rectangle(NUM_PTS,1,rand);
JacobianTestFunction func = new JacobianTestFunction(X,new DMatrixRMaj(NUM_PTS,1));
DMatrixRMaj numericalJacobian = new DMatrixRMaj(NUM_PTS,3);
DMatrixRMaj analyticalJacobian = new DMatrixRMaj(NUM_PTS,3);
alg.configure(func,param.getNumElements());
alg.computeNumericalJacobian(param,numericalJacobian);
func.deriv(X,analyticalJacobian);
EjmlUnitTests.assertEquals(analyticalJacobian,numericalJacobian,1e-6);
}
/**
* See if it can solve an easy optimization problem.
*/
@Test
public void testTrivial() {
// the number of sample points is equal to the max allowed points
runTrivial(NUM_PTS);
// do the same thing but with a different number of poitns from the max allowed
runTrivial(20);
}
/**
* Runs the simple optimization problem with a set of randomly generated inputs.
*
* @param numPoints How many sample points there are.
*/
public void runTrivial( int numPoints ) {
DMatrixRMaj found = new DMatrixRMaj(3,1);
DMatrixRMaj expected = new DMatrixRMaj(3,1, true, 10, -4, 105.2);
LevenbergMarquardt alg = new LevenbergMarquardt(1e-4);
DMatrixRMaj X = RandomMatrices_DDRM.rectangle(numPoints,1,rand);
DMatrixRMaj Y = new DMatrixRMaj(numPoints,1);
// compute the observed output given the true praameters
new JacobianTestFunction(X,Y).function(expected,Y);
JacobianTestFunction func = new JacobianTestFunction(X,Y);
alg.optimize(func,found);
assertEquals(0,alg.getFinalCost(), UtilEjml.TEST_F64);
for (int i = 0; i < expected.getNumElements(); i++) {
assertEquals(expected.get(i),found.get(i), Math.abs(expected.get(i))*1e-4);
}
}
/**
* A very simple function to test how well the numerical jacobian is computed.
*/
private static class JacobianTestFunction implements LevenbergMarquardt.ResidualFunction
{
DMatrixRMaj x;
DMatrixRMaj y;
public JacobianTestFunction(DMatrixRMaj x, DMatrixRMaj y) {
this.x = x;
this.y = y;
}
public void deriv(DMatrixRMaj x, DMatrixRMaj deriv) {
double dataX[] = x.data;
int length = x.numRows;
for( int j = 0; j < length; j++ ) {
double v = dataX[j];
double dA = 1;
double dB = v;
double dC = v*v;
deriv.set(j,0,dA);
deriv.set(j,1,dB);
deriv.set(j,2,dC);
}
}
public void function( DMatrixRMaj param , DMatrixRMaj y ) {
double a = param.data[0];
double b = param.data[1];
double c = param.data[2];
int length = x.numRows;
for( int i = 0; i < length; i++ ) {
double v = x.data[i];
y.data[i] = a + b*v + c*v*v;
}
}
@Override
public void compute(DMatrixRMaj param , DMatrixRMaj residual ) {
double a = param.data[0];
double b = param.data[1];
double c = param.data[2];
int length = x.numRows;
for( int i = 0; i < length; i++ ) {
double v = x.data[i];
residual.data[i] = a + b*v + c*v*v - y.data[i];
}
}
@Override
public int numFunctions() {
return y.getNumElements();
}
}
}
|