1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*
* Copyright (c) 2009-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ejml.example;
import org.ejml.UtilEjml;
import org.ejml.dense.row.RandomMatrices_DDRM;
import org.junit.Test;
import java.util.Random;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
/**
* @author Peter Abeles
*/
public class TestPrincipleComponentAnalysis {
Random rand = new Random(234345);
/**
* Sees if the projection error increases as the DOF decreases in the number of basis vectors.
*/
@Test
public void checkBasisError() {
int M = 30;
int N = 5;
double obs[][] = new double[M][];
PrincipalComponentAnalysis pca = new PrincipalComponentAnalysis();
// add observations
pca.setup(M,N);
for( int i = 0; i < M; i++ ) {
obs[i] = RandomMatrices_DDRM.rectangle(N,1,-1,1,rand).data;
pca.addSample(obs[i]);
}
// as a more crude estimate is made of the input data the error should increase
pca.computeBasis(N);
double errorPrev = computeError(pca,obs);
assertEquals(errorPrev,0, UtilEjml.TEST_F64);
for( int i = N-1; i >= 1; i-- ) {
pca.computeBasis(i);
double error = computeError(pca,obs);
assertTrue(error > errorPrev );
errorPrev = error;
}
}
private double computeError(PrincipalComponentAnalysis pca, double[][] obs ) {
double error = 0;
for (double[] o : obs) {
error += pca.errorMembership(o);
}
return error;
}
/**
* Checks sampleToEigenSpace and sampleToEigenSpace when the basis vectors can
* fully describe the vector.
*/
@Test
public void sampleToEigenSpace() {
int M = 30;
int N = 5;
double obs[][] = new double[M][];
PrincipalComponentAnalysis pca = new PrincipalComponentAnalysis();
// add observations
pca.setup(M,N);
for( int i = 0; i < M; i++ ) {
obs[i] = RandomMatrices_DDRM.rectangle(N,1,-1,1,rand).data;
pca.addSample(obs[i]);
}
// when the basis is N vectors it should perfectly describe the vector
pca.computeBasis(N);
for( int i = 0; i < M; i++ ) {
double s[] = pca.sampleToEigenSpace(obs[i]);
assertTrue(error(s,obs[i]) > 1e-8 );
double o[] = pca.eigenToSampleSpace(s);
assertTrue(error(o,obs[i]) <= 1e-8 );
}
}
private double error( double[] a , double []b ) {
double ret = 0;
for( int i = 0; i < a.length; i++ ) {
ret += Math.abs(a[i]-b[i]);
}
return ret;
}
/**
* Makes sure the response is not zero. Perhaps this is too simple of a test
*/
@Test
public void response() {
int M = 30;
int N = 5;
double obs[][] = new double[M][];
PrincipalComponentAnalysis pca = new PrincipalComponentAnalysis();
// add observations
pca.setup(M,N);
for( int i = 0; i < M; i++ ) {
obs[i] = RandomMatrices_DDRM.rectangle(N,1,-1,1,rand).data;
pca.addSample(obs[i]);
}
pca.computeBasis(N-2);
for( int i = 0; i < M; i++ ) {
double responseObs = pca.response(obs[i]);
assertTrue(responseObs > 0 );
}
}
}
|