File: TestLinearSolverSafe.java

package info (click to toggle)
libejml-java 0.41%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 7,376 kB
  • sloc: java: 82,734; python: 81; makefile: 22
file content (211 lines) | stat: -rw-r--r-- 5,580 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
 * Copyright (c) 2009-2020, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml;

import org.ejml.data.DMatrixRMaj;
import org.ejml.interfaces.decomposition.DecompositionInterface;
import org.ejml.interfaces.linsol.LinearSolverDense;
import org.junit.jupiter.api.Test;

import java.util.Random;

import static org.junit.jupiter.api.Assertions.*;


/**
 * @author Peter Abeles
 */
@SuppressWarnings({"NullAway"})
public class TestLinearSolverSafe {

    Random rand = new Random(234);

    DMatrixRMaj Ainput = new DMatrixRMaj(1,1);
    DMatrixRMaj Binput = new DMatrixRMaj(1,1);

    /**
     * Checks to see if the input matrix is copied after multiple calls.  This was an actual bug.
     */
    @Test
    public void multipleCalls_setA() {
        DummySolver dummy = new DummySolver(true,false);
        dummy.expectedA = 5;

        LinearSolverDense<DMatrixRMaj> s = new LinearSolverSafe<>(dummy);

        Ainput.set(0,5);
        s.setA(Ainput);
        // call it a second time and see if the input matrix has been reset to the
        // correct value
        s.setA(Ainput);

        assertNotSame(dummy.passedin, Ainput);
    }

    /**
     * Checks to see if the input matrix is copied after multiple calls.  This was an actual bug.
     */
    @Test
    public void multipleCalls_setB() {
        DummySolver dummy = new DummySolver(false,true);
        dummy.expectedB = 5;

        LinearSolverDense<DMatrixRMaj> s = new LinearSolverSafe<>(dummy);

        Binput.set(0,5);
        s.solve(Binput,new DMatrixRMaj(1,1));
        // call it a second time and see if the input matrix has been reset to the
        // correct value
        s.solve(Binput,new DMatrixRMaj(1,1));

        assertNotSame(dummy.passedin, Ainput);
    }

    @Test
    public void testSetA_notMod() {
        DummySolver dummy = new DummySolver(false,false);

        LinearSolverDense<DMatrixRMaj> s = new LinearSolverSafe<>(dummy);

        s.setA(Ainput);

        assertSame(dummy.passedin, Ainput);
    }

    @Test
    public void testSetA_mod() {
        DummySolver dummy = new DummySolver(true,false);

        LinearSolverDense<DMatrixRMaj> s = new LinearSolverSafe<>(dummy);

        s.setA(Ainput);

        assertNotSame(dummy.passedin, Ainput);
    }

    @Test
    public void testSolver_notMod() {
        DummySolver dummy = new DummySolver(false,false);

        LinearSolverDense<DMatrixRMaj> s = new LinearSolverSafe<>(dummy);

        s.solve(Binput,new DMatrixRMaj(1,1));

        assertSame(dummy.passedin, Binput);
    }

    @Test
    public void testSolver_mod() {
        DummySolver dummy = new DummySolver(false,true);

        LinearSolverDense<DMatrixRMaj> s = new LinearSolverSafe<>(dummy);

        s.solve(Binput,new DMatrixRMaj(1,1));

        assertNotSame(dummy.passedin, Binput);
    }

    @Test
    public void quality() {
        DummySolver dummy = new DummySolver(false,false);

        LinearSolverDense<DMatrixRMaj> s = new LinearSolverSafe<>(dummy);

        assertEquals(dummy.quality(), s.quality());
    }

    @Test
    public void modifies() {
        LinearSolverDense<DMatrixRMaj> s = new LinearSolverSafe<>(null);

        assertFalse(s.modifiesA());
        assertFalse(s.modifiesB());

    }

    private class DummySolver implements LinearSolverDense<DMatrixRMaj>
    {
        boolean modifiesA;
        boolean modifiesB;

        DMatrixRMaj passedin;

        // the expected value of the input matrix
        double expectedA = Double.NaN;
        double expectedB = Double.NaN;

        private DummySolver(boolean modifiesA, boolean modifiesB) {
            this.modifiesA = modifiesA;
            this.modifiesB = modifiesB;
        }

        @Override
        public boolean setA(DMatrixRMaj A) {
            passedin = A;

            // the input matrix has an expected input value
            if( !Double.isNaN(expectedA))
                assertEquals(expectedA,A.get(0), UtilEjml.TEST_F64);

            if( modifiesA ) {
                A.set(0,0,rand.nextDouble());
            }

            return true;
        }

        @Override
        public /**/double quality() {
            return 1.1;
        }

        @Override
        public void solve(DMatrixRMaj B, DMatrixRMaj X) {
            passedin = B;

            // the input matrix has an expected input value
            if( !Double.isNaN(expectedB))
                assertEquals(expectedB,B.get(0),UtilEjml.TEST_F64);

            if( modifiesB ) {
                B.set(0,0,rand.nextDouble());
            }
        }

        @Override
        public void invert(DMatrixRMaj A_inv) {

        }

        @Override
        public boolean modifiesA() {
            return modifiesA;
        }

        @Override
        public boolean modifiesB() {
            return modifiesB;
        }

        @Override
        public <D extends DecompositionInterface> D getDecomposition() {
            return null;
        }
    }
}