1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/*
* $Id: daub97lift.h,v 1.4 2010/02/05 23:50:22 simakov Exp $
*
* EPSILON - wavelet image compression library.
* Copyright (C) 2006,2007,2010 Alexander Simakov, <xander@entropyware.info>
*
* This file is part of EPSILON
*
* EPSILON is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* EPSILON is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with EPSILON. If not, see <http://www.gnu.org/licenses/>.
*
* http://epsilon-project.sourceforge.net
*/
/** \file
*
* \brief Daubechies 9/7 wavelet transform (Lifting)
*
* This file contains lifting implementation of a famous Daubechies 9/7
* wavelet transform. Lifting transforms are faster than generic
* filter-based counterparts, but they lack uniformity.
*
* \section References
*
* <a href="http://qccpack.sourceforge.net/">QccPack, James E. Fowler</a> */
#ifndef __DAUB97LIFT_H__
#define __DAUB97LIFT_H__
#ifdef __cplusplus
extern "C" {
#endif
/** \addtogroup daub97lift Daubechies 9/7 wavelet transform (Lifting) */
/*@{*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <common.h>
/** ALPHA coefficient */
#define ALPHA -1.58615986717275
/** BETA coefficient */
#define BETA -0.05297864003258
/** GAMMA coefficient */
#define GAMMA 0.88293362717904
/** DELTA coefficient */
#define DELTA 0.44350482244527
/** EPSILON coefficient */
#define EPSILON 1.14960430535816
/** One dimensional Daubechies 9/7 wavelet decomposition
*
* This function performes one stage of 1D wavelet decomposition
* of \a signal_in using Daubechies 9/7 lifting transform. The result is
* stored in \a signal_out. On return, the first half of \a signal_out
* will be occupied with lowpass coefficients, the second half - with highpass
* coefficients.
*
* \param signal_in Input signal
* \param signal_out Output signal
* \param signal_length Signal length
*
* \return \c VOID
*
* \note \a signal_length should be even. */
inline local void daub97lift_analysis_1D_even(coeff_t *signal_in,
coeff_t *signal_out,
int signal_length);
/** One dimensional wavelet reconstruction
*
* This function performes one stage of 1D wavelet reconstruction
* of \a signal_in using Daubechies 9/7 lifting transform. The result is
* stored in \a signal_out.
*
* \param signal_in Input signal
* \param signal_out Output signal
* \param signal_length Signal length
*
* \return \c VOID
*
* \note \a signal_length should be even. */
inline local void daub97lift_synthesis_1D_even(coeff_t *signal_in,
coeff_t *signal_out,
int signal_length);
/** One dimensional Daubechies 9/7 wavelet decomposition
*
* This function performes one stage of 1D wavelet decomposition
* of \a signal_in using Daubechies 9/7 lifting transform. The result is
* stored in \a signal_out. On return, the first half of \a signal_out
* will be occupied with lowpass coefficients, the second half - with highpass
* coefficients.
*
* \param signal_in Input signal
* \param signal_out Output signal
* \param signal_length Signal length
*
* \return \c VOID
*
* \note \a signal_length should be odd, as a consequence
* there will be one extra lowpass coefficient. */
inline local void daub97lift_analysis_1D_odd(coeff_t *signal_in,
coeff_t *signal_out,
int signal_length);
/** One dimensional wavelet reconstruction
*
* This function performes one stage of 1D wavelet reconstruction
* of \a signal_in using Daubechies 9/7 lifting transform. The result is
* stored in \a signal_out.
*
* \param signal_in Input signal
* \param signal_out Output signal
* \param signal_length Signal length
*
* \return \c VOID
*
* \note \a signal_length should be odd. */
inline local void daub97lift_synthesis_1D_odd(coeff_t *signal_in,
coeff_t *signal_out,
int signal_length);
/* Those functions are placed here in order to be inline-ed */
inline local void daub97lift_analysis_1D_even(coeff_t *signal_in,
coeff_t *signal_out,
int signal_length)
{
int i;
for (i = 1; i < signal_length - 2; i += 2) {
signal_in[i] += ALPHA * (signal_in[i - 1] + signal_in[i + 1]);
}
signal_in[signal_length - 1] += 2 * ALPHA * signal_in[signal_length - 2];
signal_in[0] += 2 * BETA * signal_in[1];
for (i = 2; i < signal_length; i += 2) {
signal_in[i] += BETA * (signal_in[i + 1] + signal_in[i - 1]);
}
for (i = 1; i < signal_length - 2; i += 2) {
signal_in[i] += GAMMA * (signal_in[i - 1] + signal_in[i + 1]);
}
signal_in[signal_length - 1] += 2 * GAMMA * signal_in[signal_length - 2];
signal_in[0] = EPSILON * (signal_in[0] + 2 * DELTA * signal_in[1]);
for (i = 2; i < signal_length; i += 2) {
signal_in[i] = EPSILON * (signal_in[i] + DELTA * (signal_in[i + 1] +
signal_in[i - 1]));
}
for (i = 1; i < signal_length; i += 2) {
signal_in[i] /= (-EPSILON);
}
{
int half = signal_length / 2;
coeff_t *even = signal_out;
coeff_t *odd = signal_out + half;
for (i = 0; i < half; i++) {
even[i] = signal_in[i * 2];
odd[i] = signal_in[i * 2 + 1];
}
}
}
inline local void daub97lift_synthesis_1D_even(coeff_t *signal_in,
coeff_t *signal_out,
int signal_length)
{
int i;
{
int half = signal_length / 2;
coeff_t *even = signal_in;
coeff_t *odd = signal_in + half;
for (i = 0; i < half; i++) {
signal_out[i * 2] = even[i];
signal_out[i * 2 + 1] = odd[i];
}
}
for (i = 1; i < signal_length; i += 2) {
signal_out[i] *= (-EPSILON);
}
signal_out[0] = signal_out[0] / EPSILON - 2 * DELTA * signal_out[1];
for (i = 2; i < signal_length; i += 2) {
signal_out[i] = signal_out[i] / EPSILON - DELTA * (signal_out[i + 1] +
signal_out[i - 1]);
}
for (i = 1; i < signal_length - 2; i += 2) {
signal_out[i] -= GAMMA * (signal_out[i - 1] + signal_out[i + 1]);
}
signal_out[signal_length - 1] -= 2 * GAMMA * signal_out[signal_length - 2];
signal_out[0] -= 2 * BETA * signal_out[1];
for (i = 2; i < signal_length; i += 2) {
signal_out[i] -= BETA * (signal_out[i + 1] + signal_out[i - 1]);
}
for (i = 1; i < signal_length - 2; i += 2) {
signal_out[i] -= ALPHA * (signal_out[i - 1] + signal_out[i + 1]);
}
signal_out[signal_length - 1] -= 2 * ALPHA * signal_out[signal_length - 2];
}
inline local void daub97lift_analysis_1D_odd(coeff_t *signal_in,
coeff_t *signal_out,
int signal_length)
{
int i;
for (i = 1; i < signal_length - 1; i += 2) {
signal_in[i] += ALPHA * (signal_in[i - 1] + signal_in[i + 1]);
}
signal_in[0] += 2 * BETA * signal_in[1];
for (i = 2; i < signal_length - 2; i += 2) {
signal_in[i] += BETA * (signal_in[i + 1] + signal_in[i - 1]);
}
signal_in[signal_length - 1] += 2 * BETA * signal_in[signal_length - 2];
for (i = 1; i < signal_length - 1; i += 2) {
signal_in[i] += GAMMA * (signal_in[i - 1] + signal_in[i + 1]);
}
signal_in[0] = EPSILON * (signal_in[0] + 2 * DELTA * signal_in[1]);
for (i = 2; i < signal_length - 2; i += 2) {
signal_in[i] = EPSILON * (signal_in[i] + DELTA * (signal_in[i + 1] +
signal_in[i - 1]));
}
signal_in[signal_length - 1] = EPSILON * (signal_in[signal_length - 1] +
2 * DELTA * signal_in[signal_length - 2]);
for (i = 1; i < signal_length - 1; i += 2) {
signal_in[i] /= (-EPSILON);
}
{
int half = signal_length / 2 + 1;
coeff_t *even = signal_out;
coeff_t *odd = signal_out + half;
for (i = 0; i < half - 1; i++) {
even[i] = signal_in[i * 2];
odd[i] = signal_in[i * 2 + 1];
}
even[half - 1] = signal_in[signal_length - 1];
}
}
inline local void daub97lift_synthesis_1D_odd(coeff_t *signal_in,
coeff_t *signal_out,
int signal_length)
{
int i;
{
int half = signal_length / 2 + 1;
coeff_t *even = signal_in;
coeff_t *odd = signal_in + half;
for (i = 0; i < half - 1; i++) {
signal_out[i * 2] = even[i];
signal_out[i * 2 + 1] = odd[i];
}
signal_out[signal_length - 1] = even[half - 1];
}
for (i = 1; i < signal_length - 1; i += 2) {
signal_out[i] *= (-EPSILON);
}
signal_out[0] = signal_out[0] / EPSILON - 2 * DELTA * signal_out[1];
for (i = 2; i < signal_length - 2; i += 2) {
signal_out[i] = signal_out[i] / EPSILON - DELTA * (signal_out[i + 1] +
signal_out[i - 1]);
}
signal_out[signal_length - 1] = signal_out[signal_length - 1] / EPSILON -
2 * DELTA * signal_out[signal_length - 2];
for (i = 1; i < signal_length - 1; i += 2) {
signal_out[i] -= GAMMA * (signal_out[i - 1] + signal_out[i + 1]);
}
signal_out[0] -= 2 * BETA * signal_out[1];
for (i = 2; i < signal_length - 2; i += 2) {
signal_out[i] -= BETA * (signal_out[i + 1] + signal_out[i - 1]);
}
signal_out[signal_length - 1] -= 2 * BETA * signal_out[signal_length - 2];
for (i = 1; i < signal_length - 1; i += 2) {
signal_out[i] -= ALPHA * (signal_out[i - 1] + signal_out[i + 1]);
}
}
/*@}*/
#ifdef __cplusplus
}
#endif
#endif /* __DAUB97LIFT_H__ */
|