1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/*Code by Dmitry Khovratovich, 2016
CC0 license
*/
#include "equihash.hpp"
#include <sodium.h>
#include <algorithm>
#ifdef _MSC_VER
#include <winsock2.h>
#else
#include <arpa/inet.h>
#endif
#include <string.h>
extern "C" {
#include "equihash.h"
}
//const int NONCE_LENGTH=24; //Length of nonce in bytes;
const int MAX_NONCE = 0xFFFFF;
const int MAX_N = 32; //Max length of n in bytes, should not exceed 32
const unsigned FORK_MULTIPLIER=3; //Maximum collision factor
using namespace _POW;
using namespace std;
void Equihash::InitializeMemory() {
uint32_t tuple_n = ((uint32_t)1) << (n / (k + 1));
Tuple default_tuple(k); // k blocks to store (one left for index)
std::vector<Tuple> def_tuples(LIST_LENGTH, default_tuple);
tupleList = std::vector<std::vector<Tuple>>(tuple_n, def_tuples);
filledList= std::vector<unsigned>(tuple_n, 0);
solutions.resize(0);
forks.resize(0);
}
void Equihash::FillMemory(uint32_t length) { //works for k<=7
const int seed_end_off = seed_len/sizeof(uint32_t);
uint32_t input[seed_end_off + 2];
uint8_t *input_ptr=(uint8_t*) input;
for (unsigned i = 0; i < seed_len; ++i)
input_ptr[i] = seed[i];
input[seed_end_off] = nonce;
input[seed_end_off + 1] = 0;
uint32_t buf[MAX_N / 4];
for (unsigned i = 0; i < length; ++i, ++input[seed_end_off + 1]) {
//blake2b((uint8_t*)buf, &input, NULL, sizeof(buf), sizeof(input), 0);
crypto_generichash((uint8_t*)buf, sizeof(buf), input_ptr, sizeof(input), NULL,0);
uint32_t index = buf[0] >> (32 - n / (k + 1));
unsigned count = filledList[index];
if (count < LIST_LENGTH) {
for (unsigned j = 1; j < (k + 1); ++j) {
//select j-th block of n/(k+1) bits
tupleList[index][count].blocks[j - 1] = buf[j] >> (32 - n / (k + 1));
}
tupleList[index][count].reference = i;
filledList[index]++;
}
}
}
std::vector<Input> Equihash::ResolveTreeByLevel(Fork fork, unsigned level) {
if (level == 0)
return std::vector<Input>{fork.ref1, fork.ref2};
auto v1 = ResolveTreeByLevel(forks[level - 1][fork.ref1], level - 1);
auto v2 = ResolveTreeByLevel(forks[level - 1][fork.ref2], level - 1);
v1.insert(v1.end(), v2.begin(), v2.end());
return v1;
}
std::vector<Input> Equihash::ResolveTree(Fork fork) {
return ResolveTreeByLevel(fork, forks.size());
}
void Equihash::ResolveCollisions(bool store) {
const unsigned tableLength = tupleList.size(); //number of rows in the hashtable
const unsigned maxNewCollisions = tupleList.size()*FORK_MULTIPLIER; //max number of collisions to be found
const unsigned newBlocks = tupleList[0][0].blocks.size() - 1;// number of blocks in the future collisions
std::vector<Fork> newForks(maxNewCollisions); //list of forks created at this step
auto tableRow = vector<Tuple>(LIST_LENGTH, Tuple(newBlocks)); //Row in the hash table
vector<vector<Tuple>> collisionList(tableLength,tableRow);
std::vector<unsigned> newFilledList(tableLength,0); //number of entries in rows
uint32_t newColls = 0; //collision counter
for (unsigned i = 0; i < tableLength; ++i) {
for (unsigned j = 0; j < filledList[i]; ++j) {
for (unsigned m = j + 1; m < filledList[i]; ++m) { //Collision
//New index
uint32_t newIndex = tupleList[i][j].blocks[0] ^ tupleList[i][m].blocks[0];
Fork newFork = Fork(tupleList[i][j].reference, tupleList[i][m].reference);
//Check if we get a solution
if (store) { //last step
if (newIndex == 0) {//Solution
std::vector<Input> solution_inputs = ResolveTree(newFork);
solutions.push_back(Proof(n, k, seed, seed_len, nonce, solution_inputs));
}
}
else { //Resolve
if (newFilledList[newIndex] < LIST_LENGTH && newColls < maxNewCollisions) {
for (unsigned l = 0; l < newBlocks; ++l) {
collisionList[newIndex][newFilledList[newIndex]].blocks[l]
= tupleList[i][j].blocks[l+1] ^ tupleList[i][m].blocks[l+1];
}
newForks[newColls] = newFork;
collisionList[newIndex][newFilledList[newIndex]].reference = newColls;
newFilledList[newIndex]++;
newColls++;
}//end of adding collision
}
}
}//end of collision for i
}
forks.push_back(newForks);
std::swap(tupleList, collisionList);
std::swap(filledList, newFilledList);
}
Proof Equihash::FindProof(){
this->nonce = 1;
while (nonce < MAX_NONCE) {
nonce++;
InitializeMemory(); //allocate
FillMemory(4UL << (n / (k + 1)-1)); //fill with hashes
for (unsigned i = 1; i <= k; ++i) {
bool to_store = (i == k);
ResolveCollisions(to_store); //XOR collisions, concatenate indices and shift
}
//Duplicate check
for (unsigned i = 0; i < solutions.size(); ++i) {
auto vec = solutions[i].inputs;
std::sort(vec.begin(), vec.end());
bool dup = false;
for (unsigned k = 0; k < vec.size() - 1; ++k) {
if (vec[k] == vec[k + 1])
dup = true;
}
if (!dup)
return solutions[i];
}
}
return Proof(n, k, seed, seed_len, nonce, std::vector<uint32_t>());
}
int Proof::serialize(uint8_t *csol, const size_t csol_len) {
if(csol_len!=4+solsize) return 0;
*((uint32_t*)csol)=htonl(nonce);
uint8_t b;
for (uint32_t i = 0, j = 0, bits_left = digitbits + 1;
j < solsize; csol[4+j++] = b) {
if (bits_left >=8) {
// Read next 8 bits, stay at same sol index
b = inputs[i] >> (bits_left -= 8);
} else { // less than 8 bits to read
// Read remaining bits and shift left to make space for next sol index
b = inputs[i];
b <<= (8 - bits_left); // may also set b=0 if bits_left was 0, which is fine
// Go to next sol index and read remaining bits
bits_left += digitbits + 1 - 8;
b |= inputs[++i] >> bits_left;
}
}
return 1;
}
void Proof::dump() {
printf("%08x ", nonce);
for (unsigned i = 0; i < inputs.size(); ++i) {
printf("%08x ", inputs[i]);
}
printf("\n");
}
Proof _POW::unserialize(const unsigned n, const unsigned k, const uint8_t *seed, const uint16_t seed_len, const uint8_t *input, const uint32_t blen) {
const unsigned digitbits = (n/(k+1));
const uint32_t proofsize = 1<<k;
const unsigned solsize = proofsize *(digitbits+1) / 8;
if(solsize+4 != blen) {
return Proof();
}
const uint32_t nonce = ntohl(*((uint32_t*) input));
const uint8_t *csol=input+4;
std::vector<Input> sol;
sol.resize(proofsize,0);
for (uint32_t i = 0, j = 0, bits_left = digitbits + 1;
i < blen-4; i++) {
if(bits_left > 8) {
sol[j] <<= 8;
bits_left -= 8;
sol[j] |= csol[i];
} else if(bits_left == 8) {
sol[j] <<= 8;
sol[j] |= csol[i];
bits_left = digitbits+1;
j++;
} else {
sol[j] <<= bits_left;
sol[j] |= (csol[i] >> (8-bits_left)) & ((1<<bits_left) - 1);
sol[++j] = csol[i] & ((1 << (8-bits_left)) - 1);
bits_left = (digitbits + 1) - (8-bits_left);
}
}
return Proof(n, k, seed, seed_len, nonce, sol);
}
bool Proof::operator ==(const Proof &b) const {
if(n!=b.n) return false;
if(k!=b.k) return false;
if(seed_len!=b.seed_len) return false;
if(0!=memcmp(seed,b.seed,seed_len)) return false;
if(nonce!=b.nonce) return false;
if(inputs.size()!=b.inputs.size()) return false;
for(unsigned i=0; i<inputs.size();i++) if(inputs[i]!=b.inputs[i]) return false;
return true;
}
bool Proof::verify() {
const int seed_end_off = seed_len/sizeof(uint32_t);
uint32_t input[seed_end_off + 2];
uint8_t *input_ptr=(uint8_t*) input;
for (unsigned i = 0; i < seed_len; ++i)
input_ptr[i] = seed[i];
input[seed_end_off] = nonce;
input[seed_end_off + 1] = 0;
uint32_t buf[MAX_N / 4];
std::vector<uint32_t> blocks(k+1,0);
for (unsigned i = 0; i < inputs.size(); ++i) {
input[seed_end_off + 1] = inputs[i];
//blake2b((uint8_t*)buf, &input, NULL, sizeof(buf), sizeof(input), 0);
crypto_generichash((uint8_t*)buf, sizeof(buf), input_ptr, sizeof(input), NULL,0);
for (unsigned j = 0; j < (k + 1); ++j) {
//select j-th block of n/(k+1) bits
blocks[j] ^= buf[j] >> (32 - n / (k + 1));
}
}
bool b = true;
for (unsigned j = 0; j < (k + 1); ++j) {
b &= (blocks[j] == 0);
}
return b;
}
size_t solsize(const unsigned n, const unsigned k) {
return ((1<<k) * ((n/(k+1)) + 1) / 8) + /* including nonce: */ 4;
}
int solve(const unsigned n, const unsigned k, const uint8_t *seed, const size_t seed_len, uint8_t *csol, const size_t csol_len) {
if(csol_len!=solsize(n,k)) return 0;
Equihash equihash(n,k,seed, seed_len);
Proof p = equihash.FindProof();
if(p.inputs.size()==0) {
return 0;
}
p.serialize(csol, csol_len);
return 1;
}
int verify(const unsigned n, const unsigned k, const uint8_t *seed, const size_t seed_len, const uint8_t *sol, const size_t sol_len) {
Proof p = unserialize(n,k,seed,seed_len, sol, sol_len);
return p.verify();
}
|