1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
/*******************************************************************************
* Copyright (c) 2004, 2010 IBM Corporation and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* Contributors:
* IBM Corporation - initial API and implementation
*******************************************************************************/
package org.eclipse.osgi.internal.resolver;
import java.util.*;
/**
* Borrowed from org.eclipse.core.internal.resources.ComputeProjectOrder
* to be used when computing the stop order.
* Implementation of a sort algorithm for computing the node order. This
* algorithm handles cycles in the node reference graph in a reasonable way.
*
* @since 3.0
*/
public class ComputeNodeOrder {
/*
* Prevent class from being instantiated.
*/
private ComputeNodeOrder() {
// not allowed
}
/**
* A directed graph. Once the vertexes and edges of the graph have been
* defined, the graph can be queried for the depth-first finish time of each
* vertex.
* <p>
* Ref: Cormen, Leiserson, and Rivest <it>Introduction to Algorithms</it>,
* McGraw-Hill, 1990. The depth-first search algorithm is in section 23.3.
* </p>
*/
private static class Digraph {
/**
* struct-like object for representing a vertex along with various
* values computed during depth-first search (DFS).
*/
public static class Vertex {
/**
* White is for marking vertexes as unvisited.
*/
public static final String WHITE = "white"; //$NON-NLS-1$
/**
* Grey is for marking vertexes as discovered but visit not yet
* finished.
*/
public static final String GREY = "grey"; //$NON-NLS-1$
/**
* Black is for marking vertexes as visited.
*/
public static final String BLACK = "black"; //$NON-NLS-1$
/**
* Color of the vertex. One of <code>WHITE</code> (unvisited),
* <code>GREY</code> (visit in progress), or <code>BLACK</code>
* (visit finished). <code>WHITE</code> initially.
*/
public String color = WHITE;
/**
* The DFS predecessor vertex, or <code>null</code> if there is no
* predecessor. <code>null</code> initially.
*/
public Vertex predecessor = null;
/**
* Timestamp indicating when the vertex was finished (became BLACK)
* in the DFS. Finish times are between 1 and the number of
* vertexes.
*/
public int finishTime;
/**
* The id of this vertex.
*/
public Object id;
/**
* Ordered list of adjacent vertexes. In other words, "this" is the
* "from" vertex and the elements of this list are all "to"
* vertexes.
*
* Element type: <code>Vertex</code>
*/
public List<Vertex> adjacent = new ArrayList<Vertex>(3);
/**
* Creates a new vertex with the given id.
*
* @param id the vertex id
*/
public Vertex(Object id) {
this.id = id;
}
}
/**
* Ordered list of all vertexes in this graph.
*
* Element type: <code>Vertex</code>
*/
private List<Vertex> vertexList = new ArrayList<Vertex>(100);
/**
* Map from id to vertex.
*
* Key type: <code>Object</code>; value type: <code>Vertex</code>
*/
private Map<Object, Vertex> vertexMap = new HashMap<Object, Vertex>(100);
/**
* DFS visit time. Non-negative.
*/
private int time;
/**
* Indicates whether the graph has been initialized. Initially
* <code>false</code>.
*/
private boolean initialized = false;
/**
* Indicates whether the graph contains cycles. Initially
* <code>false</code>.
*/
private boolean cycles = false;
/**
* Creates a new empty directed graph object.
* <p>
* After this graph's vertexes and edges are defined with
* <code>addVertex</code> and <code>addEdge</code>, call
* <code>freeze</code> to indicate that the graph is all there, and then
* call <code>idsByDFSFinishTime</code> to read off the vertexes ordered
* by DFS finish time.
* </p>
*/
public Digraph() {
super();
}
/**
* Freezes this graph. No more vertexes or edges can be added to this
* graph after this method is called. Has no effect if the graph is
* already frozen.
*/
public void freeze() {
if (!initialized) {
initialized = true;
// only perform depth-first-search once
DFS();
}
}
/**
* Defines a new vertex with the given id. The depth-first search is
* performed in the relative order in which vertexes were added to the
* graph.
*
* @param id the id of the vertex
* @exception IllegalArgumentException if the vertex id is
* already defined or if the graph is frozen
*/
public void addVertex(Object id) throws IllegalArgumentException {
if (initialized) {
throw new IllegalArgumentException();
}
Vertex vertex = new Vertex(id);
Object existing = vertexMap.put(id, vertex);
// nip problems with duplicate vertexes in the bud
if (existing != null) {
throw new IllegalArgumentException();
}
vertexList.add(vertex);
}
/**
* Adds a new directed edge between the vertexes with the given ids.
* Vertexes for the given ids must be defined beforehand with
* <code>addVertex</code>. The depth-first search is performed in the
* relative order in which adjacent "to" vertexes were added to a given
* "from" index.
*
* @param fromId the id of the "from" vertex
* @param toId the id of the "to" vertex
* @exception IllegalArgumentException if either vertex is undefined or
* if the graph is frozen
*/
public void addEdge(Object fromId, Object toId) throws IllegalArgumentException {
if (initialized) {
throw new IllegalArgumentException();
}
Vertex fromVertex = vertexMap.get(fromId);
Vertex toVertex = vertexMap.get(toId);
// ignore edges when one of the vertices is unknown
if (fromVertex == null || toVertex == null)
return;
fromVertex.adjacent.add(toVertex);
}
/**
* Returns the ids of the vertexes in this graph ordered by depth-first
* search finish time. The graph must be frozen.
*
* @param increasing <code>true</code> if objects are to be arranged
* into increasing order of depth-first search finish time, and
* <code>false</code> if objects are to be arranged into decreasing
* order of depth-first search finish time
* @return the list of ids ordered by depth-first search finish time
* (element type: <code>Object</code>)
* @exception IllegalArgumentException if the graph is not frozen
*/
public List<Object> idsByDFSFinishTime(boolean increasing) {
if (!initialized) {
throw new IllegalArgumentException();
}
int len = vertexList.size();
Object[] r = new Object[len];
for (Iterator<Vertex> allV = vertexList.iterator(); allV.hasNext();) {
Vertex vertex = allV.next();
int f = vertex.finishTime;
// note that finish times start at 1, not 0
if (increasing) {
r[f - 1] = vertex.id;
} else {
r[len - f] = vertex.id;
}
}
return Arrays.asList(r);
}
/**
* Returns whether the graph contains cycles. The graph must be frozen.
*
* @return <code>true</code> if this graph contains at least one cycle,
* and <code>false</code> if this graph is cycle free
* @exception IllegalArgumentException if the graph is not frozen
*/
public boolean containsCycles() {
if (!initialized) {
throw new IllegalArgumentException();
}
return cycles;
}
/**
* Returns the non-trivial components of this graph. A non-trivial
* component is a set of 2 or more vertexes that were traversed
* together. The graph must be frozen.
*
* @return the possibly empty list of non-trivial components, where
* each component is an array of ids (element type:
* <code>Object[]</code>)
* @exception IllegalArgumentException if the graph is not frozen
*/
public List<Object[]> nonTrivialComponents() {
if (!initialized) {
throw new IllegalArgumentException();
}
// find the roots of each component
// Map<Vertex,List<Object>> components
Map<Vertex, List<Object>> components = new HashMap<Vertex, List<Object>>();
for (Iterator<Vertex> it = vertexList.iterator(); it.hasNext();) {
Vertex vertex = it.next();
if (vertex.predecessor == null) {
// this vertex is the root of a component
// if component is non-trivial we will hit a child
} else {
// find the root ancestor of this vertex
Vertex root = vertex;
while (root.predecessor != null) {
root = root.predecessor;
}
List<Object> component = components.get(root);
if (component == null) {
component = new ArrayList<Object>(2);
component.add(root.id);
components.put(root, component);
}
component.add(vertex.id);
}
}
List<Object[]> result = new ArrayList<Object[]>(components.size());
for (Iterator<List<Object>> it = components.values().iterator(); it.hasNext();) {
List<Object> component = it.next();
if (component.size() > 1) {
result.add(component.toArray());
}
}
return result;
}
// /**
// * Performs a depth-first search of this graph and records interesting
// * info with each vertex, including DFS finish time. Employs a recursive
// * helper method <code>DFSVisit</code>.
// * <p>
// * Although this method is not used, it is the basis of the
// * non-recursive <code>DFS</code> method.
// * </p>
// */
// private void recursiveDFS() {
// // initialize
// // all vertex.color initially Vertex.WHITE;
// // all vertex.predecessor initially null;
// time = 0;
// for (Iterator allV = vertexList.iterator(); allV.hasNext();) {
// Vertex nextVertex = (Vertex) allV.next();
// if (nextVertex.color == Vertex.WHITE) {
// DFSVisit(nextVertex);
// }
// }
// }
//
// /**
// * Helper method. Performs a depth first search of this graph.
// *
// * @param vertex the vertex to visit
// */
// private void DFSVisit(Vertex vertex) {
// // mark vertex as discovered
// vertex.color = Vertex.GREY;
// List adj = vertex.adjacent;
// for (Iterator allAdjacent=adj.iterator(); allAdjacent.hasNext();) {
// Vertex adjVertex = (Vertex) allAdjacent.next();
// if (adjVertex.color == Vertex.WHITE) {
// // explore edge from vertex to adjVertex
// adjVertex.predecessor = vertex;
// DFSVisit(adjVertex);
// } else if (adjVertex.color == Vertex.GREY) {
// // back edge (grey vertex means visit in progress)
// cycles = true;
// }
// }
// // done exploring vertex
// vertex.color = Vertex.BLACK;
// time++;
// vertex.finishTime = time;
// }
/**
* Performs a depth-first search of this graph and records interesting
* info with each vertex, including DFS finish time. Does not employ
* recursion.
*/
private void DFS() {
// state machine rendition of the standard recursive DFS algorithm
int state;
final int NEXT_VERTEX = 1;
final int START_DFS_VISIT = 2;
final int NEXT_ADJACENT = 3;
final int AFTER_NEXTED_DFS_VISIT = 4;
// use precomputed objects to avoid garbage
final Integer NEXT_VERTEX_OBJECT = new Integer(NEXT_VERTEX);
final Integer AFTER_NEXTED_DFS_VISIT_OBJECT = new Integer(AFTER_NEXTED_DFS_VISIT);
// initialize
// all vertex.color initially Vertex.WHITE;
// all vertex.predecessor initially null;
time = 0;
// for a stack, append to the end of an array-based list
List<Object> stack = new ArrayList<Object>(Math.max(1, vertexList.size()));
Iterator<Vertex> allAdjacent = null;
Vertex vertex = null;
Iterator<Vertex> allV = vertexList.iterator();
state = NEXT_VERTEX;
nextStateLoop: while (true) {
switch (state) {
case NEXT_VERTEX :
// on entry, "allV" contains vertexes yet to be visited
if (!allV.hasNext()) {
// all done
break nextStateLoop;
}
Vertex nextVertex = allV.next();
if (nextVertex.color == Vertex.WHITE) {
stack.add(NEXT_VERTEX_OBJECT);
vertex = nextVertex;
state = START_DFS_VISIT;
continue nextStateLoop;
}
state = NEXT_VERTEX;
continue nextStateLoop;
case START_DFS_VISIT :
// on entry, "vertex" contains the vertex to be visited
// top of stack is return code
// mark the vertex as discovered
vertex.color = Vertex.GREY;
allAdjacent = vertex.adjacent.iterator();
state = NEXT_ADJACENT;
continue nextStateLoop;
case NEXT_ADJACENT :
// on entry, "allAdjacent" contains adjacent vertexes to
// be visited; "vertex" contains vertex being visited
if (allAdjacent.hasNext()) {
Vertex adjVertex = allAdjacent.next();
if (adjVertex.color == Vertex.WHITE) {
// explore edge from vertex to adjVertex
adjVertex.predecessor = vertex;
stack.add(allAdjacent);
stack.add(vertex);
stack.add(AFTER_NEXTED_DFS_VISIT_OBJECT);
vertex = adjVertex;
state = START_DFS_VISIT;
continue nextStateLoop;
}
if (adjVertex.color == Vertex.GREY) {
// back edge (grey means visit in progress)
cycles = true;
}
state = NEXT_ADJACENT;
continue nextStateLoop;
}
// done exploring vertex
vertex.color = Vertex.BLACK;
time++;
vertex.finishTime = time;
state = ((Integer) stack.remove(stack.size() - 1)).intValue();
continue nextStateLoop;
case AFTER_NEXTED_DFS_VISIT :
// on entry, stack contains "vertex" and "allAjacent"
vertex = (Vertex) stack.remove(stack.size() - 1);
@SuppressWarnings("unchecked")
Iterator<Vertex> unchecked = (Iterator<Vertex>) stack.remove(stack.size() - 1);
allAdjacent = unchecked;
state = NEXT_ADJACENT;
continue nextStateLoop;
}
}
}
}
/**
* Sorts the given list of projects in a manner that honors the given
* project reference relationships. That is, if project A references project
* B, then the resulting order will list B before A if possible. For graphs
* that do not contain cycles, the result is the same as a conventional
* topological sort. For graphs containing cycles, the order is based on
* ordering the strongly connected components of the graph. This has the
* effect of keeping each knot of projects together without otherwise
* affecting the order of projects not involved in a cycle. For a graph G,
* the algorithm performs in O(|G|) space and time.
* <p>
* When there is an arbitrary choice, vertexes are ordered as supplied.
* Arranged projects in descending alphabetical order generally results in
* an order that builds "A" before "Z" when there are no other constraints.
* </p>
* <p> Ref: Cormen, Leiserson, and Rivest <it>Introduction to
* Algorithms</it>, McGraw-Hill, 1990. The strongly-connected-components
* algorithm is in section 23.5.
* </p>
*
* @param objects a list of projects (element type:
* <code>IProject</code>)
* @param references a list of project references [A,B] meaning that A
* references B (element type: <code>IProject[]</code>)
* @return an object describing the resulting project order
*/
public static Object[][] computeNodeOrder(Object[] objects, Object[][] references) {
// Step 1: Create the graph object.
final Digraph g1 = new Digraph();
// add vertexes
for (int i = 0; i < objects.length; i++)
g1.addVertex(objects[i]);
// add edges
for (int i = 0; i < references.length; i++)
// create an edge from q to p
// to cause q to come before p in eventual result
g1.addEdge(references[i][1], references[i][0]);
g1.freeze();
// Step 2: Create the transposed graph. This time, define the vertexes
// in decreasing order of depth-first finish time in g1
// interchange "to" and "from" to reverse edges from g1
final Digraph g2 = new Digraph();
// add vertexes
List<Object> resortedVertexes = g1.idsByDFSFinishTime(false);
for (Iterator<Object> it = resortedVertexes.iterator(); it.hasNext();)
g2.addVertex(it.next());
// add edges
for (int i = 0; i < references.length; i++)
g2.addEdge(references[i][0], references[i][1]);
g2.freeze();
// Step 3: Return the vertexes in increasing order of depth-first finish
// time in g2
List<Object> sortedProjectList = g2.idsByDFSFinishTime(true);
Object[] orderedNodes = new Object[sortedProjectList.size()];
sortedProjectList.toArray(orderedNodes);
Object[][] knots;
boolean hasCycles = g2.containsCycles();
if (hasCycles) {
List<Object[]> knotList = g2.nonTrivialComponents();
knots = knotList.toArray(new Object[knotList.size()][]);
} else {
knots = new Object[0][];
}
for (int i = 0; i < orderedNodes.length; i++)
objects[i] = orderedNodes[i];
return knots;
}
}
|